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Summary

Normalization of RNA-sequencing data is essential for accurate downstream inference, but the 

assumptions upon which most methods are based do not hold in the single-cell setting. 

Consequently, applying existing normalization methods to single-cell RNA-seq data introduces 

artifacts that bias downstream analyses. To address this, we introduce SCnorm for accurate and 

efficient normalization of scRNA-seq data.

Protocols to quantify mRNA abundance introduce systematic sources of variation that 

obscure signals of interest. Consequently, an essential first step in the majority of mRNA 

expression analyses is normalization, whereby systematic variations are adjusted for to make 

expression counts comparable across genes and/or samples. Within-sample normalization 

methods adjust for gene-specific features such as GC-content and gene length to facilitate 

comparisons across genes within an individual sample, whereas between-sample 

normalization methods adjust for sample-specific features such as sequencing depth to allow 

for comparisons of a gene’s expression across samples1. In this work, we present a method 
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for between-sample normalization, although we note that the R implementation, R/SCnorm, 

also allows for adjustment of gene-specific features.

A number of methods are available for between-sample normalization in bulk RNA-seq 

experiments2,3. Most methods calculate global scale factors (one for each sample applied 

commonly across genes in the sample) to adjust for sequencing depth. These methods 

demonstrate excellent performance for bulk RNA-seq, but are compromised in the single-

cell setting due to an abundance of zeros and increased technical variability4.

Recent methods have been developed specifically for scRNA-seq normalization5,6. Like bulk 

methods, they calculate global scale factors, and are therefore unable to accommodate a 

major bias that to date has been unobserved in scRNA-seq data. Specifically, scRNA-seq 

data show systematic variation in the relationship between transcript specific expression and 

sequencing depth (referred to hereinafter as the count-depth relationship) that is not 

accommodated by a single scale factor common to all genes in a cell (Fig. 1 and 

Supplementary Fig. S1). Global scale factors adjust for a count-depth relationship that is 

assumed common across genes. When this is not the case, normalization via global scale 

factors leads to over-correction for lowly and moderately expressed genes and, in some 

cases, under-normalization of highly expressed genes (Fig. 1).

To address this, we propose SCnorm which uses quantile regression to estimate the 

dependence of transcript expression on sequencing depth for every gene. Genes with similar 

dependence are then grouped, and a second quantile regression is used to estimate scale 

factors within each group. Within-group adjustment for sequencing depth is then performed 

using the estimated scale factors to provide normalized estimates of expression. Although 

SCnorm does not require spike-ins, performance may be improved if good spike-ins are 

available (Supplementary Note S1).

SCnorm was evaluated and compared with MR3, transcripts-per-million (TPM)7, scran5, 

SCDE8, and BASiCS6 using simulated and case study data. In SIM I, two scenarios were 

considered where the number of groups of genes having different count-depth relationships 

(K) is set to one (to mimic a bulk experiment) and four. Each simulated data set contains two 

conditions, the second condition having approximately four times as many reads; 20% of the 

genes are defined to be DE. Prior to normalization, counts in the second condition will 

appear four times higher on average given the increased sequencing depth. If normalization 

for depth is effective, fold-change estimates should be near one, and only simulated DE 

genes should appear DE. Supplementary Fig. S2a shows that when K = 1, with the exception 

of TPM, fold-change estimates are consistently robust among methods, and all 

normalization methods provide data that results in high sensitivity and specificity for 

identifying DE genes (Supplementary Fig. S2b). However, when K = 4, only SCnorm 

maintains good operating characteristics, whereas global scale factor based approaches 

overestimate fold-changes for low to moderately expressed genes due to overcorrection of 

sequencing depth (Supplementary Fig. S2c, d).

In SIM II, counts are generated as in Lun et al. 20165, following their simulation study 

scenarios 1, 2, 3, and 4. Briefly, scenario 1 contains no DE genes; scenarios 2, 3, and 4 
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contain moderate DE, strong DE, and varying magnitudes of DE, respectively. 

Supplementary Fig. S3 shows that SCnorm is similar to scran with respect to fold change 

estimation and retains relatively high sensitivity and specificity for identifying DE genes.

To further evaluate SCnorm, we conducted an experiment that, similar to the simulations, 

sequenced cells at very different depths. We used the Fluidigm C1 system to capture 92 H1 

human embryonic stem cells (hESCs). Each cell’s fragmented, indexed cDNA was split into 

two groups prior to pooling for sequencing. The first group (H1-1M) was pooled at 96 cells 

per lane and the second (H1-4M) at 24 cells per lane, resulting in approximately 1 million 

and 4 million mapped reads per cell in the two groups, respectively. Prior to normalization, 

counts in the second group will appear four times higher on average given the increased 

sequencing depth. However, if normalization for depth is effective, fold-change estimates 

should be near one, and all genes should appear to be EE since the cells between the two 

groups are identical. SCnorm provides normalized data that results in fold-change estimates 

near one, whereas other methods show biased estimates (Fig. 2 (a)).

To evaluate the extent to which biases introduced during normalization affect the 

identification of DE genes, we applied MAST9 (FDR = 0.05) to identify DE genes between 

the H1-1M and H1-4M conditions. Normalization with SCnorm resulted in the identification 

of no DE genes, whereas MR, TPM, scran, SCDE, and BASiCS resulted in 530, 315, 684, 

401, and 1147 DE genes, respectively, being identified. The majority of DE calls made using 

data normalized from these latter approaches are lowly expressed genes (Fig. 2 (b)), which 

appear to be over-normalized (Fig. 2 (a)). Supplementary Fig. S4 shows similar results using 

H9 cells.

We also evaluated the impact of normalization on downstream analyses such as principal 

components analysis (PCA) and on the identification of DE genes in case study data. 

Specifically, we considered the H1-FUCCI data from Leng et al. 201510 where 247 H1 

human embryonic stem cells were labelled with fluorescent ubiquitination-based cell cycle 
indicators11 to enable identification of cells as being in G1, S, or G2/M phase. PCA was 

applied to the H1-FUCCI data following normalization via SCnorm, MR, TPM, scran, and 

SCDE. SCnorm shows some advantage in distinguishing at least one of the groups and has 

the lowest misclassification rate (Fig. 3). As a second positive control, we evaluated the 

ability of each normalized dataset to be used to identify DE genes. Specifically, we consider 

the S and G2/M phases from the H1-FUCCI data. For these two phases, we subsampled cells 

so that there are negligible differences in cellular detection rates (CDRs) between the two 

conditions and there is on average a 1.5 fold increase in sequencing depth. Without 

differences in CDR, we would expect an EE gene expressed at level x in S to be expressed at 

level 1.5*x in G2/M. Given this, we define a gold standard list to be those genes showing a 

fold change bigger than a threshold (or smaller than one over that threshold) for varying 

thresholds, adjusting for the expected increase in expression due to increased sequencing 

depth. Supplementary Fig. S5 demonstrates the advantage of SCnorm over other methods.

The performance of SCnorm was also evaluated on a number of other case study data sets. 

For these evaluations, a data set was considered well normalized if the relationship between 

counts and depth was removed following normalization. Fig. 1 and Supplementary Figs. S6–
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S11 demonstrate that SCnorm provides for robust normalization of scRNA-seq data when 

the count-depth relationship is common across genes, as in a bulk RNA-seq experiment (or a 

deeply sequenced scRNA-seq experiment); and that SCnorm outperforms other approaches 

when this relationship varies systematically, as in a typical scRNA-seq experiment.

The scRNA-seq technology offers unprecedented opportunity to address biological 

questions, but accurate data normalization is required to ensure meaningful results. Our 

approach allows investigators to accurately normalize data for sequencing depth, and 

consequently to improve downstream inference.

ONLINE METHODS

Filter

Genes without at least 10 cells having non-zero expression were removed prior to all 

analyses. They are not shown in plots.

SCnorm

SCnorm requires estimates of expression, but is not specific to one approach. Estimates may 

be obtained via RSEM7, HTSeq12, or any method providing unnormalized counts per 

feature. Let Yg,j denote the log non-zero expression count for gene g in cell j for g = 1,…, m 
and j = 1,…, n; Xj denote log sequencing depth for cell j. Motivation for considering non-

zero counts is provided in Supplementary Note S3.

The number of groups for which the count-depth relationship varies substantially, K, is 

chosen sequentially. SCnorm begins with K = 1. For each gene, the gene-specific 

relationship between log unnormalized expression and log sequencing depth is represented 

by β̂g,1 using median quantile regression with a first degree polynomial: Q0.5(Yg,j|Xj) = βg,0 

+ βg,1Xj. The overall relationship between log unnormalized expression and log sequencing 

depth for all genes in the K = 1 group is also estimated via quantile regression. Since the 

median might not best represent the full set of genes within the group, and since multiple 

genes allow for estimation of somewhat subtle effects, in this step SCnorm considers 

multiple quantiles τ and multiple degrees d:

(1)

The specific values of τk and dk,  and , are those that minimize , where 

 represents the count-depth relationship among the predicted expression values as 

estimated by median quantile regression using a first degree polynomial: 

 Scale factors for each cell are defined as  where 

 is the τ*th quantile of expression counts in the kth group. Normalized counts  are 

given by .
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To determine if K = 1 is sufficient, the gene-specific relationship between log normalized 

expression and log sequencing depth is represented by the slope of a median quantile 

regression using a first degree polynomial as detailed above. K = 1 is considered sufficient if 

the modes of the slopes within each of 10 equally sized gene groups (where a gene’s group 

membership is determined by its median expression among non-zero un-normalized 

measurements) are all less than 0.1. Any mode exceeding 0.1 is taken as evidence that the 

normalization provided with K = 1 is not sufficient to adjust for the count-depth relationship 

for all genes and, consequently, K is increased by one and the count-depth relationship is 

estimated within each of the K groups using equation (1). For each increase, the K-medoids 

algorithm is used to cluster genes into groups based on βĝ,1; if a cluster has fewer than 100 

genes, it is joined with the nearest cluster.

When multiple biological conditions are present, SCnorm is applied within each condition 

and the normalized counts are then re-scaled across conditions. During rescaling, all genes 

are split into quartiles based on median expression among non-zero un-normalized 

measurements. Within each group and condition, each gene is scaled by a common scale 

factor defined as the median of the gene specific fold-changes between each gene’s 

condition-specific mean and the gene-specific mean across conditions, where means are 

calculated over non-zero counts. Motivation for considering non-zero counts during re-

scaling is discussed in Supplementary Note S3. Although the focus of SCnorm is on 

between-sample normalization, gene-specific features may also be adjusted using the R/

SCnorm package. As in Risso et al.15, we implemented a two-step procedure where gene 

specific effects may be adjusted for prior to between-sample normalization using SCnorm. It 

should be noted that SCnorm is not designed to adjust for batch effects; methods such as 

ComBat13 or sva14 may be used for this purpose following normalization.

SCnorm.SI

SCnorm does not require spike-ins, since we find that the performance of spike-ins in 

scRNA-seq is often compromised (Supplementary Figs. S12–S13), and many labs do not use 

them for normalization16,17. However, if good spike-ins are available, performance of 

SCnorm may be improved in the post-normalization scaling step, which is required when 

multiple conditions are available. Recall that in SCnorm, during rescaling, all genes are split 

into quartiles based on median expression among non-zero un-normalized measurements. In 

SCnorm.SI, the same is done with spike-ins and, if the spike-ins are representative of the full 

range of expression, we expect them to be approximately evenly divided among the four 

groups. Within each group and condition, each gene is scaled by a common scale factor 

defined as the median of the spike-in specific fold-changes between each spike-in’s 

condition-specific mean and the spike-in’s specific mean across conditions, where means are 

calculated over non-zero counts. For more on SCnorm.SI, see Supplementary Note S1.

Application of comparable methods

All analyses were carried out using R version 3.3.0 unless otherwise noted. The method MR, 

originally described by Anders and Huber3, was implemented using the DESeq R package 

version 1.24.0 using the default settings of the estimateSizeFactorsForMatrix function. TPM 

estimates were obtained as output from RSEM version 1.2.3. Expected counts were used in 
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SCnorm and TPM was evaluation separately. The method scran was implemented with the 

scran R package version 1.0.0; size factors were obtained using the function 

computeSumFactors. The pool sizes were set to 5, 10, 15, and 20; and size factors were 

constrained to be positive. SCDE was implemented in R version 3.2.2 using the SCDE R 

package version 1.99.1 with default parameter settings, and normalized counts were 

obtained using the function scde.expression.magnitude. BASiCS was implemented using the 

BASiCS R package version 0.4.1 using R vesion 3.2.2, obtained from Github at https://

github.com/catavallejos/BASiCS; and normalized expression estimates were obtained using 

the function BASiCS_DenoisedCounts where BASiCS_MCMC was run with N = 20,000, 

Burn = 10,000, and default parameters used otherwise. Because BASiCS requires spike-ins, 

results are only shown for data sets where spike-ins are available. Finally, we also evaluated 

NODES18 (Supplementary Figs. S14–S16), an unpublished approach, version 0.0.0.9010.

Evaluation of methods

Gene-specific count depth relationships were estimated using median quantile regression as 

well as regression with a negative binomial generalized linear model (glm). The quantreg 
package in R was used with the Barrodale and Roberts algorithm to carry out the median 

regressions; MASS in R was used to fit the glms. Zeros are not included in the fits since our 

goal is to estimate the count-depth relationship present in data before and after 

normalization, and that relationship is obscured by dropouts, which are largely technical. 

Because glm’s are sensitive to outliers, an initial glm to estimate the count-depth 

relationship is fit on the un-normalized data and the top two and bottom two residual gene 

expression values were removed from each gene prior to estimating the final count-depth 

relationship via glm. Since the same set of putative outliers were removed for every method, 

excluding these values will not bias results in favor of any one method.

MAST was used to identify DE genes, using the MAST R package version 0.933, obtained 

from Github at https://github.com/RGLab/MAST. The continuous component test was 

considered and differential zeros were not used to evaluate performance of normalization 

methods since all normalization methods leave zeros un-normalized. P-values from MAST 

were adjusted using Benjamini & Hochberg19. Unless otherwise noted, a DE gene was 

defined as one with corrected p-value < 0.05, which controls the false discovery rate at 5%. 

ROC curves were plot using the R package ROCR. The false positive and true positive rates 

were calculated by ROCR, with a positive representing a DE gene. Average ROC curves 

show the average true positive rate. PCA was conducted using the prcomp function in R, and 

confidence ellipses were drawn using the dataEllipse function in the car package in R. 

Outlier adjustment (values in the upper 0.995th percentile were set to the 0.995th percentile) 

was done prior to applying PCA for each dataset. The misclassification rate for the S phase 

was calculated as the percentage of G1 or G2/M cells present within the 95% confidence 

ellipse for S; misclassification rates for the other phases were calculated similarly.

Simulation SIM I

Data were simulated to match characteristics of the H1-1M and H1-4M datasets. For each 

gene g, gene-specific intercepts β̂g,0, slopes β̂g,1, and variance intercepts  were estimated 

using median quantile regression on the H1-1M data. Two SIM I simulation scenarios were 
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generated: K = 1 and K = 4. In the K = 1 simulations, only genes having at least 75% non-

zero expression values and βĝ,1 ∈ (.9, 1.1) were used. For the K = 4 simulations, genes were 

split into four equally sized groups based on β̂g,1. The medians of β̂g,1 were calculated 

within each group; denote these by βmed,1, βmed,2, βmed,3, and βmed,4, respectively. For genes 

in the kth group, genes having βĝ,k ∈ (βmed,k − 0.1, βmed,k + 0.1) were used, where βmed,k is 

the median β̂g,k over all genes.

For a given gene, counts were simulated on the log scale as β̂g,1 log(Xj)+ β̂g,0 + εg,j and then 

exponentiated, where . Two biological conditions were simulated: one 

condition with 90 cells simulated from sequencing depths ranging from 500,000 to 1.5 

million reads (Xj was sampled uniformly between 500,000 and 1.5 million) and a second 

condition with 90 cells simulated with depths ranging from 2 to 6 million reads (Xj was 

sampled uniformly between 2 and 6 million). For a randomly selected set of cells, counts 

were set to zero, where the proportion set to zero was defined to match the proportion 

observed empirically. Each simulated dataset contained 1200 genes, 80% EE and 20% DE. 

For approximately half of the DE genes, fold-changes were sampled uniformly between 2 

and 4, and counts in the second condition were multiplied by the sampled fold-change. The 

other (approximately) half of DE genes were simulated similarly, but with counts in the first 

condition multiplied by the sampled fold change to keep the DE balanced. Supplementary 

Fig. S17 shows that basic summary statistics are well preserved between the simulated and 

case study data.

Simulation SIM II

Counts are generated as in Lun et al. 20165 following their simulation study scenarios 1, 2, 

3, and 4. In that simulation set up, three populations were simulated. We here consider 

populations 1 and 2.

H1 bulk data

The dataset contains 48 samples of H1 hESCs as described in detail in Hou et al. 201520. 

The H1 bulk RNA-seq data have an average sequencing depth of 3 million mapped reads per 

sample.

H1 and H9 case studies

Undifferentiated H1 or H9 hESCs were cultured in E8 medium21 on Matrigel-coated tissue 

culture plates with daily media feeding at 37 °C with 5% (vol/vol) CO2. Cells were split 

every 3–4 days with 0.5 mM EDTA in 1 X PBS for standard maintenance. Immediately 

before preparing single cell suspensions for each experiment, hESCs were individualized by 

Accutase (Life Technologies), washed once with E8 medium, and resuspended at densities 

of 5.0–8.0 × 105 cells/mL in E8 medium for cell capture. The H1 hESCs are registered in the 

NIH Human Embryonic Stem Cell Registry with the Approval Number: NIHhESC-10-0043. 

Details of the H1 cells can be found online (http://grants.nih.gov/stem_cells/registry/

current.htm?id=29). The H9 hESCs are registered in the NIH Human Embryonic Stem Cell 

Registry with the Approval Number: NIHhESC-10-0062. Details of the H9 cells can be 

found online (http://grants.nih.gov/stem_cells/registry/current.htm?id=414). All the cell 
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cultures performed in our laboratory have been routinely tested and have been found 

negative for mycoplasma contamination and authenticated by cytogenetic tests.

Single-cell loading, capture, and library preparations were performed following the Fluidigm 

user manual “Using the C1 Single-Cell Auto Prep System to Generate mRNA from Single 
Cells and Libraries for Sequencing.” Briefly, 5,000–8,000 cells were loaded onto a medium 

size (10–17 μm) C1 Single-Cell Auto Prep IFC (Fluidigm), and cell-loading script was 

performed according to the manufacturer’s instructions. The capture efficiency was 

inspected using EVOS FL Auto Cell Imaging system (Life Technologies) to perform an 

automated area scanning of the 96 capture sites on the IFC. Empty capture sites or sites 

having more than one cell captured were first noted and those samples were later excluded 

from further library processing for RNA-seq. Immediately after capture and imaging, reverse 

transcription and cDNA amplification were performed in the C1 system using the SMARTer 

PCR cDNA Synthesis kit (Clontech) and the Advantage 2 PCR kit (Clontech) according to 

the instructions in the Fluidigm user manual. Full-length, single-cell cDNA libraries were 

harvested the next day from the C1 chip and diluted to a range of 0.1–0.3 ng/μL. Diluted 

single-cell cDNA libraries were fragmented and amplified using the Nextera XT DNA 

Sample Preparation Kit and the Nextera XT DNA Sample Preparation Index Kit (Illumina). 

Libraries were multiplexed either at 24 or 96 single cell cDNA libraries per lane to target 4 

or 1 million mapped reads per cell, respectively, and single-end reads of 67-bp were 

sequenced on an Illumina HiSeq 2500 system. We refer to the data obtained from 24 

libraries per lane as the H1-4M set, since approximately 4 million mapped reads per cell 

were generated. For similar reasons, H1-1M is used to refer to the data obtained from 96 

libraries per lane.

Reads were mapped against the Hg19 Refseq reference via Bowtie 0.12.822 allowing up to 

two mismatches and up to 20 multiple hits. The expected counts and TPM’s were estimated 

via RSEM 1.2.37. Cells having less than 5,000 genes with expected counts >1 or those that 

upon inspection of cell images displayed doublets or appeared dead were removed in quality 

control. 92 H1 cells passed the quality control. 91 H9 cells passed quality control.

H1-FUCCI case study10

Single-cell RNA-seq data were downloaded from GSE64016. In this experiment, 247 H1 

human embryonic stem cells were labelled with fluorescent ubiquitination-based cell cycle 
indicators11 to enable identification of cell cycle phase for each cell. For the PCA analysis, 

cell cycle genes were defined from GO:0007049 and from Cyclebase23. Specifically, we 

took genes from GO:0007049 that showed strong evidence of cell cycle association by 

having a rank within the top 400 Cyclebase genes (giving a total of 578 genes). For the S vs. 

G2/M DE analysis, we sampled 50 cells from the S phase and 50 cells from the G2/M phase 

to match on cellular detection rate (CDR). In the resulting dataset, the 25th, 50th, and 75th 

percentile of CDR for the S (G2/M) condition was 0.62, 0.63, and 0.64 (0.61, 0.63, 0.64). 

Sequencing depth was approximately 1.5 times higher in the G2/M condition (4 million 

reads on average in S and 6 million on average in G2/M; medians 4.05 and 6.1 million reads, 

respectively). Without differences in CDR, we would expect an EE gene expressed at level x 
in S to be expressed at level 1.5*x in G2/M. Given this, we define a gold standard list to be 
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those genes showing a fold change bigger than a threshold (or smaller than one over that 

threshold) for varying thresholds, adjusting for the expected increase in expression due to 

increased sequencing depth. For example, genes with 2-fold change or greater are defined as 

those with empirical fold change of 3 or greater.

Buettner case study24

Single-cell RNA-seq expression data were downloaded from ArrayExpress E-MTAB-2805. 

In this experiment, Mus musculus embryonic stem cells were sorted using fluorescence-

activated cell sorting (FACS) to determine cell cycle phase; cells were then captured using 

the C1 Fluidigm system. Libraries were multiplexed and sequenced across four lanes using 

an Illumina HiSeq 2000 system. Gene-level read counts were generated by HTSeq version 

0.6.1. Here we consider the three data sets each having 96 cells in either G1, S, or G2M 

phase of the cell cycle. The data have average sequencing depths of 4.9, 6.5, and 4.5 million, 

respectively. Cells having sequencing depths less than 10,000 were removed prior to analysis 

which resulted in 95 G1, 88 S, and 96 G2M cells.

Islam case study25

Single-cell RNA-seq expression data were downloaded from GEO GSE29087. In this 

experiment, Mus musculus R1 embryonic stem cells (ES) and embryonic fibroblasts were 

captured using a semi-automated cell picker on a 96-well capture plate; libraries were 

generated using the STRT protocol and sequenced using on a Genome Analyzer IIx system. 

Gene-level counts were obtained by counting reads mapped using Bowtie22 for each feature. 

Here we consider two datsets, one having 48 ES cells and the other having 44 EF cells. The 

datasets have average sequencing depths of 180,000 reads and 800,000 reads, respectively.

DEC case study

The dataset contains 64 H1 cells consisting of the first batch of experiments studying H1 

differentiation towards definitive endodermal cells as described in detail in Chu et al. 
201626. The DEC scRNA-seq data have an average sequencing depth of 4 million mapped 

reads per cell. The data can be downloaded from GEO GSE75748.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Count-depth relationships in bulk and single-cell datasets before and after normalization. For 

each gene, median quantile regression was used to estimate the count-depth relationship 

before normalization and after normalization via MR or SCnorm for the H1 bulk RNA-seq 

data set (panels (a) – (f)) and the DEC scRNA-seq data set (panels (g)–(l)). Panel (a) shows 

log-expression vs. log-depth and estimated regression fits for three genes containing no zero 

measurements and having low, moderate, and high expression defined as median expression 

among non-zero un-normalized measurements in the 10th–20th quantile, 40th–50th quantile, 

and 80th–90th quantile, respectively. Panel (b) shows densities of slopes within each of ten 

equally sized gene groups where a gene’s group membership is determined by its median 

expression among non-zero un-normalized measurements. Panels (c) and (d) show the data 

in panels (a) and (b) normalized via MR; (e) and (f) show the data normalized by SCnorm. 

Panels (g)–(l) are structurally identical to (a)–(f) for the DEC scRNA-seq data set. 

Qualitatively similar results are observed if slopes are calculated via generalized linear 

models (Supplementary Note S2 and Supplementary Fig. S1).
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Fig. 2. 
Fold-changes and DE genes calculated from the H1 case study data. For each gene, the fold-

change of non-zero counts between the H1-4M and H1-1M groups was computed for data 

following normalization via SCnorm, MR, TPM, scran, SCDE, and BASiCS. Box-plots of 

gene-specific fold-changes are shown in panel (a) for data normalized by each method. The 

number of genes identified as DE using MAST is shown in panel (b). Genes are divided into 

four equally sized expression groups based on their median among non-zero un-normalized 

expression measurements and results are shown as a function of expression group. 

Motivation for considering non-zero counts to calculate fold-change is discussed in 

Supplementary Note S3.
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Fig. 3. 
PCA applied to the H1-FUCCI case study. The upper left panel shows the first two principal 

components (PC1 vs. PC2) from a PCA analysis using 578 cell cycle genes normalized via 

SCnorm. The other panels show similar results for data normalized using MR, TPM, scran 

and SCDE. Cells are colored according to cell cycle phase. 95% confidence ellipses are 

shown for each method. Misclassification rates for SCnorm, MR, TPM, scran, and SCDE 

averaged across the three cell cycle phases are 0.26, 0.32, 0.38, 0.29, and 0.45, respectively.
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