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Introduction

Platelets (PLTs) fulfill essential functions in primary hemostasis 
and wound healing [1] and  maintain immunological properties [2, 
3], but also play a role in inflammation and cancer [4]. In vivo, up to 
3 × 103, 2–3 μm small PLTs are formed by demarcation and cyto-
plasmatic shedding from one large precursor cell known as mega-
karyocyte (MK) [5]. MKs reside within the bone marrow where they 
differentiate from hematopoietic stem cells within the osteoblastic 
niche [6, 7]. During their maturation they undergo multiple en-
domitoses [8], migrate to the sinusoids vessels, and extend protu-
sions (proplatelets; proPLTs) through the vessel pores. The shear 
stress within the sinusoidal lumen supports the release of PLTs into 
the blood stream [9]. This process is tightly controlled by the micro-
environment within the bone marrow vascular niche [10, 11], main-
taining normal PLT levels of 150–400 × 103 PLTs/μl in the healthy 
human organism. Diverse local cell populations, including sinusoi-
dal endothelial cells, secrete a plethora of cytokines (e.g., throm-
bopoietin (TPO), vascular endothelial growth factor (VEGF), inter-
leukin 1 alpha (IL-1α) [12–14]) that regulate thrombopoiesis [15]. 

Understanding the basic biology of thrombopoiesis and its 
physiological mechanisms is fundamental to efficiently mimic PLT 
production in vitro [16], an approach that is gaining plenty of im-
portance for future transfusion and regenerative medicine. The de-
mand for PLT transfusion is constantly rising [17, 18]. While the 
majority of PLT transfusions is provided to patients with reduced 
PLT counts after chemotherapy or hematopoietic progenitor cell 
transplantation [19], also other clinical causes like inherited disor-
ders [20], immunological complications [21], infections as well as 
acute injury can lead to life-threatening thrombocytopenia and 
may require urgent therapeutic or prophylactic PLT transfusion. 

Since the donor-dependent PLT supply is limited, current initi-
atives such as patient blood management [22, 23] aim to improve 
the appropriate use of PLTs and reduce wastage. Besides the chal-
lenge of PLT shortage, the need for sensitive handling [24], a short 
shelf life, problematic long-term storage [25] as well as a risk for 
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Summary
Platelet transfusions are used in standard clinical prac-
tice to prevent hemorrhage in patients suffering from 
thrombocytopenia or platelet dysfunctions. Recently, a 
constant rise on the demand of platelets for transfusion 
has been registered. This may be associated with several 
factors including demographic changes, population 
aging as well as incidence and prevalence of hematolog-
ical diseases. In addition, platelet-regenerative proper-
ties have been started to be exploited in different areas 
such as tissue remodeling and anti-cancer therapies. 
These new applications are also expected to increase the 
future demand on platelets. Thus, in vitro generated 
platelets may constitute a highly desirable alternative to 
meet the rising demand on platelets. Several factors 
have been considered in the road trip of producing in 
vitro megakaryocytes and platelets for clinical applica-
tion. From selection of the cell source, differentiation 
protocols and culture conditions to the design of optimal 
bioreactors, several strategies have been proposed to 
maximize production yields while preserving functional-
ity. This review summarizes new advances in megakary-
ocyte and platelet differentiation and their production 
upscaling.

© 2017 S. Karger GmbH, Freiburg

Received: February 15, 2017
Accepted: May 4, 2017

Published online: May 23, 2017

Dr. Constanca Figueiredo
Institute for Transfusion Medicine
Hanover Medical School
30625 Hannover, Germany
figueiredo.constanca@mh-hannover.de

© 2017 S. Karger GmbH, Freiburg



Baigger/Blasczyk/FigueiredoTransfus Med Hemother 2017;44:165–173166

bacterial or viral contamination and the transmission of diseases 
[26] exacerbate the management of PLTs for transfusion. Also, 
multitransfused patients alloimmunized to human leukocyte or 
PLT antigens (HLA, HPA), show an increased risk for PLT refrac-
toriness that cannot be completely eliminated by matching of HLA 
in PLT transfusions [27]. Hence, it would be desirable to overcome 
the need for donor PLT transfusion by establishing solid strategies 
for the in vitro production of designer MKs or PLTs to be applied 
in personalized transfusion medicine.

Furthermore, PLT-derived products have demonstrated power-
ful regenerative properties in the field of tissue engineering [28] or 
as drug carrier in anti-cancer therapies [29]. 

The regenerative potential of PLTs relies on the high content of 
growth factors like epithelial growth factor (EGF), insulin growth 
factor-1 (IGF-1), PLT-derived growth factor (PDGF) A and B, 
transforming growth factor-β (TGF-β), and VEGF. In fact, PLT-
rich blood derivatives, such as PLT-rich plasma, PLT-rich fibrin or 
PLT releasate, are applied for stem cell-based tissue engineering 
and regeneration [30]. Moreover, the clinical use of autologous 
PLT products is proven in the application of PLT lysate drops to 
prevent graft-versus-host disease (GvHD) [31] or support wound 
healing in ophthalmology [32]. Hence, advantages and potential 
applications of PLT products are numerous. Also as supplement in 
cell culture for preparation of cell-based therapeutics, the use of 
PLT lysates gained plenty of attention [33]. In particular, the bal-
anced interplay of multiple growth factors determines the stimulat-
ing capacity of PLT lysate [34]. 

Moreover, in recent years PLTs also gained therapeutic interest 
as drug carriers to target circulating tumor cells. PLTs are most 
suitable for this purpose due to their biocompatibility and degrada-
bility, their natural target release capacities and adhesive properties 
[35], and their affinity to cancer cells [29], especially in case of 
thrombocytopenia-induced tumor hemorrhage due to tumor vessel 
injury [36]. In addition to the need of PLTs for transfusion, these 
innovative applications of PLTs or their derived factors may also 
contribute to increase their demand. Therefore, it will be crucial to 
establish robust biotechnological platforms that may serve as an al-
ternative to PLT donation and provide an adequate PLT supply to 
meet all needs. In the past, different studies have contributed to ex-
tensively characterize the mechanism of megakaryopoiesis and PLT 
production [37, 38]. This knowledge paved the way for technical 
breakthroughs regarding in vitro MK and PLT production. Never-
theless, the biomanufacture of MKs and PLTs requires upscaling to 
achieve sufficient yields, and it has to comply with good manufac-
turing practice (GMP) standards to achieve clinical grade. Several 
attempts were developed to meet these criteria towards producing 
PLTs in equivalent quality standards as donor PLTs. 

Mimicking Megakaryopoiesis and Thrombopoiesis 
in vitro

To model and reproduce physiological megakaryopoiesis and 
thrombopoiesis, several protocols using different cell sources have 

been established since the first report of in vitro generated human 
MKs and PLTs from CD34+ peripheral blood progenitor cells [39]. 
All differentiation approaches are based on TPO, which is the 
major key driver of thrombopoiesis [40]. TPO regulates the whole 
differentiation process and lately the final life span of a PLT [41]. 

Towards clinical application of in vitro differentiated PLTs, the 
developed protocols need to address special issues such as GMP 
feasibility, practicability including scalability to achieve clinical 
yields, and high PLT quality. According to the GMP for pharma-
ceutical products by the Food and Drug Administration (FDA), the 
in vitro manufacture of PLTs requires the consideration of follow-
ing aspects [42]: 
(1) Safety of the progenitor cell source. The medical history of the 

stem cell donor should be known [18] or the cell reprogram-
ming strategy of the source for induced pluripotent stem cells 
(iPSCs) need to comply with GMP. In addition, reprogram-
ming approaches would preferentially use nonintegrative vec-
tors. Moreover, the resulting differentiation product (PLTs or 
MKs) has to be irradiated to reduce the risk of resting, poten-
tially tumorigenic cells. 

(2) Differentiation protocols should avoid xenogeneic compo-
nents. Therefore, serum/feeder-free culture and the use of ani-
mal-free antibiotics and cytokines are recommended. 

(3) Any risk of contamination should be eliminated, e.g., by the use 
of automated culturing systems [42]. 
Figure 1 summarizes some of the key factors and corresponding 

aspects to allow the establishment of an effective protocol for the 
future in vitro manufacture of MKs or PLTs. 

The practicability of large-scale production of MKs and PLTs 
strongly relies on a robust and abundant cell source that can be 
easily operated and differentiated in short-time culture periods. 
Several genuine (e.g. CD34+ hematopoietic progenitor/stem cells, 
pre-adipocytes, embryonic stem cells (ESCs)) or induced (e.g. 
iPSCs, immortalized megakaryocytes (imMKs) and induced mega-
karyocytes (iMKs) from erythrocytes or fibroblasts) cell sources 
have been used for the in vitro production of PLTs. Although being 
the natural cell source for PLTs, CD34+ progenitor/stem cells are 
donor-dependent, available in low amounts, and show a very lim-
ited proliferative capacity. All these features remarkably restrict the 
feasibility to use them for the standardized large-scale production 
of PLTs in vitro. The use of ESCs poses significant ethical concerns 
which disable them as a potential cell source. Differentiation of 
adipose tissue-derived stem cells (ASCs) [43–45] or transdifferen-
tiation from erythrocytes [46] and fibroblasts [47, 48] have been 
demonstrated; however, further investigations will be required 
prior to establishment of those cells as robust sources for PLT pro-
duction. Currently, native or genetically modified iPSCs are ac-
cepted as the most promising cell source for in vitro PLT pharming 
due to their availability, upscalability, and low ethical concerns. 
Furthermore, the differentiation of a cryopreservable intermediate 
PLT precursor would be advantageous to onset a fast-track pro-
duction of PLTs for high demands or urgent needs. The potential 
of using immortalized iPSC-derived MKs as direct PLT source has 
also been demonstrated [49] and might contribute to simplify and 
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accelerate the process of PLT production. Independently of the cell 
source chosen for the manufacture of PLTs, all differentiation pro-
tocols should allow the culture in tanks or bioreactors to optimize 
and upscale the production towards clinical yield. 

Generating MKs and PLTs with adequate purity (as achieved 
e.g. by special filter devices for PLT separation [50]) and especially 
appropriate quality remain major challenges for clinical applica-
tion of these bioproducts. Essentially, in vitro generated MKs need 
to satisfy the natural characteristics of MKs derived from bone 
marrow [51] or cord blood [52]. Thon and colleagues [18] sug-
gested to test in vitro MKs for their morphology, ultrastructure, 
cytoskeletal organization, granule content, biomarker expression, 
ploidy, gene expression as well as proPLT formation and PLT re-
lease. PLT quality has to be appropriate and correspond to mor-
phological as well as functional characteristics of donor PLTs. 
Often, in vitro generated PLTs may differ in size and function from 
donor PLTs [53]. The functional characterization of in vitro PLTs 
may be evaluated using several innovative methodologies, as re-
viewed by Paniccia et al. [54]. In particular, PLTs should be ana-
lyzed for their ability to adhere and aggregate after activation and 
for their circulation time in macrophage-depleted animals, and for 
their ability to incorporate in developing mouse thrombi [18]. Ac-
cording to Sim et al. [16], minimal quality criteria for in vitro de-
rived PLTs should include the responsiveness to agonists using 
standard aggregometry, the function in thrombus formation in 
vivo, and the determination of PLT half-life.

Native Cell Sources 
Initially pharming of PLTs was focused on the use of donor-de-

pendent cell sources such as CD34+ hematopoietic progenitor 
cells. In the early 1990s, specific cytokine cocktails supporting in 
vitro megakaryopoiesis were identified. Since then, several studies 
have described protocols to generate CD41+ CD42b+ polyploid 
megakaryocytic cells in vitro from CD34+ hematopoietic cells de-
rived from bone marrow, umbilical cord blood, or peripheral blood 

[55–57]. The differentiated MKs were capable to form proPLTs. 
PLTs generated in vitro according to those protocols showed to be 
at least partially active in vitro upon stimulation with specific ago-
nists such as ADP, thrombin, or fibrinogen as detected by the ex-
pression of P-selectin and the active form of GPIIb-IIIa. Other 
studies have demonstrated the capacity of in vitro differentiated 
PLTs to be incorporated in thrombi in vivo [58]. Still these proto-
cols demands further adaptation to xenofree culture conditions, 
and functional tests for PLTs need to be standardized.

Other donor-dependent cell sources exploited for the in vitro 
PLT production include stromal cells with different origins such as 
adipose tissue or endometrium. Ono-Uruga and colleagues [45] re-
cently generated MKs and PLTs from human ASCs. In particular, 
the CD71+ subpopulation was responsive to endogenous TPO, 
leading to MK differentiation within 6 days, with yields of 3–15 
PLTs/MK. PLTs bound fibrinogen, expressed P-selectin, and the 
active form of GPIIb-IIIa upon thrombin stimulation and were 
able to aggregate in vitro. However, PLT formation from MKs in-
fused in a mouse model was not demonstrated.

Transdifferentiation
Sirpin et al. [46] successfully generated PLTs from MKs that 

have been transdifferentiated from human bone marrow erythro-
blasts by the overexpression of FLI1 and ERG genes. Within 7–11 
days after transduction, CD41+ MKs appeared in culture. How-
ever, PLT production was dependent on induction by OP9 stromal 
cell culture, and aggregation was proven only in combination with 
donor PLTs. Furthermore, two different approaches to convert 
human fibroblasts to MKs have been described. In the study of 
Ono et al. [47], human dermal fibroblasts were transdifferentiated 
within about 17 days into MKs by the overexpression of p45NF-E2, 
Maf G and Maf K genes and following culture in induction me-
dium. The resulting CD41+ polyploid iMKs were morphologically 
similar to bone marrow MKs and produced CD41+ PLT-like parti-
cles upon infusion into immunodeficient mice. Moreover, the in 

Fig. 1. To achieve safe clinical products for trans-
fusion and regenerative medicine in sufficient 
yields, three building blocks for an efficient pro-
duction should be considered: high practicability 
in production, quality tests and assurance for MKs 
and PLTs, as well as safety aspects.
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vitro generated PLTs were capable of thrombus formation on a 
collagen-coated chip implanted in a thrombocytopenic immuno-
deficient mouse. 

Also Pulecio et al. [48] accomplished a direct conversion of 
mouse and human dermal fibroblasts to CD41+ iMKs within 4–12 
days by genetic engineering with GATA2, RNX1 in combination 
with the transcription factor core (GATA1, TAL1, LMO2, c-MYC). 
Each induced MKs produced 5–10 PLTs that spread on activated 
glass. However, some pre-activation occurred during this proce-
dure, hence P-selectin levels did not change after challenge with 
ADP and thrombin. 

Pluripotent Stem Cells
The limited availability of the cell source represents a relevant 

obstacle for large-scale fabrication of MKs and PLT production. 
Hence, the use of human embryonic stem cells (hESCs) was con-
sidered as a potential relevant cell source. hESCs can be virtually 
cultured indefinitely in vitro, and therefore they constitute an un-
limited and donor-independent cell source. Already in 2006, Gaur 
et al. [59] demonstrated the feasibility to differentiate MKs from 
hESCs. Furthermore, hESC-derived MKs were shown to produce 
PLT-like particles with similar ultrastructure, morphology, and 
functionality when compared to blood-derived PLTs [58, 60].

Feng et al. [61] presented a promising approach for the differen-
tiation of MKs and PLTs from human iPSCs via a hemogenic en-
dothelium intermediate. In this protocol, addition of a noncyto-
toxic c-myc inhibitor showed to enhance MK progenitor forma-
tion. iPSC-derived PLTs were capable to aggregate in in vitro tests 
and were incorporated into thrombi in macrophage-depleted mice 
[61]. Furthermore, Liu et al. [62] achieved the differentiation of 
MKs from human iPSCs using FDA-approved pharmacological 
reagents. To reduce the risk of PLT transfusion refractoriness, 
iPSCs have been genetically engineered for the downregulation of 
HLA class I or PLT antigens using gene regulatory (RNA interfer-
ence) [63] or editing (TALEN) strategies [61]. iPSC-derived HLA 
class I-silenced MKs and PLTs have shown to escape antibody-me-
diated cytotoxicity in vitro and in vivo [63]. Also, CRISPR/Cas9 
gene editing of PLT antigens in iPSCs was performed [64]. These 
approaches aim to reduce the immunogenicity of PLT transfusions 
towards the generation of universal PLT products.

Other differentiation protocols that attempted the differentia-
tion of MKs from different cell sources were based on the transient 
overexpression of specific transcription factors. Moreau et al. [65] 
described the generation of high yields of MKs by chemical for-
ward programming (fop) of hPSCs based on the overexpression of 
GATA1, FLI1 and TAL1. FopMKs tolerated cryopreservation, and 
PLTs appeared to be functional as revealed by spreading on fibrin-
ogen as well as in vivo thrombi formation. This approach allowed 
the production of means of five PTLs per CD41+ MK.

Nakamura et al. [49] established immortalized, cryopreservable 
MK progenitor cell lines (imMKCLs) by the differentiation of hIP-
SCs and hESCs that were genetically engineered to stepwise over-
express c-MYC, BMI1, and BCL-XL. This approach ensured the 
suppression of senescence and apoptosis while stimulating prolif-

eration. Upon doxycyclin-regulated inhibition of the inducer 
gene,s imMKCLs produced functional CD42b+ PLTs in vitro. The 
authors suggest to store 108 imMKCL cells per vial as master cell 
bank-derived working cell stock which should produce 2.5 × 1010 
MKs in around 14 days. Also, they identified clones of imMKCLs 
that expanded stably in liquid culture after adaption to serum- and 
feeder-free conditions. However, functional discrepancies were 
found between in vitro derived and endogenous PLTs. According 
to the authors, this might be caused by the lack of serum within the 
in vitro system, compared to the serum-rich PLT concentrates 
used for transfusion. Moreover, studies in experimental transfu-
sion models may be crucial for imMKCL clone selection, since the 
authors have shown that specific clones gained chromosomal 
translocations leading to leukemogenesis upon infusion into im-
munodeficient mice.

Large-Scale Production of Megakaryocytes and 
Platelets

To achieve clinical numbers of in vitro generated MKs and 
PLTs, current next-generation strategies become distanced from 
static cultures and open up to fluidic biomimetic reactors recapitu-
lating the natural bone marrow environment. During the evolution 
of PLT bioreactor design, diverse technical and biological key fea-
tures have been addressed by multiple setups (table 1), allowing the 
production of in vitro PLTs with characteristics, resembling do-
nated PLTs (table 2). Selected approaches and their improvements 
are highlighted within the following paragraphs.

The First Trials and Improvements
In 2006 Matsungaga et al. [55] demonstrated PLT differentia-

tion from human cord blood-derived CD34+ progenitor cells in a 
three-phase culture system. The first two differentiation phases 
were based on static cultures using hTERT human stroma cell as 
feeders. However, the final maturation of MKs and PLTs oc-
curred in a six-well suspension culture system, representing a first 
step away from static cultures. Another new feature introduced 
by this study was the co-culture of MKs in combination with 
human umbilical vein endothelial cells (HUVEC), since endothe-
lial cells are known to fulfil stimulatory functions on proPLT for-
mation. Using this protocol and serum-free media, the differenti-
ated PLTs showed a typical ultrastructure and upregulated the 
expression of P-selectin and activated GPIIb-IIIa upon ADP 
stimulation. In addition, PLTs were able to form aggregates in re-
sponse to fibrinogen.

In 2009, Sullebarger et al. [66] published the first 3D PLT biore-
actor built from a modular perfusion system. The device contained 
a central producer cell disc covered by a layer of pre-expanded 
CD34+ progenitor cells, while medium and gas flow occurred in 
separate spaces above and below this cell layer. This setup allowed 
the harvest of PLTs from the lower medium space over 30 days. 
Collected PLTs were capable to aggregate and showed surface ex-
pression of activation markers such as CD62 and CD63. Later, they 
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further improved this bioreactor prototype. They increased PLT 
production by regulating the oxygen supply and inducing con-
trolled shear stress with help of a continuous medium flow though 
the cell scaffold [67]. These first approaches demonstrated the fea-
sibility to produce PLTs not only in suspension cultures but also in 
continuous perfusion systems which can significantly facilitate the 
upscaling of PLT production.

Silk-Based Bioreactor Systems
In 2011 Pallotta et al. [68] established a 3D model one step 

ahead to a close technical analogue of the bone marrow microenvi-
ronment by the application of silk protein biomaterial. To simulate 
the natural niche, growth factor-coated silk microtubes (mimick-
ing sinusoidal vessels) were embedded in modules filled with type I 
collagen gel. MKs were differentiated from CD34+ cells and seeded 
between the collagen gel and each microtube. Within 16 h, they 
migrated towards the microtube and released proPLTs into the 
constitutive flow of media within the microtubes. However, only 
7% of MKs exhibited proPLT production, with a yield of about 20 
PLTs/MK. In 2015 Di Buduo et al. [69] presented a follow-up of 
this prototype, equipped with an additional silk sponge encom-
passing the microtube to better mimic the stiffness of the sinusoi-
dal vessel surrounding. Moreover, they improved the entrapment 
of growth factors and extracellular matrix components (collagen-1, 
collagen-4, fibrinogen, fibronectin, type IV collagen, or laminin), 
and seeded HUVEC into the lumen of the silk microtubes. These 
new features led to a threefold increase in numbers of released 
PLTs. The generated PLTs demonstrated functional properties in 
vitro and were able to aggregate and to form thrombi. Those stud-
ies showed that natural silk protein biomaterial convinces by its 
biocompatibility, non-thrombogenic features, programmable me-
chanic properties as well as by its surface binding of cytokines, ex-
tracellular matrix components, and endothelial-derived proteins. 

Refined Bioreactors
In 2013, Nakagawa et al. [70] described a next generation of 

technically advanced bioreactors, with the unique feature of expos-
ing MKs to two differential flows. MKs were developed from iPSCs 
or hESCs using mouse feeder cells and on day 20 of the differentia-
tion transferred to modified bioreactors. Initially MKs were seeded 
onto a HUVEC monolayer covering a porous PDMS membrane 
and exposed to a vertical flow that facilitated their migration as 
well as their attachment to the membrane and extension of protru-
sions through the membrane. A horizontal flow below the mem-
brane allowed the shedding of PLTs from megakaryocytic pro-
PLTs. In an improved variant of this bioreactor, MKs were settled 
into special slits on the membrane to expose them to the bidirec-
tional flow in an optimized angle.

Step by step, bioreactor bioengineering for efficient PLT pro-
duction became increasingly complex. In 2014, Thon et al. [71, 72] 
presented the first PLT bioreactor-on-a-chip that, despite its small 
size, considered a broad spectrum of parameters to recapitulate the 
bone marrow microenvironment. To mimic the stiffness of the 
natural bone marrow, MKs were seeded in hydrogels such as algi-

nate. To improve MK trapping, extracellular matrix proteins (e.g. 
fibrinogen, laminin, or collagen) were added into the surrounding 
media, or used to coat the membrane separating the MK chamber 
from the lower flow chamber. ProPLT formation was stimulated 
with help of endothelial cell contacts, and PLT release was opti-
mized using controlled hemodynamic vascular shear stress of 600 
Mpa. Thereby, an immediate onset of proPLT formation (com-
pleted within 2 h) and an elevated percentage of proPLT-forming 
MKs as well as increased PLT counts could be achieved from pri-
mary mouse MKs as well as from hiPSC-derived MKs. Morphol-
ogy, ultrastructure, and function of PLTs produced by hiPSC-der-
vied MKs corresponded to the ones of blood PLTs. Moreover, pro-
gress was made in monitoring proPLT formation and PLT release 
by using specialized 3D live-cell imaging microscopes that also al-
lowed a quantification of PLT production.

Latest Trends in Bioreactor Design
In 2016 Blin et al. [73] developed a ‘microfluidic model of the 

PLT generating organ’, constituted by a single-flow chip, in which 
MKs derived from human cord blood (hCB) CD34+ cells were 
constitutively perfused and captured by thousands of vWF(von 
Willebrand factor)-coated micropillars to release PLTs into the 
media flow. This setup enabled a high throughput of millions of 
MKs within 2 h of perfusion using high shear rate of 1,800/s. The 
collected PLTs were considered as functional according to the 
analysis of their microtubule dynamics and the expression of 
CD42b. After a series of highly specialized bioreactors such as bio-
reactor-on-a-chip had been developed, in the recent year more re-
duced, simplistic systems aiming a straight upscale of the PLT 
manufacture were presented. Avanzi et al. [74] introduced a cul-
ture system in combination with a novel bioreactor boosting high 
yields of PLTs from human cord blood-derived CD34+ progeni-
tors. After hundredfold expansion of these CD34+ progenitors 
during 1 week, a MK differentiation phase was performed in se-
rum-free media for 11 days. Subsequently CD41+ MKs were trans-
ferred to a nanofiber membrane within the bioreactor. Here, they 
were exposed to a bidirectional flow, causing shear stress of  
30–70/s, and stimulating the release of up to 100 PLTs/MK. Also in 
2016, Guan et al. [75] presented a 2-liter bottle turning device filled 
with 600 ml medium for the production of MKs and PLTs from 
CD34+ progenitor cells. After a 6-day expansion step and initiation 
of the differentiation in serum-free medium, progenitor cells were 
transferred to the turning bottle for additional 7 days of final matu-
ration. The MKs released PLTs with a half-life of about 10 h in vivo 
when infused into NOD/SCID mice. Moreover, MKs did not reveal 
altered expression levels of proto-oncogenes compared to CD34+ 
cells. These studies described the possibility to use simple bioreac-
tors for in vitro PLT production. A direct comparison regarding 
cost, effort, PLT yields, and quality remain to be performed be-
tween simple and more complex bioreactors. Nevertheless, a pre-
cise cost-benefit analysis of the mentioned production approaches 
may be difficult, due to their pronounced heterogeneity and the 
multitude of technical features.



Towards the Manufacture of Megakaryocytes and 
Platelets for Clinical Application

Transfus Med Hemother 2017;44:165–173 171

Clinical Application

Due to the limited in vitro production of sufficient PLT num-
bers for transfusion, so far clinical studies have been mainly fo-
cused on the transfusion of in vitro generated MKs. Already in 
1997 for the first time megakaryocytic progenitors differentiated in 
vitro from CD34+ cells in serum-free medium were reinfused to 
ten autologous recipients (1–21 × 105 in vitro generated CD61+ 
MKs/kg body weight) [76]. In this study, a positive correlation be-
tween rising doses of MK progenitor infusion and the outcome of 
PLT recovery was observed. Some but not all patients who received 
highest doses of cultured MK progenitors did not require PLT 
transfusion support. Also in 2012, Xi et al. [77] performed a phase I 
clinical trial using ABO- and HLA-matched MK progenitors gen-
erated from cord blood mononuclear cells under serum-free condi-
tions. A total of 24 patients with hematological malignancies were 
infused with a median concentration of 5.45 × 106 CD41+ MK pro-
genitor cells/kg body weight. The MK progenitors were tolerated 
without severe secondary effects, and neither led to GVHD within 
1 year of follow-up. PLT recovery was reached in only 12 of 19 pa-
tients who did not receive further PLT transfusion. In September 
2014, the Nanfang Hospital of Southern Medical University started 
recruiting for a clinical study to test megakaryocytic progenitor 
cells for prophylaxis and treatment of thrombocytopenia [78]. 
Moreover, imMKCLs, produced as discussed earlier in this review 
[49], from voluntary blood component donors with specific HLA 
haplotypes are currently being tested in a clinical phase I trial in 
Japan, initiated by Koji Eto [79]. The group demonstrated an ap-
proach for generation of 0.5 × 1011 imMKCL-derived PLTs from 
each batch of an 8-liter culture [80]. The imMKCLs are analyzed 
for their PLT production capacity in vivo, determining their suita-
bility in transfusion therapy. These first results suggest the feasibil-
ity of MK transfusion as a strategy to treat thrombocytopenia. 
However, potential secondary loci of thrombopoiesis were ob-
served infusing ex vivo generated human MK into mice, represent-
ing a potential risk for pulmonary diseases [16, 18, 26]. Neverthe-
less, the data generated within these clinical trials support the feasi-
bility of using in vitro manufactured PLTs as a future alternative or 
complementary strategy to PLT donation. 

Conclusions and Outlook

It is currently possible to efficiently differentiate MKs from 
iPSCs, but they show a restricted capacity to produce PLTs in 
vitro. Physiologically, 1 MK produces thousands of PLTs into the 
circulation. In contrast, the protocols available only allow the pro-
duction of up to hundreds PLTs per MK. This delays the possibil-
ity for clinical application of in vitro produced PLTs. Yields of 
PLT production may profit in the future from the harmonization 
of MK expansion and differentiation culture systems towards a 
synchronized PLT formation and release [74]. The application of 
shear stress in the designed bioreactor aimed to provide a physical 
cue to induce a synchronized proPLT formation, extension, and 

PLT release [80]. However, it remains highly desirable to identify 
biological or chemical signals that might support this process. 
Moreover, the in vitro generated PLTs do not unfailingly suit all 
expected quality criteria in comparison to donor-derived PLTs 
[81]. Here, a standard catalogue of morphological and functional 
tests for the evaluation of the PLT quality in vitro and in vivo 
would be necessary to allow a direct comparison between the indi-
vidual protocols. In vivo PLT survival and functional studies have 
been significantly limited due to the absence of a reliable animal 
model. In particular NOD/SCID mice showed to be valuable for 
testing survival of human PLTs in the mouse circulation after stor-
age, exposure to human antibodies, or in pharmacological studies 
[82, 83]. However, major differences between mice and human 
PLTs may compromise the significance of the functional data of 
human PLTs after infusion into the mouse circulation. Although 
mouse and human PTLs are similar, mouse PLTs are smaller, pre-
sent in higher number in the circulation and have a different anti-
gen expression pattern. In addition, shear stress, an elementary 
parameter for proPLT formation and PLT maturation, might dif-
fer in the narrow, murine vascular system that consequently might 
not represent the optimal environment to test production and 
quality of the larger human MKs or PLTs [47]. These differences 
might be associated with variations in responses of human and 
mouse PLTs to the same agent. In addition, functional assays of 
human PLTs in the mouse circulation are also limited by the max-
imal volume ( 200 μl) possible to inject at one application and 
which is far away from the volumes applied in a clinical situation 
[82–84]. Despite the overall relevance of in vivo functional tests, 
studies have demonstrated the capacity of in vitro generated PLTs 
to adhere to the endothelium and of clotting after infusion into the 
mouse circulation [47, 49, 58, 61, 65]. These results suggest, at 
least in part, that in vitro generated PLTs are able to respond to 
stimulatory stimuli in vivo. Nevertheless, it is still necessary to es-
tablish an optimized in vivo model to investigate the fine tuning of 
PLT activation and function as well as interaction between PLTs 
with other cell types. 

Furthermore, methods of collection and storage of biomanufac-
tured PLTs have to be improved to prevent inappropriate PLT acti-
vation prior to transfusion. Despite of the use of inhibitors of PLT 
aggregation such as prostanglandin E1, the high susceptibility of 
PLTs to activation during the collection and storage process due to 
shear stress, centrifugation, and unsuitable composition or pH 
changes of the media remains a relevant hurdle during PLT pro-
duction that may compromise their clinical efficiency [71, 85]. 
Thus, major efforts may be required to improve the media selected 
for the collection and storage of PLT produced in bioreactors. 

The application of donor-independent, infinite progenitor 
sources for optimized PLT production such as HLA-deficient 
iPSCs [61, 63] or immortalized MKs [49] in close biomimetic re-
actors [69–71] or systems allowing a high production scalability, 
would enable one step further to clinical application [74, 75]. De-
spite the recent advances in optimizing the features and methods 
for in vitro PLT production, so far the manufacture of PLTs re-
mains ineffective, which may support the evaluation of alternative 
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strategies. MK transfusion already proved in the past and in cur-
rent trials to be an effective strategy to increase PLT counts in the 
circulation. In fact, several studies have demonstrated the feasibil-
ity of transfused MKs to produce PLTs in animal models and even 
in clinical studies [76, 77]. Nevertheless, some studies have showed 
that in mice infused MKs might become retained in the lung vas-
culature [86]. Therefore, comprehensive safety and biodistribu-
tion studies will be required before considering MK transfusion as 
an efficient alternative to PLT transfusion. However, this is a 

quickly evolving area where novel technical breakthroughs are ex-
pected to allow the sufficient supply of in vitro generated MKs and 
or PLTs to meet the high demands on transfusion and regenera-
tive medicine.
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