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Abstract

Purpose—To illustrate the role of the exposome in child health while highlighting unique aspects 

of this research pertinent to children, such as the time dependency of environmental exposures on 

fetal programming, as well as the time dependent nature of child behavior, diet, and motor 

function, which alter the probability of exposure to different compounds. Future environmental 

health research will be more hypothesis generating but will also need to heed lessons learned from 

other “omic” sciences. The NIH Child Health Environmental Analysis Resource (CHEAR) is a 

major step towards providing the infrastructure needed to study the exposome and child health.

Recent Findings—Environmental exposures have overlapping mechanisms such as endocrine 

disruption and oxidative stress among others. The nature of the long term health impact of an 

exposure is dependent not only on dose, but also on the timing of exposure. Advances in exposure 

science, toxicology and biostatistics will create new opportunities to identify and better define 

windows of susceptibility to environmental exposures.

Summary—As exposure science matures, we will better understand the role of environment on 

health. Linking the exposome with genomics will unlock the root origins of multiple complex 

diseases.
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Introduction: The Exposome-a new science

The “exposome” is defined as the totality of environmental exposure from conception to 

death1,2. Although characterizing the exposome is a monumental goal, many of the tools to 

measure environment on an “omic” scale already exist, and recent advances in analytical 

chemistry, geospatial statistics, and the same scientific and cultural developments that made 

smart phones ubiquitous now make the goal of estimating the exposome possible. In the next 

10 years, more and more research will be conducted in “exposomics”. To build toward this 

larger goal, environmental health researchers must integrate a vast array of tools from 
multiple, seemingly disparate, scientific disciplines to successfully measure the exposome. 
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In many ways, environmental health is at a similar development stage as genomics was 15 

years ago. We can therefore learn several lessons from genomics, which already transitioned 

from a hypothesis driven science to a hypothesis generating “omic” science. The growth of 

genomics was propelled by embracing the best of multiple fields and building teams, and did 

not emanate from laboratories that were focused on a single aspect of genomics: a 

combination of biologists, physicians, bioinformaticists, computer scientists, statisticians, 

and an appreciation of “big data” drove the growth of genomics. By merging multiple fields, 

geneticists forced a need for the development of new technology, the enrollment of large 

study populations, and the creation of bioinformatic tools that could manage larger and 

larger amounts of data efficiently. This led to consortiums and further collaboration among 

epidemiologists, molecular biologists, bioinformaticians, statisticians and clinicians. The key 

to the rapid development of exposomics will be to follow this blueprint of success, and the 

NIH CHEAR (Child Health Exposure Analysis Resource) program provides a strong 

foundation. CHEAR will provide researchers with the tools to measure the exposome. 

Similar to genomics, the initial measures will be targeted (just as single nucleotide 

polymorphisms in microarrays were the mainstay assay 5–10 years ago) but as exposomic 

technology improves, environment will be measured on larger and larger scales.

Environment is key to understanding the Genome

In the last 2 decades, genomics profoundly changed the fundamental approach to science by 

moving away from hypothesis-driven research to agnostic, hypothesis-generating research 

followed by hypothesis testing replication. While genomics has rapidly advanced our 

understanding of the underlying biology of disease, actual disease-causing genetic variants 

are rare and account for no more than ~20% of the variance that explains the cause of 

complex diseases. Even in diseases such as autism, in which the genetic contribution was 

once predicted to be 80–100% of the heritability, the concept that measuring genetics alone 

could explain the root cause of the disease has fallen out of favor. Much debate has occurred 

over the source of this “missing heritability”..The underlying assumption of heritability 

estimates is that genetics and environment act independently to cause disease, and by doing, 

we typically overestimate the genetic contributions. In reality, genes and environment cannot 

work independently; they must interact, as even mutated genes require substrates to generate 

gene products. Research in the last 20 years has focused on unraveling the genetic 

component of disease risk, while the effect of environmental stimuli received limited 

attention. In large part, the lack of focus on environmental causes was driven by the absence 

of tools to measure the environment on an “omic” scale. Until recently, while millions of 

SNPs could be measured in a population, interactions with environmental risk factors were 

limited to a handful of measurements. This discordance tended to minimize the importance 

of environment. Further, these environmental risks were chosen not because they were 

known to interact with given genetic variants but primarily because they were easiest to 

measure. Environmental exposure assessment technology has exploded in the last few years 

and continues to develop. In recent years, many have concluded that Gene x Environment 

interactions likely explain the largest portion of the missing heritability3,4 The time is now 

ripe to leverage these gains and conduct gene-environment interaction investigations on a 

scale that can discover and replicate findings via both genomic and exposomic approaches.
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Linking Exposomics with Genomics

Although an emerging consensus suggests that prevalent complex diseases in humans 

develop as a result of multiple biologically unique gene–environment and environment by 

environment interaction (Figure 1), this conceptual framework remains limited. In fact, the 

development of disease in humans is far more complex and is not even a 3-dimensional issue 

(i.e., involving multiple interactions) but a 4-dimensional issue (i.e., changes in interaction-

related risk over time). Environmental exposures affect those who are vulnerable temporally 

(age at time of exposure) and by unique circumstance (co-morbid disease, nutritional status, 

economic status, culture, genetics). Even this paradigm fails to address the complex 

interaction of endogenous and exogenous chemicals that ultimately interact to cause disease. 

Human genetics provided an unparalleled insight to understanding how genes and genetic 

variants interact with environmental exposures to either preserve health or cause disease. 

These advances have led to the concept of systems biology research and the study of genetic 

variants as networks instead of individual predictors. However, as currently practiced, 

Systems Biology is an incomplete science. Without accounting for the temporal, spatial, and 

other unique components of an individual’s microenvironment, our understanding of 

genetics and gene networks remains incomplete. Even the downstream products of genes 

(transcriptomics, proteomics and metabolomics etc) are only partial pieces of a much larger 

puzzle. Understanding the complex relationships among our genetic code, our metabolic 
machinery, and our temporally changing environment in populations and within affected 
individuals is precisely the opportunity and challenge that scientists involved in both 
environmental health and genomics face.

The Uniqueness of Children’s Health Research: Opportunities and Pitfalls

Over the last 2 decades a growing appreciation for the role of fetal/childhood environments 

on child and adult health has come to the forefront. The field of “developmental origins of 

health and disease (DOHaD) has even developed to the point where it now hosts an 

international society with an annual conference(https://dohadsoc.org/). Concurrent to these 

developments has been the rise of “omic” science (genomics, epigenomics, proteomics and 

metabolomics among others). These technology driven fields have led to an explosion of 

measures that can be incorporated into population based research. Combining the lessons 

learned from developmental origins with these new technologies will require thoughtful, 

interdisciplinary approaches that can integrate chemistry, pediatrics, developmental biology, 

epidemiology and biostatistics/bioinformatics. For example, factoring in the role of child 

development in metabolomic assays will be considerably more complex in children than in 

adults. Adult metabolism can be grouped by years (i.e. the average 35 year old is not 

particularly different then a 40 years old) while in child health, developmental metabolism 

changes occur in time sets of months or even weeks. Overly simplistic approaches of 

adjusting for age cannot capture this complexity and will lead to erroneous interpretations of 

data. In addition, all “omic” analyses are hypothesis generating and must be replicated, 

otherwise they will inevitably produce primarily false positive results5–7. Relative to 

genomics, time varying measures, such as the exposome, metabolome, proteome and 

epigenome, must factor age of the child, as the risk of exposure (behaviors, motor 

development, diet) and response to exposure(metabolism, gene expression variation, cell 
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differentiation etc) operate at varying degrees of intensity over childhood life stages. 

Replication must also be careful to factor in these issues to avoid type 2 error as well as type 

1 error. While the pitfalls are many, so are the potential rewards. The rapid time varying life 

stages of childhood are an opportunity to build upon the current state of science towards a 

better understanding of disease etiology, prevention and treatment. With a growing 

understanding that the childhood environment is often a root cause for adult health and 

disease, a focused effort to conduct exposomic research during childhood will touch almost 

every field of biology.

Susceptibility Windows and Exposure Assessment

Fetal life is a state of sequential physiological shifts, driven by cell specific gene expression 

changes in which there are dynamic changes in growth rates as well as the establishment of 

hormonal and metabolic circadian rhythms. This timed cascade of biological events means 

that the fetus is highly vulnerable to even subtle environmental insults, as cell and tissue 

differentiation is most active at this life stage, yet defense mechanisms against toxic 

environmental factors are underdeveloped.8 These events occur over varying time scales of 

years, months, weeks or even days. To produce programmed effects in the absence of overt 

cellular toxicity, environmental exposures must coincide with these timed developmental 

processes inducing changes in the developmental trajectory. Some of the earliest reports on 

DOHaD, came from David Barker’s research team, which conducted a series of seminal 

studies on fetal nutritional environment and subsequent adult cardiometabolic health9–11. 

Increasingly, the observation that early life nutritional famine was a strong predictor of later 

life hypertension, obesity and even behavioral disorders such as schizophrenia12,13 has 

become an accepted biological tenet. Research on the fetal chemical and social environment 

has found many parallel effects to the Barker hypothesis, which have been termed “windows 

of susceptibility” or “critical windows”. To advance the field of developmental origins of 

disease, exposure assessment must occur at time scales that can assess multiple life stages, 

sometimes as brief as a few months. Prospective, longitudinally assessed data on 

environment in multiple life stages is the key to this endeavor. CHEAR can measure multiple 

toxicants on extant samples to begin the process of systematically searching for critical 

windows of susceptibility.

Example of Environmental Programming: Oxidative Stress

While many mechanisms may contribute to nutritional or toxicant-elicited disruption of fetal 

development, a growing body of evidence underscores a central role for oxidative stress 
(OS) 14,15. Oxidative stress may be a source of toxicity but it is also a signal for normal 

development16,17. Reactive oxygen species are needed to induce the timed transcription of 

genes critical to cell differentiation and proliferation16. During pregnancy, increased 

placentation and oxygenated blood flow coincide with rapid growth and increased oxygen 

needs, creating a switch in the fetal redox state from reduced to oxidized. This switch is 

critical to timed gene expression changes and drives cell and tissue differentiation. The 

placenta regulates the delicate balance between normal and excess ROS generation, 

preventing toxicity and promoting cell differentiation. Hypoxemia and poor nutrition cause 

oxidative stress 181920 and can be driven by maternal health/environment, nutrient/waste 
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exchange and placental vascular reactivity. Chemical oxidants can be directly fetal toxic if 

transferred across the placenta, but may also induce cytokines and other inflammatory 

mediators that constrict placental blood flow, mimicking famine like effects 21,22. In either 

case, oxidants alter normal gene expression signals, producing a stressed fetal environment. 

The key concept is that the fetus may react to a hostile in utero environment by 

programming gene expression in preparation for a similarly hostile ex utero life. However, if 

ex utero resources are plentiful, these programmed gene expression changes can become 

detrimental.

Mechanisms of Oxidative Stress and Fetal Programming

How might oxidative stress cause programming? Oxidative stress impacts multiple heritable 

cellular processes including DNA methylation/imprinting, mitochondrial DNA (mtDNA) 

function, and telomere biology, all of which influence programming 23–27. The placenta, 

which is the gateway to the fetus, is highly sensitive to these pro-oxidant stressors. All have 

the potential to alter biochemical, molecular, epigenetic and gene expression processes (see 
Figure 2). Thus, the placenta provides a readily available source of integrated molecular 

information on the cumulative past oxidative stress that occurred over pregnancy. Moreover, 

which pathways are disrupted, and/or which disorder originates, may depend as much on 

timing as on differences in exposures26,28. Key challenges for future research include 
whether we can identify biomarkers at the maternal-fetal interface that reflect an integrated 
measure of mixed oxidant exposures over pregnancy and how to better estimate the 
influence of exposure timing.

Untargeted Chemical Profiling

The vast majority of children’s environmental health studies have focused on one or, at most, 

a few candidate chemicals or metabolites which may cause disease or disorders in children. 

While there are strengths to such an approach, including biologic plausibility and clear a 
priori hypotheses, there are also limitations to selecting only a few environmental exposures 

in a single study. Human population studies take years to conduct and are expensive, and this 

pace of research is very limiting with regards to informing health care providers and public 

policy makers. In addition, given the multifaceted nature of biologic interactions, it is 

difficult to conceive that one environmental exposure can ever primarily account for the rise 

of complex diseases such as asthma, autism, obesity, etc. Finally, there are certainly 

chemicals/metabolites important to disease pathogenesis or child development that are not 

yet known, and keeping in mind that more than 80,000 chemicals are registered with the 

EPA for commercial use in the U.S,29 a candidate exposure approach may never be able to 

identify the chemical and nonchemical mixtures driving disease processes. The selection of 

environmental exposures in candidate studies is always open to bias. That is, we tend to 

study what we already believe or suspect is toxic. If we are to keep pace, we must rethink 

our approach to environmental health research.2,30 Similar to the field of genetics that 

capitalized on the genome wide scan to advance new genetic “discoveries”, environmental 

health must begin to utilize untargeted scans allowing for screening of the exposome to 

“discover” novel environmental risk factors and their effects.1,31 Advances in analytical 

chemistry methods now allow assessment of exposure to hundreds to thousands of 
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untargeted classes of chemicals by performing global screening of small molecules using 

methods such as liquid chromatography coupled with quadrupole time-of-flight mass 

spectrometry metabolomics. Our team has even applied this technology to novel matrices 

such as teeth that can reconstruct exposures from fetal life and infancy32. We found (a) more 

than 12,000 unique chemical signatures in trimester-specific dentine layers, (b) high inter- 

and intra-child variability in chemical profiles, and (c) ‘known unknown’ and ‘suspected 
unknown’ compounds. Because we used teeth, reconstruction of exposures was done 7 to 10 

years after prenatal and early childhood exposure. A similar approach could be applied to 

ongoing studies, even those that did not collect prenatal biospecimens enabling exposomic 

research on prenatal exposure even with prospective sample collection in pregnancy.

Statistical methods must integrate with exposure and biology

Given its complexity, exposome research will require a team-based approach to assess the 

relationship between environment and health, integrating exposure science, with pediatrics, 

developmental biology, and statistics. To illustrate, our team recently developed a new 

approach to identifying developmental windows of susceptibility using air pollution 

exposure data collected daily. The concept of “windows of susceptibility” implies that 

exposure timing determines subsequent health effects28,33,34. Due to the rapidity of 

development, windows of susceptibility can be missed if exposure measures are made 

outside the appropriate window, even if the correct chemical is assessed; however, the time 

boundaries of windows are rarely known and researchers effectively are left to guess when 

the windows occur. If we could measure exposure repeatedly over short, frequent time 

periods rather than collecting serial exposure measures months or years apart, then we could 
use data-driven methods to objectively identify windows of susceptibility. To facilitate such 

an approach, we have proposed novel methods that provide highly temporally resolved 

exposure data thereby coupling our novel exposure methods with data-driven statistics to 
determine the windows of susceptibility in which air pollution (PM2.5 –particulate 
matter<2.5 microns in diameter) exposure predict health outcomes. Fig 3 is a previously 

published result illustrating this concept using prenatal PM2.5 measured weekly across 
pregnancy to estimate mitochondrial DNA copy number, a biomarker of cumulative 
oxidative stress. The Distributed Lag Regression Model reveals that the critical window for 

this mixture is found in the late 3rd trimester. These data driven methods to identify critical 

windows may well be a “rosetta stone” in biological science35,36, as critical susceptibility 

windows are in nearly all cases, ill defined.

Conclusions

These are exciting times for Environmental Health and Exposure Science. The field has 

made tremendous strides toward developing an exposomics approach to its research in recent 

years37–39. CHEAR represents the type of infrastructure achievements that create the 

foundation for the development of new methods and new consortia that can address the big 

picture questions of how environment impacts health and development. Future research will 

no doubt generate new methods for exposure assessment, data harmonization and statistical 

approaches but with respect to children’s health will need to factor in the time varying 

biological processes that define childhood. The CHEAR program is well positioned to 
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deliver the research tools that will bring the nascent field of exposomics to the forefront of 

medical science.

• The Exposome is a new science that assesses the totality of human exposure 

from conception to death.

• Measuring environment rigorously will improve our understanding of genomics 

and developmental biology.

• The next decade will see enormous advances in our ability to measure human 

environment across all life stages.

• Windows of susceptibility are the key to understanding how genes and 

environment interact.

• Multidisciplinary teams are needed to avoid pitfalls that arise from focus on 

technology rather than biology and rigorous study design and statistics.

Acknowledgments

I would like to thank Ms Rozalyn Paupaw for her assistance with the manuscript

Financial support and sponsorship

This work was supported in part by grants from the National Institutes of Health, U2CES026561; R01ES026033; 
UG3 OD023337; P30 ES023515 and R01 ES013744

References

1**. Rappaport SM. Implications of the exposome for exposure science. Journal of exposure science & 
environmental epidemiology. 2011; 21(1):5–9. [PubMed: 21081972] 

2**. Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of 
environmental exposure measurement in molecular epidemiology. Cancer epidemiology, 
biomarkers & prevention: a publication of the American Association for Cancer Research, 
cosponsored by the American Society of Preventive Oncology. 2005; 14(8):1847–1850. 
References 1 and 2 are landmark papers illustrating the potential of the exposome to identify the 
underlying root causes of complex diseases. 

3. Rappaport SM. Genetic Factors Are Not the Major Causes of Chronic Diseases. PloS one. 2016; 
11(4):e0154387. [PubMed: 27105432] 

4. Simon PH, Sylvestre MP, Tremblay J, Hamet P. Key Considerations and Methods in the Study of 
Gene-Environment Interactions. American journal of hypertension. 2016; 29(8):891–899. [PubMed: 
27037711] 

5. Begley CG, Ioannidis JP. Reproducibility in science: improving the standard for basic and 
preclinical research. Circulation research. 2015; 116(1):116–126. [PubMed: 25552691] 

6. Goodman SN, Fanelli D, Ioannidis JP. What does research reproducibility mean? Science 
translational medicine. 2016; 8(341):341ps312.

7. Ioannidis JP. Why most discovered true associations are inflated. Epidemiology (Cambridge, Mass). 
2008; 19(5):640–648.

8. Hogg K, Price EM, Hanna CW, Robinson WP. Prenatal and perinatal environmental influences on 
the human fetal and placental epigenome. Clinical pharmacology and therapeutics. 2012; 92(6):
716–726. [PubMed: 23047650] 

9. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and 
cardiovascular disease in adult life. Lancet. 1993; 341(8850):938–941. [PubMed: 8096277] 

Wright Page 7

Curr Opin Pediatr. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Osmond C, Barker DJ, Slattery JM. Risk of death from cardiovascular disease and chronic 
bronchitis determined by place of birth in England and Wales. Journal of epidemiology and 
community health. 1990; 44(2):139–141. [PubMed: 2370502] 

11. Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 y in 
men and women exposed to famine prenatally. The American journal of clinical nutrition. 1999; 
70(5):811–816. [PubMed: 10539740] 

12*. Barker DJ, Lampl M, Roseboom T, Winder N. Resource allocation in utero and health in later 
life. Placenta. 2012; 33(Suppl 2):e30–34. References 9–12 are among the first to illustrate the 
role of the fetal environment in adult onset disease. [PubMed: 22809673] 

13. Neugebauer R. Accumulating evidence for prenatal nutritional origins of mental disorders. Jama. 
2005; 294(5):621–623. [PubMed: 16077059] 

14. Myatt L, Cui X. Oxidative stress in the placenta. Histochemistry and cell biology. 2004; 122(4):
369–382. [PubMed: 15248072] 

15. Herrera EA, Krause B, Ebensperger G, et al. The placental pursuit for an adequate oxidant balance 
between the mother and the fetus. Fronteirs in Pharmacology. 2014; 5:49.

16. Dennery PA. Oxidative stress in development: nature or nurture? Free radical biology & medicine. 
2010; 49(7):1147–1151. [PubMed: 20656021] 

17. Hitchler MJ, Domann FE. An epigenetic perspective on the free radical theory of development. 
Free radical biology & medicine. 2007; 43(7):1023–1036. [PubMed: 17761298] 

18. Bolton JL, Bilbo SD. Developmental programming of brain and behavior by perinatal diet: focus 
on inflammatory mechanisms. Dialogues in clinical neuroscience. 2014; 16(3):307–320. [PubMed: 
25364282] 

19. van Patot MC, Ebensperger G, Gassmann M, Llanos AJ. The hypoxic placenta. High altitude 
medicine & biology. 2012; 13(3):176–184. [PubMed: 22994517] 

20. Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and 
potential interventional approaches. Clin Sci (Lond). 2007; 113(1):1–13. [PubMed: 17536998] 

21. Chertok RJ, Kullgren B, Burbank D. The effects of CdCl2 on the maternal-to-fetal clearance of 
67Cu and placental blood flow. Proceedings of the Society for Experimental Biology and 
Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1984; 176(2):138–
142.

22. Lasuncion MA, Lorenzo J, Palacin M, Herrera E. Maternal factors modulating nutrient transfer to 
fetus. Biology of the neonate. 1987; 51(2):86–93. [PubMed: 3552062] 

23. Byun HM, Baccarelli A. Environmental expousre and mitochondrial epigenetics: study design and 
analytical challenges. Human Genetics. 2014; 133:247–257. [PubMed: 24402053] 

24. Cameron N, Demerath EW. Critical periods in human growth and their relationship to diseases of 
aging. American Journal Physical Anthropology. 2002; 35:159–184.

25. Entinger S, Buss C, Wadhwa PD. Prenatal stress, telomere biology, and fetal programming of 
health and disease risk. Science Signaling. 2012; 5:112.

26. Janssen BG, Byun HM, Cox B, et al. Variation of DNA methylation in candidate age-related 
targets on the mitochondrial-telomere axis in cord blood and placenta. Placenta. 2014; 35:665–
672. [PubMed: 25047690] 

27. Shaughnessy DT, McAllister K, Worth L, et al. Mitochondria, energetics, epigenetics, and cellular 
responses to stress. Environmental health perspectives. 2014; 122(12):1271–1278. [PubMed: 
25127496] 

28. Wells JC. Adaptive variability in the duration of critical windows of plasticity: Implications for the 
programming of obesity. Evolution, medicine, and public health. 2014; 2014(1):109–121.

29. Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006; 
368(9553):2167–2178. [PubMed: 17174709] 

30. Wild CP. The exposome: from concept to utility. International journal of epidemiology. 2012; 
41(1):24–32. [PubMed: 22296988] 

31. Kortenkamp A, Faust M, Scholze M, Backhaus T. Low-level exposure to multiple chemicals: 
reason for human health concerns? Environmental health perspectives. 2007; 115(Suppl 1):106–
114. [PubMed: 18174958] 

Wright Page 8

Curr Opin Pediatr. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Andra SS, Austin C, Wright RO, Arora M. Reconstructing pre-natal and early childhood exposure 
to multi-class organic chemicals using teeth: Towards a retrospective temporal exposome. 
Environment international. 2015; 83:137–145. [PubMed: 26134987] 

33. Fudvoye J, Bourguignon JP, Parent AS. Endocrine-disrupting chemicals and human growth and 
maturation: a focus on early critical windows of exposure. Vitamins and hormones. 2014; 94:1–25. 
[PubMed: 24388185] 

34. Luo ZC, Fraser WD, Julien P, et al. Tracing the origins of “fetal origins” of adult diseases: 
programming by oxidative stress? Medical hypotheses. 2006; 66(1):38–44. [PubMed: 16198060] 

35*. Chiu YH, Hsu HH, Coull BA, et al. Prenatal particulate air pollution and neurodevelopment in 
urban children: Examining sensitive windows and sex-specific associations. Environment 
international. 2016; 87:56–65. [PubMed: 26641520] 

36*. Rosa MJ, Just AC, Guerra MS, et al. Identifying sensitive windows for prenatal particulate air 
pollution exposure and mitochondrial DNA content in cord blood. Environment international. 
2016 References 35 and 36 are the first to illustrate how time dependent exposure assessed in 
short time intervals can be analyzed to identify windows of susceptibility. 

37. Cui Y, Balshaw DM, Kwok RK, Thompson CL, Collman GW, Birnbaum LS. The Exposome: 
Embracing the Complexity for Discovery in Environmental Health. Environmental health 
perspectives. 2016; 124(8):A137–140. [PubMed: 27479988] 

38. DeBord DG, Carreon T, Lentz TJ, Middendorf PJ, Hoover MD, Schulte PA. Use of the 
“Exposome” in the Practice of Epidemiology: A Primer on -Omic Technologies. American journal 
of epidemiology. 2016; 184(4):302–314. [PubMed: 27519539] 

39. Holland N. Future of environmental research in the age of epigenomics and exposomics. Reviews 
on environmental health. 2016

Wright Page 9

Curr Opin Pediatr. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Transdisciplinary Science in Children’s Environmental Health
Schematic of relationship between environmental exposures and clinical disease. These 

effects are exposure timing dependent as well.
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Figure 2. Central Role of Oxidative Stress in Fetal Programming
Figure illustrates the role of oxidative stress experienced in the placenta as a mediator of 

programmed health effects experienced in later life.
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Figure 3. 
Associations between weekly prenatal PM2.5 and mtDNA content in cord blood adjusted for 

sex, maternal age at delivery, year of birth, maternal education, prenatal exposure to 

environmental tobacco smoke and batch. The y-axis represents the change in mtDNA 

content associated with a 10μg/m3 increase in PM2.5; the x-axis is gestational age in weeks. 

Solid lines show the predicted change in mtDNA content. Gray areas indicate 95% CIs. A 

sensitive window is identified for the weeks where the estimated pointwise 95% CI (shaded 

area) does not include zero (i.e. the length of time the regression is statistically significant.)
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