
Fax +49 761 4 52 07 14
Information@Karger.com
www.karger.com

Accessible online at: 
www.karger.com/tmh

Review Article

Transfus Med Hemother 2017;44:174–182
DOI: 10.1159/000477677

Crosstalk between Stem and Progenitor Cellular  
Mediators with Special Emphasis on Vasculogenesis
Rokhsareh Rohban 

a,b  Barbara Prietl 
a,c  Thomas R. Pieber 

a,c,d 

a Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria;  
b Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria;  
c Competence Center for Biomarker Research in Medicine, CBmed, Graz, Austria;  
d HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Graz, Austria

Introduction

Vasculogenesis is an essential step which takes place in course 
of organ regeneration, wound healing, inflammation as well as 
tumor growth [1–3]. It consists of migration and replication of en-
dothelial progenitor cells (EPCs) or endothelial colony forming 
cells (ECFCs) as the backbone of newly formed vessels [1–3] and 
mesenchymal stem and progenitor cells (MSPCs) as pericytes 
which serve as vessel supporters and maintain microvessel stability 
[4–7]. 

EPCs and hematopoietic stem cells (HSCs) derived from adult 
tissues such as bone marrow (BM) have been shown to contribute 
to vasculogenesis during embryonic and postnatal physiological 
processes [8]. Recent preclinical and clinical studies have indicated 
that introduction of BM-derived endothelial and hematopoietic 
progenitors can restore tissue vascularization after ischemic events 
in several organs and tissues such as limb, ophthalmic retina, and 
myocardium. Studies have shown that HSCs are able to deliver 
specific vasculogenic factors that facilitate contribution of EPCs 
into newly forming vessels [8]. Identification of cellular crosstalk 
and signaling mediators that facilitate cellular communication in 
course of vasculogenesis leads to novel research paths to promote 
tissue/organ vasculogenesis and regeneration. In addition, identifi-
cation of signaling factors involved in vasculogenesis leads to de-
velopment of a platform for drug discovery for small molecules 
that accelerate vasculogenesis in regenerated tissues/organs while 
decelerate and/or block vasculogenesis in course of medical inter-
ventions such as cancer therapy. 

Numerous clinical studies are currently ongoing that aim to 
identify various aspects of endothelial progenitor cell application  
in terms of efficacy and safety. Table 1 indicates a number of clinical 
trials using stem and progenitor cells for various therapeutic and 
regenerative interventions. 
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Summary
The cellular components and molecular processes of 
signaling during vasculogenesis have been investigated 
for decades. Considerable efforts have been made to un-
ravel regulatory mechanisms of vasculogenesis through 
crosstalk between vasculogenic playmakers located in 
the vascular niche, namely hematopoietic stem cells, en-
dothelial progenitor cells, and mesenchymal stem and 
progenitor cells. Recent studies have increased the 
knowledge about signaling events within vascular micro-
environment that leads to vasculogenesis. Findings from 
these recent studies indicate the impact of cellular cross-
talk through signaling pathways such as vascular en-
dothelial growth factor signaling, wingless and Notch 
signaling in vasculogenesis and vascular development. 
In this review, we highlight the signaling signature be-
tween stem and progenitor cellular mediators during 
vasculogenesis. We further focus on hematopoietic stem 
cell-endothelial progenitor cell crosstalk during vasculo-
genesis and discuss their potential implications and ben-
efits for therapeutic interventions and regenerative ther-
apy.
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Stem Cells as Leading Quarterbacks in  
Vasculogenesis

BM aspirate is rich in hematopoietic and non-hematopoietic 
stem cells, such as EPCs derived from embryonic hemangioblasts 
and MSPCs. In addition to BM, other tissue sources such as adi-
pose tissue, placenta, and umbilical cord (Warton’s jelly) etc. con-
tain MSPC populations [9]. MSPCs have been shown to support 
HSC function and recovery [10, 11] and participate in hematopoie-
sis orBM regeneration [12, 13]. Moreover, MSPCs have the potential 
to give rise to ‘pericytes’, the perivascular cells on the outer layer of 
vessels supporting the stability of capillaries and directing the 
blood flow [14]. HSCs derived from BM and circulating EPCs have 
been shown to play a crucial role in vasculogenesis in the course of 
tissue regeneration and to rehabilitate the immune system upon 
transplantation. This indicates the importance of BM cellular com-
ponents as a source of adult stem cells for developing therapeutic 
and regenerative strategies [15]. 

HSCs were first isolated from bone marrow [16]. All hema-
topoietic cell lineages, including leukocytes, erythrocytes and 
thrombocytes, can be derived from HSCs in the BM niche. These 
tissue-specific stem cells [17] could divide asymmetrically and, 
thus, possess the capability of self-renewal and maintaining their 
immature, stemness status [17]. 

Phenotypic characterization of undifferentiated human HSCs 
shows diversity in CD34 [18, 19], CD38, and Kit expression but pos-
itive expression signal for Thy-1 CD90 [20], CD133, and vascular 
endothelial growth factor receptor-2 (VEGFR-2) [21, 22]. However, 
as these surface markers are not exclusively expressed on HSCs, 
characterization of these cells requires multi-marker assessment. 

Quiescent HSCs home into either the endosteal bone to be in a 
close interaction with osteoblasts and supporting cells (e.g. MSPCs) 
and participate in various cellular interactions such as adhesion 
and migration, or they home into BM microvasculature sinuses to 
interact with endothelial cells [22–24]. A various number of cy-
tokines and growth factors regulate the stemness or commitment 
state of BM-derived HSCs and their ability to migrate from en-
dosteal bone to the vascular surface. That facilitates their segrega-
tion into the BM vasculature, and consequently, into the peripheral 
blood under specific physiological alerts and injuries [22, 25–27]. 

However, as indicated by a previous study in mouse models, 
only a few number of HSCs will survive to maintain the BM niche 
and substitute the damaged cells/tissues due to their short life-time 
in peripheral blood [28]. It has been shown that HSCs can also re-
side in the human sinusoidal endothelium, in the spleen as well as 
in the skin, gastrointestinal tube, neural tissue, lung and liver [23, 
25, 27]. This and a previous finding of the presence of a BM-de-
rived chemokine receptor type 4+ (CXCR4)+ subpopulation of 

Table 1. A selection of registered clinical trials on the basis of stem and progenitor cellular mediators as the relevant therapeutic tool (www.clinicaltrials.gov)

Title Recruitment Conditions Phases Intervention Sponsors

1 Stem Cell Therapy for Vasculogen-
esis in Patients with Severe  
Myocardial Ischemia

completed myocardial ischemia; 
coronary heart disease

phase I  
phase II

CD90+ CD105+  
mesenchymal stem cells

Rigshospitalet,  
Denmark

2 Evaluate Safety and Efficacy of  
Autologous Bone Marrow-Derived 
Endothelial Progenitor cells in  
Advanced Liver Cirrhosis

completed liver cirrhosis phase I  
phase II

intraarterial administration 
(hepatic artery) of  
autologous bone marrow-
derived endothelial  
progenitor cells

Clinica Universidad de 
Navarra, Universidad  
de Navarra, Spain

3 Autologous Endothelial  
Progenitor Cells Transplantation 
for Chronic Ischemic Stroke

recruiting stroke phase I  
phase II

intravenous injection of  
autologous endothelial  
progenitor cells

Southern Medical  
University, China

4 Safety and Efficacy of Autologous 
Endothelial Progenitor Cell CD133 
for Therapeutic  
Angiogenesis (PROGENITOR)

completed coronary artery disease 
refractory angina

phase I  
phase II

selected CD133+ cells Hospital Clinico San 
Carlos, Madrid, Spain

5 Autologous Endothelial  
Progenitor Cells (EPCs) from  
Peripheral Blood in the Treatment 
of Critical Limb Ischemia

completed critical limb ischemia phase I  
phase II

autologous  
immunomagnetically  
selected CD133+  
stem cells via intramuscular 
implantation

Fondazione IRCCS  
Policlinico San Matteo, 
Pavia, Italy

6 The Enhanced Angiogenic Cell 
Therapy – Acute Myocardial  
Infarction Trial (ENACT-AMI)

recruiting anterior wall  
myocardial infarction

phase II plasma-Lyte A and 25%  
autologous plasma;  
autologous EPCs;  
autologous EPCs transfected 
with human eNOS

Ottawa Hospital  
Research Institute  
Canada
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stem cells that express specific markers for non-hematopoietic, 
non-quiescent stem cells lead us to speculate that HSCs might be 
able to substitute the damaged cells and participate in the ‘repair 
process’ by differentiating into functional cells [29]. However, he-
matopoietic plasticity still remains a matter of debate, and contra-
dictory reports argue for and against the ability of HSCs to differ-
entiate into non-hematopoietic cell lineages [30–35]. 

Multi-potent EPCs and MSPCs are localized in BM stroma as 
well as in vascular inner and outer layers and perivascular niches, 
and are capable of forming mature endothelial cells and mesenchy-
mal cell lineages such as osteoblasts, chondrocytes, adipocytes, and 
myoblasts [21, 25, 36]. EPCs derived from BM, inner vascular wall, 
umbilical cord, and umbilical cord blood as well as circulating 
EPCs are of great importance for clinical studies as well as for cell 
therapy procedures. Being capable of migrating through the circu-
lation and differentiating into committed endothelial cells, EPCs 
are crucial mediators promoting vasculogenesis as well as endothe-
lium repair in case of vascular damage [37–40]. It has been previ-
ously revealed that platelet-derived stromal cell-derived factor-1 
(SDF-1) can be secreted by activated platelets and can recruit BM-
derived-EPCs to arterial structures in vivo [41, 42]. This indicates 
that EPCs could have the potential to participate in vascular repair 
of damaged peripheral tissues. As indicated in a previous study, 
isolation and transplantation of a human EPC subpopulation 
(CD34– and CD14– as well as CD133+ and VEGFR-2+) in nude 
mice with damaged artery resulted in a repaired endothelial layer 
and wound healing caused by the injected EPC subpopulation [38]. 

MSPCs have been isolated and purified from BM where they 
contribute with HSCs to form the niche, and also from other tis-
sues [43], e.g., umbilical cord [44–49] and umbilical cord blood [4, 
48–52], white adipose tissue [49, 53–55], placenta [56], and the 
amniotic membrane [43, 48, 49, 57], to be used for vasculogenic 
processes in vitro and in vivo. 

MSPCs can differentiate into pericytes [58, 59] wrapping 
around blood vessels in order to support their structure and pro-
vide stability [14, 43, 48]. MSPCs home to the outer wall of the mi-
crovessels and arteries in many organs, including spleen, liver, kid-
ney, lung, pancreas, and brain [40, 60]. 

Vasculogenesis causes formation of new vessels that may occur 
during growth or tissue injuries to regenerate vascular structures. 
Re-vascularization of damaged tissues is crucial to restore tissue 
function for the healing process, and it requires recruitment of en-
dothelial cells. Vasculogenesis happens through migration, prolif-
eration, and differentiation of endothelial progenitors to form new 
vessels followed by stabilizing and vascular maturation steps. En-
dothelial progenitors have already been isolated and characterized 
using different methods and various tissues such as BM, umbilical 
cord blood, white adipose tissue etc. [61, 62]. The potential of tis-
sue-specific endothelial colony forming progenitor cells in contrib-
uting to vasculogenesis has been identified in a number of studies 
[48, 63, 64]. 

It has been demonstrated that EPCs which contribute to the cir-
culating cellular compartment can be isolated from peripheral 
blood and can be used for re-vascularization models. It has also 

been shown that human peripheral CD34+ mononuclear cells can 
be cultured on fibronectin-coated surface ex vivo to achieve non-
adherent, spindle-shaped EPCs. These cells have been further char-
acterized by the surface expression of typical endothelial cell mark-
ers such as CD34, CD31, VEGFR-2, and Tie-2, but also CD14, 
CD45, and CD115 which are known hematopoietic cell markers. 
Asahara et al. demonstrated that application of CD34 positive 
blood cells to ischemia mouse models resulted in a major contribu-
tion of these cells towards vascular regeneration [65]. 

Endothelial colony forming cells (ECFC) are a group of progen-
itor cells that have been isolated from different sources such as 
human peripheral and umbilical cord blood samples [61, 66]. 
These cells have been shown to give rise to a highly proliferative, 
genomically stable endothelial progenitor cell population with 
 specific surface marker profiles. ECFC has also shown a robust 
 potential for vasculogenesis in vivo as well as endothelial network 
formation in vitro [67]. In a recent study, subcutaneous co-trans-
plantation of ECFC and MSPC in immune deficient mice resulted 
in establishment of perfused microvessels two weeks after trans-
plantation. The microvessels remained stable and functional even 
after 6 months in vivo [48]. 

Cellular Crosstalk during Vasculogenesis 

Molecular mediators governing vasculogenesis and vascular 
maturation can be grouped into three categories: 
1) molecules that mediate mural-endothelial and endothelial-en-

dothelial cell interactions; 
2) molecules involved in cell-matrix interactions, and 
3) molecules involved in signaling pathways.

Category I; Molecules that Mediate Mural-Endothelial and  
Endothelial-Endothelial Cell Interactions
Endothelial cells are inter-connected with other endothelial cells 

through functional proteins such as vascular endothelial (VE) cad-
herins and claudins. 

VE-cadherin is an important mediator for endothelial-endothe-
lial cell junctions, whereas neural cadherin (N-cadherin) mostly 
mediates the EC-mural cell junction in the process of vasculogene-
sis [68]. The cellular communication between supporting stromal 
cells can also be promoted through N-cadherin molecules. The gap 
junction components, connexins (Cx37, Cx40 and Cx43), promote 
communication between endothelial cells and perivascular cells. 
Furthermore, the endothelial/leukocyte surface marker CD31 has 
been shown to provide permeability to endothelial-endothelial cell 
junctions [69]. Tight junction molecules such as occludin, claudin, 
zonula occludens molecules (ZO-1, 2, 3) and the endothelial sur-
face molecule CD148 are responsible for forming tight junctions in 
the blood brain barrier (BBB) and retinal microvessels in order to 
regulate endothelial-mural cell interaction in these sites. 

It has been shown that mechanical forces during growth and ex-
pansion of the vascular network serve as a stimulator to many of 
the cellular and molecular interactions in the process of vasculo-
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genesis and vascular maturation [70]. However, a limited number 
of studies are available that discuss the mechanical parameters that 
regulate the cellular junctions resulting in concise vasculogenesis 
pattern. 

Category II; Molecules Involved in Cell-Matrix Interactions 
The extracellular matrix serves as a pool enriched for different 

growth factors and enzymes contributing to vasculogenesis. Stud-
ies on integrins have provided information about the effect of vari-
ous extracellular matrix components on the survival and migration 
of endothelial cells. It has been previously shown that the receptor 
α5β1 fibronectin, collagen I and collagen receptors α1β1 and α2β1 
are involved in promoting vasculogenesis and inhibiting endothe-
lial cell apoptosis, whereas thrombospondin 1 and 2 (Tsp1 and 
Tsp2) have been shown to block vasculogenesis through integrins 
and proteases [71]. Paradoxically, some studies reported that sup-
pressing the genes encoding integrin αvβ3 and integrin αvβ5 (inte-
grins binding fibronectin, fibrinogen, endostatin and von Wille-
brand factor) does not inhibit vasculogenesis [72, 73]. 

On the other hand, proteases released from endothelial and 
mural cells can cleave the matrix and plasma proteins into compo-
nents that mediate endothelial cell apoptosis (e.g. angiostatin that 
results from plasminogen cleavage) whereas protease inhibitors in 
the matrix sustain vascular stability [70]. Further studies are re-
quired to unravel the precise role of cell-matrix interactions in vas-
culogenesis and vascular stability processes. 

Category III; Molecules Involved in Signaling Pathways 
Cellular activities are governed by a series of molecular events 

resulting in cellular crosstalk. This regulatory cell signaling impli-
cates protein-protein interactions as the major cell process regula-
tors as well as cell-microenvironment interactions which are neces-
sary for differentiation, tissue homeostasis and repair [74, 75]. Ab-
errant cell signaling could result in cell malfunction or diseases 
such as cancer and diabetes [74]. 

Although cell signaling has been studied intensively within the 
single cell types, it may also happen between two different cell 
types e.g. when the surface embryonic cells are being attached and 
the embryo is implanted to the endometrial tissue. This process is 
known to be mediated by β-catenin signaling molecule in the pro-
cess of Wingless (WNT) signaling [76]. 

Cellular components that are involved in vasculogenesis are de-
pendent on a potent, well-orchestrated and regulated system of cel-
lular crosstalk catalyzed by different classes of signaling molecules. 
Several signaling pathways have been identified to regulate en-
dothelial progenitor-mesenchymal stem and progenitor crosstalk 
during vasculogenesis such as calcium calmodulin and focal adhe-
sion protein kinase signaling pathway [48] whereas other signaling 
events have been studied through which hematopoietic stem and 
endothelial progenitor cells communicate within the vascular mi-
croenvironment e.g. SDF-1 (CXCL12)/CXCR4 signaling [77–80], 
vascular endothelial growth factor signaling (VEGF) [81–84], Tie2/
Ang-1 signaling [85, 86] , hedgehog [87–89] and Notch signaling 
[90, 91], as well as Wingless (Wnt) signaling [92–95]. 

The following subchapters reflect the most important communi-
cation paths between hematopoietic stem cells and endothelial pro-
genitor cells as effective cellular crosstalks during vasculogenesis: 

SDF-1-CXCR4 Signaling Pathway 
Studies have revealed that the SDF-1 (also known as CXCL12) 

has a crucial impact on recruitment of CXCR4+ BM cells to vascu-
lar microenvironment, resulting in revascularization of injured tis-
sues and tumor growth [77, 78]. The precise mechanism by which 
activation of CXCR4 modulates vasculogenesis has not been un-
raveled yet. SDF-1 has been also shown to promote mobilization of 
pro-vasculogenic CXCR4+ VEGFR-1+ hematopoietic cells, thereby 
supports revascularization of injured and ischemic organs [78]. 
During migration, HSCs have been found to express CXCR4, the 
receptor for the chemokine SDF-1, and integrin α4β1. In BM stro-
mal microenvironment, osteoblasts and endothelial cells release 
SDF-1 while CXCR4 is expressed by hematopoietic progenitor 
cells, thus supporting successful BM engraftment in vivo [79, 80]. 

VEGF Signaling 
VEGF family mediators like VEGF-A play an important role 

not only during initiation of vasculogenesis through VEGFR-2 
(FLK-1), but also during vessel maturation that ultimately results 
in establishment of arteries (arteriogenesis) [81, 82]. Neurophilins 
(NRP1 and NRP2) serve as independent VEGF receptors that in-
crease VEGFR-2 activity. VEGFR-2 deficiency and severe decrease 
in VEGF expression hampers vascular development [96]. Muta-
tions and polymorphism in the gene encoding VEGFR-2 result in 
vascular tumor formation as well as in abnormal and/or pathologi-
cal vasculogenesis patterns [97]. 

In perfused vessels, an endothelial tip cell is activated by VEGF-
C, a ligand for VEGFR-2 and VEGFR-3, to direct the vessel growth 
in the presence of VEGF receptors and Notch ligands like DLL4 
and JAGGED1. Upregulation of DLL4 and activation of Notch 
signaling in stalk cells result in VEGFR-2 downregulation and 
cause the stalk cell to be less responsive to VEGF, thus ensuring a 
guiding role for the tip cell in the process of vascular development 
[83, 84]. Paracrine VEGF secreted from cancer cells, myeloid cells, 
or pericytes promotes vascular branching, whereas vasculature ho-
meostasis is sustained by autocrine VEGF secretion [98, 99]. 

VEGFR-3 signaling plays a crucial role in prenatal venous-de-
rived vasculogenesis as well as in lymphatic vessel remodeling from 
the pre-existing ones. A study in zebrafish revealed that the vessel 
formation through sprouting of venous endothelial cells is prohib-
ited by VEGF-2, whereas VEGF-3 facilitates the sprouting of the 
venous-fated endothelial cells resulting in vein development [100]. 

VEGF-B is another member of VEGF family that shows vascu-
logenic potential only in some particular tissues like heart tissue, 
facilitating cardiac vascular development without additional effects 
on permeability of the vessels [101]. 

VEGFR-1 – also known as FLT-1 – possesses weak tyrosine ki-
nase activity but can trap extra amounts of free VEGF to maintain 
VEGFR-2 activity to a normal state. VEGFR-1 blockade and/or de-
ficiency lead to vessel overgrowth [102]. In contrast, the endothe-



Rohban/Prietl/PieberTransfus Med Hemother 2017;44:174–182178

lial and stromal VEGFR-1 signaling cascade has been shown to 
promote pathological vasculogenesis by providing a higher growth 
rate for VEGFR-1+ cancer cells and by increasing matrix metallo-
proteinase 9 expression in endothelial cells at metastatic state 
[103]. 

It has been indicated that the loss of a single VEGF allele in 
mice leads to severe vascular impairment and mortality before 
HSC specification [104]. Other studies have revealed that VEGF-A 
is crucial for HSC formation: longer VEGF-A isoforms are essen-
tial for HSC specification [105]. Also, VEGF signaling has been 
shown to have crucial impact in formation of HSCs from endothe-
lial precursors [105]. 

Notch Signaling 
The Notch signaling pathway is required for determining the 

arterial program of both endothelial and smooth muscle cells; how-
ever, it is simultaneously involved in the generation of HSCs, 
which will give rise to hematopoietic cells. Notch signaling also 
regulates the function of EPCs, which are BM-derived cells able to 
differentiate into endothelial cells which could be considered the 
adult correlate of the angioblast. In addition, Notch signaling has 
been reported to control sprouting angiogenesis during blood ves-
sels formation in adults [106]. 

Notch signaling is involved in cell fate decisions during murine 
vascular development and hematopoiesis in BM microenviron-
ment. In order to elucidate the relation between HSCs and human 
EPCs in the BM niche, impact of Notch signals (Jagged-1 and 
delta-like ligand 1 (Dll-1)) on proliferation and differentiation of 
human CD133+ EPCs needs to be studied [106]. 

To investigate the vasculogenic properties of human Jagged-1- 
and human Dll-1-stimulated EPC in vivo, these cells were trans-
planted into the ischemic limb of nude mouse. The result indi-
cated that transplantation of EPCs stimulated by human Jagged-1, 
but not human Dll-1, elevated density of microvessels in ischemic 
limb muscles, suggesting that human Notch signaling affects EPC 
proliferation and differentiation in the BM niche. Human Jag-
ged-1 has been shown to induce proliferation and differentiation 
of CD133+ cord blood progenitor cells compared to human Dll-1; 
therefore, human Jagged-1 signaling in the BM microenvironment 
can be used to expand EPCs for therapeutic and regenerative vas-
culogenic interventions. Moreover, it has been revealed recently 
that Jagged-1 signaling in the BM microenvironment supports 
proliferation and expansion of EPCs [107] and promotes commit-
ment of CD133+ human umbilical cord blood cells during vascu-
logenesis [107]. 

It has been illustrated in the vessel branching model that the tip 
cells of the vessel migrate while stalk cells proliferate. This might be 
a result of Notch signaling in this model [83]. VEGFR-2 is acti-
vated in response to VEGF and cause expression of DLL4 in the tip 
cells. Consequently, DLL4 activates Notch in the stalk cells that 
suppresses VEGFR-2 while upregulates VEGFR-1, resulting in less 
sprouting and branching but more vessel formation [83]. JAG-
GED1 is another Notch ligand that is mainly expressed by stalk 
cells and contributes to DLL4 in order to select the tip cell [108]. 

However, as Notch signaling itself activates its inhibitor Notch-
regulated ankyrin protein over time, this signaling cascade varies in 
the vascular microenvironment [109]. 

Notch signaling mediators play an important role in the devel-
opment of arterio-venous and venous endothelial structure in the 
establishing vessel [90, 110]. In endothelial cells, activation of 
Notch signaling leads to induction of many arterial markers in-
cluding ephrin B2 and CD44, and suppression of venous markers 
such as ephrin type B receptor 4 [90, 91]. 

Hedgehog Signaling 
Signaling by the hedgehog (hh) family molecules, including 

sonic hedgehog (shh) and Indian hedgehog (ihh), have a regulatory 
role in Notch expression, thus contributing to vascular structure 
and arterial formation in the embryo [111]. It has been revealed 
that hh signaling is genetically upstream of VEGF cascade, which 
governs Notch activation in the endothelium [89]. It can be con-
cluded that hh signaling is a key regulator of a crucial crosstalk 
which governs accurate pattern of vascular formation and en-
dothelium generation [89, 105]. A study aiming to investigate the 
impact of shh expression in vasculogenesis in the course of myo-
cardial injury revealed that upon application of shh, vasculogenic 
components such as VEGF and fibroblast growth factor were sig-
nificantly upregulated [87]. This study suggests that the elevated 
level of shh through activation of hh signaling pathway may play a 
crucial role in the process of vessel formation [87]. 

Williams et al. [88] have also shown that arterial endothelial cell 
formation is induced by hh signaling through repressing venous 
cell fate in zebrafish models. They reported that upregulation of hh 
signaling elevates arterial cellular population while hampers ve-
nous cell fate during vasculogenesis. These evidences, together 
with several reports on the role of hh signaling in vascularity of tu-
mors such as breast cancerous tumors [112], unravel the involve-
ment of hh signaling in vascular formation and development. 

Wnt Signaling 
Wnt signaling has been shown to govern specification and ho-

meostasis of several tissues. Wnt signaling pathway consists of 19 
ligands that associate with frizzled (FZD) receptors on the surface 
of several cell types [113, 114]. When there is no ligand binding, 
β-catenin is degraded [115]. However, activation of Wnt receptors 
through induction of the ligand blocks β-catenin degradation, thus 
allowing for translocation of this molecule to the nucleus and acti-
vation of target gene transcription [116]. It has been revealed that 
β-catenin deletion in the endothelium results in hematopoietic de-
ficiencies [105]. These findings indicate that Wnt signaling plays 
crucial role in HSC and artery fate. 

It has also been illustrated that endothelial cells express Wnt li-
gands and their FZD receptor that control endothelial cell prolifera-
tion. As the vessel branching takes place, Wnt signaling is activated 
by Notch in stalk cells [109]. Suppression of some of Wnt and FZD 
genes (Wnt2, Wnt5a, FZD4, and FZD5) in mouse resulted in defec-
tive vascular structures. Inactivation of WNT7a and WNT7b has 
been shown to result in an impairedBBB vessel formation [117]. 
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Identification of Cellular Crosstalk during  
Vasculogenesis: Potential Benefits for Regeneration  
and Therapy

Unraveling cellular crosstalk that occurs during vasculogenesis 
through methods such as high-throughput screening data analysis 
and proteomics microarray analysis could provide a library of poten-
tial targets that can be used for therapeutic and regenerative interven-
tions pro  and  against vasculogenesis. This ultimately leads to estab-
lishment of novel effective therapeutic and regenerative strategies. 

Signaling mediators can be used as vasculogenic inducers to pro-
mote vasculogenesis during organ and tissue regeneration and repair 
[118] as well as during the development of vascular graft [119]. For 
instance, it has been indicated that activation of the SDF-1-CXCR4 
signaling pathway promotes recruitment of the pro-angiogenic cells 
from BM and other tissues, leading to vasculogenesis [78]. 

On the other hand, many anti-angiogenic therapies are based 
on the blockade of signaling molecules that are known to govern 
vasculogenesis such as the VEGF signaling pathway and related 
components. It has been indicated that several VEGF-targeted 
drugs, administered either as single medication or combined with 
chemotherapy, have positive effects on impairing vasculogenesis in 
cancerous tumors [120]. To date, several small molecules have 
been identified that can serve as inducers and/or inhibitors of tar-
geted signaling molecules. These small molecules have been used 
in numerous preclinical and clinical studies that either aim to pro-
mote vasculogenesis or abolish it. In regenerative therapy, vasculo-
genesis is often favored, whereas vasculogenesis has to be blocked 
when it comes to cancer/tumor therapy. Table 2 illustrates a selec-
tion of small molecules that have been used at the preclinical and 
clinical level. Table 3 summarizes cellular crosstalk category (I–III) 
that has been indicated in section 3. 

Table 2. A number of clinical and pre-clinical studies using small molecule signaling mediator inhibitors as related interventions (www.clinicaltrials.gov)

Study Small molecule/drug involved in the study Disease/Condition

1 Profile of Soluble and Cellular  
Biomarkers and of Functional Imaging during  
Antiangiogenic Therapies in Cancer Patients

avastin, suntent, and nexavar; kinase inhibitors, 
VEGF signaling inhibitors

hepatocellular cancer
non-small cell lung cancer
renal cell cancer
colorectal cancer

2 ME-344 in Early HER2-negative Breast Cancer  
with Antiangiogenic-INDUCED Mitochondrial  
Metabolism

ME-344, a small molecule mitochondrial inhibitor
Bevacizumab, a recombinant humanized monoclonal 
antibody that blocks angiogenesis by inhibiting  
vascular endothelial growth factor A (VEGF-A)

breast cancer
human epidermal growth factor 2 
negative carcinoma of breast
early-stage breast carcinoma

3 A Dose Finding Study Followed by a Safety and  
Efficacy Study in Patients with Advanced Solid  
Tumors or Multiple Myeloma With FGF/FGFR- 
Related Abnormalities

TAS-120, a novel, highly potent and selective  
small molecule fibroblast growth factor receptor  
inhibitor

solid tumors
multiple myeloma

4 MK2206 in Treating Younger Patients With  
Recurrent or Refractory Solid Tumors or Leukemia

MK2206, a protein B kinase Akt inhibitor accelerated phase chronic  
myelogenous leukemia

Vasculogensis mediators Molecules invloved Role

I) Cell-cell mediators VE-cadherin
N-cadherin
claudin
connexins (Cx37, Cx40, and CX43)
occludin
zonula occludens molecules (ZO-1, ZO-2, ZO-3)

cellular communication

II) Cell-matrix mediators integrins (ανβ3, ανβ5, α4β1)
thrombospondin 1 and 2 (Tsp1 and Tsp2)

cell survical
cell migration
apoptosis inhibition
promoting vasculogenesis (integrins)
blocking vasculogenesis (Tsp)

III) Signaling mediators SDF-1 (CXCL12)/CXCR4 signaling
vascular endothelial growth factor signaling (VEGF)
Tie2/Ang1 signaling
hedgehog
Notch signaling
wingless (Wnt)/β-cadherine signaling

promoting and supporting vasculogenesis
cellular regulation
cellular proliferation and differentiation
cellular fate determination

Table 3. Vasculo-
genesis mediators, 
molecules involved 
and their role in course 
of vasculogenesis
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Conclusion

Vasculogenesis is an essential step which takes place in course 
of organ regeneration, wound healing, inflammation, and tumor 
growth [1–3]. Vessel formation consists of migration and replica-
tion of endothelial progenitors to form the backbone of newly 
formed vessel [1–3] and MSPCs such as pericytes which serve as 
vessel supporters and maintain microvessel stability [4–7]. MSPCs, 
endothelial progenitor cells and hematopoietic stem cells interact 
in the vascular microenvironment through signaling mediators to 
accomplish vessel formation. 

Cellular crosstalk takes place mostly through signaling path-
ways such as Wnt, Notch, hh, VEGF and SDF-1-CXCR4 signaling. 
The signaling mediators can be further evaluated and used for re-
generation and therapy. 
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