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ABSTRACT

Interactions between the ribosomal exit tunnel and the nascent peptide can affect translation elongation rates. While previous
studies have already demonstrated the feasibility of such interactions, little is known about the nature of the stalling peptide
sequences and their distribution in the proteome. Here we ask which peptide sequences tend to occupy the tunnel of stalled
ribosomes and how they are distributed in the proteome. Using computational analysis of ribosome profiling data from S.
cerevisiae, we identified for the first time dozens of short stalling peptide sequences and studied their statistical properties. We
found that short peptide sequences associated with ribosome stalling tend significantly to be either over- or underrepresented
in the proteome. We then showed that the stalling interactions may occur at different positions along the length of the tunnel,
prominently close to the P-site. Our findings throw light on the determinants of nascent peptide-mediated ribosome stalling
during translation elongation and support the novel conjecture that mRNA translation affects the proteomic distribution of
short peptide sequences.
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INTRODUCTION

During mRNA translation elongation, the growing polypep-
tide chain departs from the ribosome through a narrow, neg-
atively charged exit tunnel. The cramped dimensions of the
ribosomal exit tunnel preclude tertiary folding of whole large
protein domains; however, tertiary/secondary conformations
of small segments of the nascent polypeptide as well as fold-
ing of small protein domains are usually feasible (Kosolapov
and Deutsch 2009;Wilson and Beckmann 2011; Nilsson et al.
2015; Marino et al. 2016). Short sequences within the nascent
peptide that chemically/electrostatically interact with ribo-
somal subunits might interfere with translation via delaying
or blocking protein synthesis or via affecting functional prop-
erties of the ribosome, such as the A-site of the peptidyl trans-
ferase center (Nakatogawa and Ito 2002; Tenson and
Ehrenberg 2002; Lawrence et al. 2008; Seidelt et al. 2009;
Bhushan et al. 2010; Ramu et al. 2011). Since mRNA transla-
tion is the process that consumes most of the cellular energy,
genomes are under strong selection to improve this process
(Arava et al. 2003; Ingolia et al. 2009; Plotkin and Kudla
2010; Tuller et al. 2010; Gingold and Pilpel 2011). Whereas

peptide sequences that block protein synthesis are expected
to be selected against (Peil et al. 2013; Woolstenhulme
et al. 2013; Navon et al. 2016), peptide sequences that “tran-
siently” halt the ribosome may contribute to cotranslational
protein folding or other important nontranslational phe-
nomena, and thus be evolutionarily preferred (Kimchi-
Sarfaty et al. 2007; Tsai et al. 2008; Komar 2009; Kramer
et al. 2009; Zhang et al. 2009; Ciryam et al. 2013).
Previous studies have shown that the distribution of short

peptide sequences in the proteome deviates from what is ex-
pected based on the proteomic distribution of their individ-
ual amino acids (AA) (Qi et al. 2004; Höhl and Ragan 2007;
Tuller et al. 2007). Furthermore, it has been shown that many
possible peptide sequences, 5 AA long, are totally absent from
all known proteomes although they are “coded” multiple
times in noncoding regions (Tuller et al. 2007). In addition,
various ribo-seq-based studies in recent years have suggested
that the AA content of the nascent peptide may affect trans-
lation elongation speed via interactions with the ribosomal
exit tunnel (Dana and Tuller 2012; Charneski and Hurst
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2013; Artieri and Fraser 2014; Sabi and Tuller 2015). These
studies, however, have focused on single amino acids rather
than longer peptide sequences.

The scarcity of some peptide sequences from endogenous
proteins suggests, among others, that they might have been
selected against to improve translation efficiency. Missing
peptide sequences are presumably more deleterious to the or-
ganism than those that occur in the proteome but are under-
represented relatively to the distribution of their individual
amino acids. Alternatively, peptide sequences that are over-
represented in the proteome are expected to contribute to
the fitness of the organism. Studying the proteomic distribu-
tion of short peptide sequences within proteins may teach us
about the nature of missing peptides and the evolutionary
reasons for the over- or underrepresentation of certain pep-
tide sequences in the proteome.

In this study, we aim at identifying for the first time the set
of short peptide sequences (composed of 2–3 AA) suspected
to stall ribosomes during translation elongation. In addition,
we aim at understanding the properties of these peptides and
whether natural selection acting on endogenous S. cerevisiae
genes inhibits or promotes their representation in the prote-
ome. To answer this question, we performed a systems biol-
ogy study based on multiple data sets from large-scale
ribosome profiling experiments in S. cerevisiae (Ingolia et al.
2009; Brar et al. 2012; Gerashchenko et al. 2012; McManus
et al. 2014).

RESULTS

Our analyses rely mainly on the comparison of two funda-
mental features attributed to short peptide sequences: (i) their
distribution in the proteome and (ii) their predicted transla-
tional-stalling effect inside the ribosomal exit tunnel. The lat-
ter is learned from ribosome profiling data, gathered by the
ribosome profiling (or ribo-seq) method, which provides
high-throughput quantitative measures of the translational
status of the entire transcriptome (Ingolia et al. 2009).
Ribosome profiling experiments are based on the isolation
of ribosome protected fragments that are then sequenced
andmapped to the transcriptome yielding ribosomes protect-
ed footprints. As slowly decoded codons are covered by ribo-
somes for a longer time, they tend to create more protected
fragments compared to faster codons on the same transcript.
Each transcript has a specific read count profile, which repre-
sents its unique translational signature. To quantitatively eval-
uate the translational efficiency distribution along a given
transcript while controlling for biases related to sequencing
or experimental procedures, we normalized each ribo-seq
profile by its corresponding mRNA-seq profile (see details
in Materials and Methods).

In this study, we focus on ribosome stalling caused by short
AA sequences within the nascent peptide. To this end, we first
need to identify ribosome stalling positions along each tran-
script; then, we need to understand which peptide sequence

is located inside the tunnel of the stalled ribosome. Here, we
defined ribosome stalling (or pausing) positions as peaks in
the normalized ribo/mRNA-seq profile, and the peptide se-
quence inside the tunnel as the AA sequence upstream of
the peak (which is equivalent in length to the length of the
peptide required to fill the tunnel). We termed this sequence
the upstream stalling region (USR) and set its length to 31 co-
dons/AA (Fig. 1A). It is important to emphasize that based on
the ribo-seq data, it is impossible to distinguish in large-scale
between stalling and transient pausing of ribosomes.
The general steps of our approach are described in Figure

1B: In the first test, we perform “the stalling test” and calculate
a P-value that seeks to identify short peptide sequences that
significantly tend to appear in the USRs compared to random
regions of the same length on the same transcript (Fig. 1C).
Peptide sequences with P≤ 0.001 are termed here “stallers”
or “stalling peptide sequences.” In the second step, we per-
form the “representation test” and calculate a P-value that
seeks to identify short peptide sequences whose number of oc-
currences in the proteome significantly deviates from what is
expected in a randomized proteome that maintains the “indi-
vidual” AA distribution of each protein (details in Materials
and Methods). Peptide sequences with P≤ 0.001 are termed
here “underrepresented” and those with P≥ 0.999 are termed
“overrepresented” (Fig. 1D). Peptide sequences whose prote-
omic distribution does not significantly deviate from what is
expected based on the independent distribution of their indi-
vidual AA (0.001 < P < 0.999) are termed here “expectedly
represented.”
In this study, we analyzed peptide sequences of 2 and 3 AA.

These are termed here “dipeptide and tripeptide sequences,”
respectively (see explanation in Materials and Methods re-
garding the considerations for choosing these lengths).

Strong association between ribosome stalling
and proteome composition

Seeking to determine whether nascent peptide-mediated ri-
bosome stalling plays a role in the evolution of proteins, we
analyzed the distribution of short peptide sequences in the
USRs. As can be seen in Figure 2, the USRs turned out to be
significantly enriched with both over- and underrepresented
peptide sequences (P < 10−4, Fig. 2A–D). Alternatively, the
expectedly represented peptide sequences turned out to be
eliminated from those regions (P < 10−4, Fig. 2E,F).
In addition to the USR composition, the amount of over-

lap between the group of stalling peptide sequences and the
groups of over/underrepresented peptide sequences may
also teach us about the relationship between ribosome stall-
ing and the proteome composition. We found that a domi-
nant and statistically significant part of the stalling peptide
sequences turned out to be either over- or underrepresented
in the proteome; specifically, 40 out of the 53 (76%) stalling
dipeptide sequences and 133 out of the 247 (54%) stalling
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tripeptide sequences have also been identified as over- or un-
derrepresented sequences (Fig. 2G,H).
The list of all dipeptide and tripeptide sequences, their

stalling P-values, and their representation P-values are pro-
vided in Supplemental Table S1.
All signals shown in Figure 2 remained robust to small

changes in the chosen thresholds, such as the threshold value
that defines a ribo/mRNA-seq peak and the minimum extent
of ribo-seq read counts coverage required to analyze a gene
(Supplemental Fig. S1). We also demonstrated that the signal

produced by our default parameters is not biased by a subset
of peptide sequences that occur in the proteome only a small
number of times (Supplemental Fig. S2).

Ranking the stalling effect and proteome representation
of short peptide sequences

To quantify the extent to which the identified stalling pep-
tide sequences tend to be stalling and over/underrepresent-
ed, we ranked them based on a standardized score that

FIGURE 1. General description of the approach. (A) A ribo/mRNA profile is illustrated. The x-axis represents a codon position. The USR is defined as
the AA sequence that encodes the 31 codons upstream of the peak position. (B) The general steps of the approach: Genomic data are analyzed (related
blocks/steps are in pink). The pink part to the right describes all the steps related to the genomic data: The AA sequences of all analyzed proteins are
randomized and compared to the original sequences in order to identify significantly over- and underrepresented peptide sequences. The green part
to the left describes all steps related to the ribo/mRNA-seq data: The USRs are randomized and compared to the original sequences to identify stalling
peptide sequences. The two pink boxes shaded in green describe the two steps related to both the genomic and the ribo/mRNA-seq data: The sets of
stalling peptide sequences which turned out also to be over- or underrepresented in the proteome are further analyzed and characterized. (C) The stall-
ing test: The codon/AA positions of peaks in the ribo/mRNA profile (corresponding blocks are designated by stars) are randomly changed; accordingly,
the randomized versions of the USRs are the AA encoding the codons upstream of the random position (see details inMaterials andMethods). Peptide
sequences that appear in the real USRs significantly more than in the randomized versions are defined as stalling (designated by asterisks). (D) The
representation test: Each protein sequence is permuted so that the original AA content is kept. Underrepresented peptide sequences are defined as those
that appear in the randomized protein sequences significantlymore than in the real ones (designated by down arrow); overrepresented peptide sequenc-
es are defined as those that appear in the real proteins significantly more times than in the randomized versions (designated by up arrow).

Ribosome stalling in S. cerevisiae

www.rnajournal.org 985

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.059188.116/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.059188.116/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.059188.116/-/DC1


compares the real and random USRs/proteome distributions
in terms of standard deviations (more details in Materials
and Methods). According to the resultant Z-scores, the
strongest stallers were the sequences LKK and SK; the
most abundant stallers were PPP and RR; and the most un-
derrepresented stallers were SDK and DK (Fig. 3). The top
peptide sequences in each category included known stalling
peptide sequences in S. cerevisiae such as KKK, KK, and
KKR (Charneski and Hurst 2013). Other stallers have also
been found in other organisms based on different tech-
niques. For example, the stalling and underrepresented trip-
let PPD, which was ranked here within the top 10 stalling
and underrepresented peptide sequences, has been previous-
ly identified as a strong staller in E. coli whose observed fre-
quency of occurrence within E. coli proteins was “smaller”
than expected (Peil et al. 2013).

The real and random numbers of occurrences of each pep-
tide sequence in the proteome and in the USRs are presented
in Supplemental Figure S3 (for stalling and overrepresented
peptides) and Supplemental Figure S4 (for stalling and un-
derrepresented peptides).

Characterization of the over- and underrepresented
stalling peptide sequences

We set out to computationally and statistically characterize
the biochemical properties of the stalling peptide sequences
that turned out also to be over- or underrepresented in the
proteome. To this end, we analyzed the AA composition of
these sets. We calculated the ratio between the empirical
probability to observe each AA in each set and its probability
in the proteome. We also calculated this ratio for other
groups including the over- and underrepresented peptide se-
quences and the group of stalling peptide sequences (Fig. 4).
In line with previous studies, proline (P) and arginine (R)
were particularly dominant in the stalling groups, with prob-
ability to appear in the stalling groups that is two- to fourfold
higher than their probability to appear in a certain position in
the proteome (Tuller et al. 2011; Charneski and Hurst 2013;
Peil et al. 2013; Artieri and Fraser 2014; Sabi and Tuller
2015).
Next, we aimed at understanding whether the over/un-

derrepresented stalling peptide sequences tend to include

FIGURE 2. The distribution of over-, under-, and expectedly represented peptide sequences in the USRs. The red line represents the total number of
over/under/expectedly represented peptide sequences in the USRs (designated ov_rep, un_rep, and exp_rep, respectively). The corresponding random
distribution is shown in gray. Values in the x-axis are the total number of occurrences in the real/random USRs; the histogram is based on 10,000
randomizations (details in Materials and Methods). Z-scores appear at the top of each sub figure; all corresponding P-values <10−4. (A)
Underrepresented dipeptide sequences, (B) underrepresented tripeptide sequences, (C) overrepresented dipeptide sequences, (D) overrepresented
tripeptide sequences, (E) expectedly represented dipeptide sequences, and (F) expectedly represented tripeptide sequences. (G,H) Distribution of
the number of stalling peptide sequences with respect to proteome representation. The P-value represents the statistical significance of the over-
and underrepresented proportion. (G) Dipeptide sequences. (H) Tripeptide sequences.
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AA from specific biochemical groups (e.g., positively/nega-
tively charged, hydrophobic, or polar). Interestingly, we
observed a significant tendency of the stalling and overrep-
resented di- and tripeptide sequences to include AA from
the same biochemical groups (P < 10−2). We also found
that the group of stalling and underrepresented sequences
tended to include AA from different biochemical groups
(Fig. 5A–D). This tendency, however, turned out to be
statistically significant (P < 10−2) only for the dipeptide
sequences.
In addition, it can be seen that while positively charged AA

were frequent in both over- and underrepresented stalling se-
quences (Fig. 5E,F), for tripeptide sequences, negatively
charged AA turned out to be more frequent in the set of un-
derrepresented stalling sequences (Fig. 5E).
Finally, we were not able to find evidence that the stalling

and over/underrepresented peptides tend to appear in pro-
teins encoded by specific groups of genes in terms of the
number of protein–protein interactions, the number of con-
sumed ribosomes, or their function. This analysis supports
the conjecture that the results reported here are universal
and not related to specific group(s) of genes.

The relationship between tripeptide
and dipeptide motifs

Since each tripeptide sequence is composed of two dipeptide
sequences, it is possible that some stalling and over/underrep-
resentation patterns observed in the tripeptides derive from
patterns related only to the dipeptides. Thus, we checked
how many over/underrepresented stalling “tripeptide” se-
quences included over/underrepresented stalling “dipeptide”
sequences (Fig. 6). Specifically, out of the 34 stalling and un-
derrepresented tripeptide sequences, 21 (61.7%) included
underrepresented stalling dipeptide sequences and five
(14.7%) included stalling and overrepresented dipeptide
sequences. Out of the 98 overrepresented stalling tripeptide
sequences, 16 (16.3%) included underrepresented stalling
dipeptide sequences and 49 (50%) included overrepresented
stalling dipeptide sequences. Prominently, the group of over-
represented stalling tripeptide sequences that did not include
any stalling dipeptide constituted 41.84% of the overrepre-
sented stalling tripeptide sequences. These results demon-
strate that the reported tripeptide sequences cannot be
trivially related to the dipeptide sequences composing them.

FIGURE 3. Ranking the stallingmotifs. Red and green cells represent over- and underrepresented peptide sequences, respectively. (A,D) Top 10 stall-
ing. Stalling Z-scores based on which peptides were ranked (Materials and Methods) are presented to the right. (B,E) Top 10 overrepresented stalling
peptide sequences. Overrepresented Z-scores based on which peptides were ranked (Materials and Methods) are presented to the right. (C,F) Top 10
underrepresented stalling peptide sequences. Underrepresented Z-scores based on which peptides were ranked (Materials andMethods) are presented
to the right.
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Stalling positions along the ribosomal exit tunnel

In this study we analyzed stalling sequences of lengths 2 and
3 AA. However, the length of the nascent peptide required
to fill the tunnel is approximately 31 AA. This raises the ques-
tion “where along the length of tunnel do the stalling interac-
tions” tend to occur?

To answer this question, we built a position-specific scor-
ing matrix (PSSM) based on the probabilities of each stalling
di- and tripeptide sequence to appear at a specific position
along the tunnel. We found out that the USRs are less uni-
formly distributed than the corresponding random regions
with a prominent stalling region close to the P-site (Fig. 7;
except for the group of stalling and overrepresented tripep-
tide sequences). For both the stalling di- and tripeptide se-
quences, we observed a unique stalling distribution for each
sequence. However, whereas the dipeptide sequences ex-
hibited a general stalling tendency close to the P-site, the
tripeptide sequences showed different patterns for the over-
and underrepresented triplets. In addition to the average pat-
tern observed in Figure 7, we plotted the specific PSSMs of
each individual stalling peptide sequence (Supplemental
Fig. S5).

DISCUSSION

Previous studies have separately dealt with the nonuniform
distribution of peptides in the proteome (Qi et al. 2004;
Höhl and Ragan 2007; Tuller et al. 2007) and the interaction
between the translated peptide and the ribosomal exit tunnel
(Nakatogawa and Ito 2002; Tenson and Ehrenberg 2002;
Kosolapov and Deutsch 2009; Bhushan et al. 2010; Ramu
et al. 2011; Tuller et al. 2011; Sabi and Tuller 2015). In this
study, we quantitatively demonstrated that these two phe-
nomena are strongly associated: Peptide sequences that
tend to occupy the tunnel of stalled ribosomes tend also to
be significantly over- or underrepresented in the proteome.
In our proposed workflow, we have taken a novel compu-

tational approach of identifying dozens of short peptide se-
quences predicted to interact with the ribosomal exit
tunnel. The fact that many of the stalling tripeptide sequences
did not include any stalling dipeptide sequence implies that
there may be much more complexity in some of the interac-
tions between the nascent peptide and the ribosomal exit
tunnel that involve more than 1–2 AA. Although we have
identified a prominent stalling position close to the P-site
for most of the stalling peptides, other stalling positions along

FIGURE 4. The AA content of different peptide groups. The ratios defined in the color bar represent the ratio between the probability to observe each
AA in each group to the probability to observe it in the proteome. White cells correspond to AA that are missing from all peptide sequences in the
specified group, green cells correspond to ratios lower than one (meaning that they are more likely to be observed in the proteome than in the specific
group), and red cells correspond to ratios higher than one (meaning that they are more likely to be observed in the peptides group than in the pro-
teome). (A) The probability to observe each AA in different groups of tripeptide sequences. (B) The probability to observe each AA in different groups
of dipeptide sequences.
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the tunnel were also observed. Indeed, as the nascent peptide
cotranslationally and partially folds inside the tunnel, we
do not expect all stalling peptide sequences to occur at the
same position. Moreover, biases in the ribo-seq data, includ-
ing the fact that ribosomes may continue to slowly move even
after treatment with cycloheximide, may also affect the stall-
ing position in the tunnel (Kosolapov and Deutsch 2009;
Hussmann et al. 2015; Tuller and Zur 2015; Diament and
Tuller 2016).
The reported results have a few important implications:

First, they support the novel conjecture that evolutionary
selection has shaped the AA composition of endogenous pro-
teins not only by their functionality, but also by the efficiency
of their synthesis. This idea has already been suggested in pre-
vious studies, however, based on different considerations/
mechanisms such as the metabolic cost of amino acids
(Akashi and Gojobori 2002). Second, our results may explain
the absence of some particular short peptide sequences from
various proteomes (Tuller et al. 2007). It is possible that some

of the missing peptide sequences induced much stronger
stalling interactions with the exit tunnel than those dis-
covered here, and thereby have been eliminated from the
proteome by evolutionary selection. One limitation of our
approach is that it cannot analyze missing peptides.
However, a future study on this topic may be based on syn-
thetic genes that do encode these missing peptides. Third, re-
gardless of the over/underrepresentation in the proteome,
our computational method can be generally used to infer
short peptide sequences that can lead to ribosome stalling.
The fact that some of the stalling peptide sequences identified
here have been previously shown to have a stalling effect on
ribosomes, demonstrates that our approach can capture rel-
evant peptides. Our method may have important applica-
tions in various biomedical fields such as biotechnology,
synthetic biology, and specifically proteins and gene expres-
sion engineering.
The fact that we specifically referred to sequences that are

also over- or underrepresented in the proteome enabled a

FIGURE 5. Biochemical groups of AA within over- and underrepresented stalling motifs. (A–D) The AA were colored based on their biochemical
classification as appears in the legend at the top left corner. (E,F) The ratio between the probability to observe an amino acid from a specific biochem-
ical group in the set of over/underrepresented stalling peptide sequences (lighter/darker, respectively) and in the proteome. A dashed line is presented
for ratios of one.
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FIGURE 6. Classification of the tripeptide motifs based on their dipeptide motifs content. The groups of (A) underrepresented stalling tripeptide
sequences and (B) overrepresented stalling tripeptide sequences were divided based on the classifications of the two dipeptide sequences they include
(where the first dipeptide refers to the first two AA within the tripeptide, and the second dipeptide refers to the last two AA in the tripeptide). The
legend at the right corner is written in the following format: [first dipeptide class, second dipeptide class] where three possible classifications were
considered for a dipeptide: stalling and underrepresented (designated stl&un_rep), stalling and overrepresented (designated stl&ov_rep), and dipep-
tides that were neither underrepresented stalling nor overrepresented stalling (designated -). Some of the combinations were not observed, thus some
lists are empty.

FIGURE 7. The average distribution of stalling peptide sequences along the length of the tunnel. The positions along the tunnel (x-axis) represent the
first position the peptide occupies (direction is from exit site to the P-site and as plotted by the arrow below the figure). The height of the bar is the
probability to occupy this position (average probability over all peptide sequences defined in the title). Bars corresponding to probabilities in the ran-
domized USRs are shown in gray. Bars are colored red/green if their corresponding probabilities turned out to be significantly (P < 0.05) higher/lower
than random, respectively; other bars (P > 0.05) appear in white. (A–C) Dipeptide sequences. (D–F) Tripeptide sequences.
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more reliable detection of stalling peptides in comparison to
methods based only on ribo-seq experiments, which tend to
include noise and biases (see for example Dana and Tuller
2012; Artieri and Fraser 2014; Diament and Tuller 2016).
The association between stalling and proteome-under-

representation is intuitive: Evolutionary pressures act to
eliminate short peptide sequences that halt the ribosome to
improve translation efficiency. The association between stall-
ing and proteome-overrepresentation on the other hand, is
less intuitive and can be explained by the fact that translation-
al pausing plays a functional role in cotranslational protein
folding, which is known to be fine-tuned by ribosome kinet-
ics (Thanaraj and Argos 1996; Tsai et al. 2008; Komar 2009;
Kramer et al. 2009; Zhang et al. 2009; Zhang and Ignatova
2011; Ciryam et al. 2013). Nevertheless, the association be-
tween ribosome stalling and proteome-overrepresentation
may not be causal. For example, such peptide sequences
may have biochemical properties related to other nontransla-
tional processes such as protein functions, interactions, and
stability. The same properties may also contribute to the in-
teraction with the exit tunnel. However, as the other process-
es may be more important to the fitness of the organisms
than translation, they are overrepresented in the proteome
despite their stalling effect. Indeed, we observed different
properties for the over- and underrepresented stalling pep-
tide sequences. The fact that whereas the underrepresented
stalling sequences tended to include AA from different bio-
chemical groups and the overrepresented stalling peptide
sequences tended to include AA from the same group, may
indicate that stretches of the same/different type of AA may
contribute (on average) to a better/worse folding and pro-
tein-function and thus to an over/underrepresentation,
respectively (Senes et al. 2000; Ng and Henikoff 2002;
Dobson 2004).
Whether the overrepresented sequences tend to attenuate

the stalling effect of the underrepresented sequences, and
whether they are conserved across different organisms, are
questions deferred to future studies that will involve experi-
mental measurements of the stalling effect of different pep-
tide combinations on translational speed, protein folding,
and organismal fitness.

MATERIALS AND METHODS

Coding sequences data

Coding sequences of S. cerevisiae strain s288cwere retrieved from the
University of California Santa Cruz (UCSC) Genome Browser
(https://genome-euro.ucsc.edu/).

Ribosome profiling data

In this study we used a total of 10 data sets of ribosome profiling
based on the following experiments in S. cerevisiae: Ingolia et al.
(2009), Brar et al. (2012), Mcmanus et al. (2014), and

Gerashchenko et al. (2012). The ribosomal footprints were mapped
based on Michel et al. (2014) and Diament and Tuller (2016). The
specific genomic position assigned to each read represents the loca-
tion of the ribosomal A-site on the mRNA. In both Michel et al.
(2014) and Diament and Tuller (2016), the A-site corresponding
to each read was determined by an offset of 15 nucleotides (nt)
from the 5′ end of the fragment.

Data filtering and aggregates preparation

Whether it stems from experimental biases or cached translational
features, the density of ribosome footprints tends to be significantly
elevated at the beginning of the gene (Ingolia et al. 2009, 2011; Tuller
et al. 2010). Thus, we have excluded the first 20 codons from all as-
pects of the analysis described in this study.
The first step of generating the aggregate data set of ribosome

profiling was to convert the ribo-seq and mRNA-seq profiles which
were mapped with nucleotide resolution into profiles with codon
resolution (by averaging read count over the 3 nt of each codon).
Then, each ribo-seq and mRNA-seq profile was individually nor-
malized by the total number of read counts in the experiment (ex-
cluding the first 20 codons in each profile). Aiming at increasing the
statistical power and reliability of the data, we generated two sepa-
rated aggregates of ribo-seq and mRNA-seq by calculating the aver-
age read count at each position of the mRNA over all 10 data sets.
In the next step, as suggested in Artieri and Fraser (2014), to ac-
count for biases in ribosome profiling we normalized ribo-seq
read counts by their corresponding mRNA-seq read counts. Finally,
we filtered genes with <70% non-zero read counts in the aggregate
of ribo/mRNA. Although our results remained robust also when
increasing the coverage threshold up to 90% (Supplemental Fig.
S1D,E), we opted for the 70% threshold, as more genes pass this
filter so the results are more statistically powerful (Supplemental
Fig. S1F).

Definition of peaks in ribosomal density

As described in Sabi and Tuller (2015), we defined peaks in ribo-
somal density (RD) as codon positions along the mRNA for which
the normalized read count (ribo/mRNA) is four times higher than
the mean ribo/mRNA values of the mRNA excluding the first 20 co-
dons. In addition to the filtering described in the previous section,
we only analyzed genes that include peaks; here, a total of 4564
genes. The rationale for choosing a peak cutoff of four was to control
the tradeoff between the extent of stalling (which increased with the
increase in this cutoff) and the statistical power (which decreased
with the increase in the cutoff as less genes are analyzed). The results,
however, remain robust also for higher peak thresholds of five, six,
and seven (Supplemental Fig. S1).

Randomized proteomes

Of note, 10,000 randomized proteomes were generated by randomly
permuting the AA sequence of each protein (excluding the first 20).
By performing such permutations, wemaintain the original individ-
ual AA numbers/distribution of each protein.
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The “representation” P-value

Let Nreal,i and Nrandom,i denote the number of occurrences of the ith
peptide sequence in the real and randomized proteome, respectively.

The representation P-value of the ith peptide sequence is
defined as

Prep,i = Number of times(Nreal,i ≥ Nrandom,i)
10, 000

.

This P-value corresponds to the probability that the ith peptide se-
quence is observed in the real proteome more often than in the ran-
domized one. As we set the significance level to 0.001, peptide
sequences for which Prep,i≤ 0.001 were defined underrepresented
and those for which Prep,i≥ 0.999 were defined overrepresented.
All other peptide sequences (0.001 < Prep,i < 0.999) were termed ex-
pectedly represented (as their proteomic probability does not signif-
icantly deviate from what is expected based on the distribution of
their individual AA). The number of over/underrepresented peptide
sequences that are expected to be false positives is presented in
Supplemental Table S2 and was calculated by applying the represen-
tation P-value to a randomized version of the proteome rather than
to the real one.

The “representation” Z-score

Let Nreal,i denote the number of occurrences of the ith peptide
sequence in the real proteome and let mean(Nrandom,i) and std
(Nrandom,i) denote the mean and standard deviations of the number
of occurrences of the ith peptide sequences over all 10,000 random-
ized versions of the proteome. The standardized score of the ith pep-
tide sequence is given by

Z- scorei = (Nreal,i −mean(Nrandom,i))
std(Nrandom,i) .

Z-scorei represents the extent to which the number of occurrences
of the ith peptide sequence in the proteome deviates from random
in terms of standard deviations. Here, Z-scores≤−2 correspond to
underrepresented peptides and Z-scores≥ 2 correspond to overrep-
resented peptides. The distributions of peptides in the randomized
proteomes were verified to be normally distributed using the
Kolmogorov–Smirnov test (Massey 1951).

The analyzed peptide length

In this study we analyzed only peptide sequences of lengths 2 and 3
AA. The rationale for choosing these lengths stems from the follow-
ing two statistical limitations: First, according to the definition of the
representation P-value, underrepresented peptides are those that ap-
pear in the randomized proteome significantly more times than in
the real proteome. However, as peptide sequences become longer,
the probability to observe them in the real (and randomized) prote-
ome becomes smaller. While peptide sequences of lengths 2–3
AA were observed in the proteome thousands and hundreds of
times, those longer than 3 AA were observed in the proteome only
a very few times (Supplemental Table S2). Second, we found that
unlike lengths of 2–3 AA, the number of longer stalling sequences
that are expected to be false positives was higher than 5%
(Supplemental Table S2). Taking these statistical considerations to-
gether, we found the length of 3 AA as the maximal length of peptide

sequence that allows a statistically sufficient analysis of ribosome-
stalling and proteome-representation.

Randomized USRs

Randomized USRs were generated separately for each mRNA by
randomly drawing peak positions based on the number of RD peaks
in the original profile. Specifically, the randomized version of an
mRNA with n peaks would have n random peak positions (Fig.
1C). Accordingly, the randomized USRs of this protein would be
the n sequences of 31 AA upstream of each random peak position.

Enrichment of over-, under-, and expectedly
represented peptide sequences in the USRs

In order to quantify the extent to which over-, under-, and expect-
edly represented peptide sequences tend to appear before peaks, we
compared their distribution in the real USRs with their distribution
in the randomized USRs. Specifically, we summed over all USRs to
get the total number of occurrences of the over, under-, and expect-
edly represented peptide sequences in the real USRs (Nreal). Then,
we calculated in the same way their number of occurrences in
each of the 10,000 randomized versions of the USRs (Nrandom).
Finally, we defined an empirical P-value. For example, for underrep-
resented peptide sequences, the P-value will be given by

Punrep,USRs =
Number of times(Nunrep,real ≤ Nunrep,random)

10, 000
.

The calculation for the over- and expectedly represented peptide se-
quences is identical.

The “stalling” P-value

Let Nreal,i and Nrandom,i denote the number of occurrences of the ith
peptide sequence in the real and randomized USRs, respectively.
The stalling P-value of the ith peptide sequence is defined as

Pstl,i = Number of times(Nreal ≤ Nrandom,i)
10, 000

.

This P-value is corresponding to the probability that the ith peptide
sequence is observed in the randomized USRs more often than in
the real USRs. Peptides with Pstl,i≤ 0.001 are termed here stalling
peptides. The number of stalling peptide sequences that are expected
to be false positives is presented in Supplemental Table S2 and was
calculated by applying the stalling P-value on a randomized version
of the USR rather than on the real one.

The “stalling” Z-score

Let Nreal,i denote the number of occurrences of the ith peptide se-
quence in the real USRs, and let mean(Nrandom,i) and std(Nrandom,i)
denote the mean and standard deviation of the number of occur-
rences of the ith peptide sequence over all 10,000 randomized ver-
sions of the USRs. The standardized score of the ith peptide
sequence is given by

Z- scorei = (Nreal,i −mean(Nrandom,i))
std(Nrandom,i) .
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Z-scorei represents the extent to which the number of occurrences
of the ith peptide sequence in the USRs deviates from random in
terms of standard deviations. Z-scores ≥2 correspond to signifi-
cantly stalling peptides. Although the random distributions of pep-
tide sequences in the randomized USRs did not turn out to be
normal according to the Kolmogorov–Smirnov test (Massey
1951), the stalling Z-score can be used to “visually” estimate the ex-
tent to which stalling peptides tend to occupy the exit tunnel of
stalled ribosomes.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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