
GillesPy: A Python Package for Stochastic Model Building and 
Simulation

John H. Abel†,
Department of Systems Biology, Harvard Medical School, Boston, MA 02115 USA and the 
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 USA

Brian Drawert†,
Department of Computer Science, University of California, Santa Barbara, CA 93106 USA

Andreas Hellander, and
Department of Information Technology, Division of Scientific Computing Uppsala University, 
Uppsala, Sweden SE-751 85

Linda R. Petzold
Department of Computer Science, University of California, Santa Barbara, CA 93106 USA

Abstract

GillesPy is an open-source Python package for model construction and simulation of stochastic 

biochemical systems. GillesPy consists of a Python framework for model building and an interface 

to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic 

simulation algorithms (SSA). To enable intuitive model construction and seamless integration into 

the scientific Python stack, we present an easy to understand, action-oriented programming 

interface. Here, we describe the components of this package and provide a detailed example 

relevant to the computational biology community.

Index Terms

Biological systems; stochastic systems; systems biology; open-source software

I. Introduction

Stochasticity has recently been recognized as an essential feature of cellular processes. 

Extrinsic noise may be caused by fluctuations in the physical environment or properties of 

the individual cell (e.g. cell age or size), and may be captured in dynamic models through 

time-varying noise in model parameters. Intrinsic noise is caused by the low copy numbers 

of genes, transcripts, and proteins, and spatial inhomogeneity within the cell. Intrinsic noise 

in particular has gained attention, due to its essential role in cellular processes such as 

Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more 
information.
†Authors contributed equally to this work.

HHS Public Access
Author manuscript
IEEE Life Sci Lett. Author manuscript; available in PMC 2017 September 01.

Published in final edited form as:
IEEE Life Sci Lett. 2016 September ; 2(3): 35–38. doi:10.1109/LLS.2017.2652448.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://http://www.ieee.org/publications_standards/publications/rights/index.html


genetic toggle switches, noise-driven oscillation, cell polarization, and cell population 

dynamics [1–5].

Deterministic ordinary differential equation (ODE) models of biochemical processes are 

useful and accurate in the high-concentration limit, but fail to accurately capture stochastic 

cellular dynamics, as they assume spatial homogeneity and continuous biomolecule 

concentration. To address the issue of quantized concentrations we can replace deterministic 

ODEs with a continuous-time discrete-space Markov process, with the probability density of 

the system governed by the chemical master equation (CME). The CME is expensive to 

solve directly due to the curse of dimensionality, and more often Gillespie’s SSA method is 

used to generate a trajectory that is a statistically correct sample of the probability density. 

An ensemble of trajectories can be generated via a Monte Carlo method to form a basis for 

statistical analysis, a process which can be computationally-intensive for large systems or 

large ensembles.

The original SSA has been extended to include methods for more efficient exact and 

approximate simulations, including the optimized-direct method, composition-rejection 

method, and τ-leaping [6–9]. For a recent review, see [10]. Many of these improved methods 

have been distributed in the popular StochKit2 software package [11]. StochKit2 provides an 

efficient C-implementation of algorithms for discrete stochastic simulation with a command-

line interface. StochKit2 models must be created in StochML format, and simulation 

trajectories are returned as CSV files.

With its wide variety of numerical libraries and statistical packages, Python has become one 

of the most commonly used and effective languages in computational biology. In order to 

optimize computational biology workflow and simplicity in working with stochastic model 

building and simulation, we have created the GillesPy package. GillesPy combines a 

Python-based model construction toolkit with the computational efficiency of the StochKit2 

C-based SSAs. GillesPy builds on StochKit2, and provides many enhancements to the model 

construction and simulation workflows. The model construction toolkit allows simple setup 

and parameterization of the CME. For stochastic simulation, StochKit2 automatically 

inspects the model to be simulated and selects the most efficient SSA formulation based on 

the model size (direct method for small, composition-rejection method for large, see [11] for 

a complete description). For deterministic simulation, GillesPy uses the StochKitODE solver 

from the StochSS software suite, which uses the CVODES solvers from the Sundials 

software package [12]. The GillesPy package encapsulates the entire process in Python, for 

seamless integration with other computational packages or statistical analysis. GillesPy also 

supports the import of SBML models.

In this work, we describe the features and use of GillesPy, and provide a relevant example 

for efficient simulation and numerical stability analysis of a genetic toggle switch.

II. Mechanistic Modeling of Biological Systems

GillesPy is designed to simulate dynamic mechanistic models of biochemical networks. In 

mechanistic models the dynamic behavior of the system is built up from individual 

Abel et al. Page 2

IEEE Life Sci Lett. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interactions between biochemical species. Typically, this is a finite number of species and 

reactions interacting probabilistically in a well-stirred domain. This is in contrast to 

empirical models, which focus on mathematical functions based on external characteristics 

such as dose-response curves. In these models the external dynamic behavior of the system 

is captured by a set of mathematical equations, in a “top down” approach, and as a result has 

reduced predictive power [13]. Mechanistic models, unlike empirical models, can be used to 

predict the system’s future behavior, or its behavior under perturbation. Mechanistic models 

differ in that they may be used to probe hypotheses about the underlying reaction pathways 

rather than simply the in-out behavior of a system. Often, complicated reaction pathways 

may be simplified through the use of Michaelis-Menten or Hill type kinetic equations. 

GillesPy does allow for Michaelis-Menten and Hill propensity functions, as these types of 

functions are quite common. However, we caution that the developer of a model must 

always be careful to check the validity of the assumptions of these model reduction 

functions [14–16].

III. GillesPy Design

GillesPy is designed to follow the “pythonic” object-oriented principles, thus biochemical 

models in GillesPy are constructed in an object-oriented fashion. To construct a new model 

you define a new class that extends a base model gillespy.Model. The model constructor 

defines the parameters, species, and reactions of the biochemical system by associating the 

like named objects (Parameter, Species, Reaction) from the gillespy Python package. Once 

defined, users interact with their model by instantiating instances objects of the model. 

These objects may be use to generate simulation trajectories of the biochemical systems 

through their .run() method. This command calls the StochKit2 C-solvers to simulate the 

provided model. StochKit2 selects the computationally-optimal algorithm for simulating 

each model.

After a simulation is completed, the resulting trajectories are returned as Numpy arrays into 

the Python interface, where the data is available for processing by the large library of 

scientific Python tools. Model fitting, statistical analysis, or visualization is not directly 

handled within GillesPy, as there are numerous mature software packages for these purposes 

commonly used in the scientific Python community (e.g. DEAP [17] for model fitting 

through evolutionary algorithms, pandas [18] for statistical analysis, or Matplotlib [19] for 

visualization). The following section demonstrates the building and simulation of a simple 

and biologically relevant example.

IV. Example: A Bistable Genetic Switch

Bistable stochastic genetic switches have been shown to play important roles in cellular 

differentiation [20]. As the system has two equilibria, deterministic simulations fail to 

accurately capture the random switching between states. Figure 1 is a diagram of the genetic 

toggle switch, showing how each of the two promoters expresses a gene that is the inhibitor 

for the opposite promoter. Here, we demonstrate using GillesPy to simulate a bistable switch 

from [2]. The deterministic equations comprising this switch are:

Abel et al. Page 3

IEEE Life Sci Lett. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1)

(2)

where U and V are co-repressor concentrations. Here, the parameters a1 and a2 are synthesis 

rates of U and V respectively. Parameters β and γ represent the cooperativity of each 

repressor. We create a stochastic model from these equations by converting them to four 

stochastic reaction channels: synthesis and degradation of U and V respectively.

(3)

(4)

We note that this simple model does not explicitly differentiate between transcription and 

translation of U and V.

Constructing this model in Python begins with creating a model object by inheriting from 

GillesPy’s model class:

class BistableToggleSwitch (gillespy.Model):

We create and add parameters within this object by:

a1 = gillespy. Parameter (‘a1’, expression =4)

self.add parameter ([a1, …])

and equivalently add species and reactions. We then simulate this model by invoking:

model = BistableToggleSwitch ()

results = model.run ()

A single simulation showing U and V populations using both stochastic and deterministic 

solvers over the course of 100s is shown as Figure 2.

Abel et al. Page 4

IEEE Life Sci Lett. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here, the difference between stochastic and deterministic results is visually evident. For 

identical initial populations of U and V, the deterministic system evolves to a metastable 

state with equal U and V. For non-identical initial conditions, the system evolves to a stable 

state where only the species with a higher initial population is produced (not shown). 

Meanwhile, the stochastic simulation of this system shows dynamic switching between U-

dominated and V-dominated states, as seen in Ref [2], regardless of the choice of initial 

condition. Spontaneous switching between stable states is never observed under 

deterministic conditions. The full code for this model and simulation is available at: http://

github.com/GillesPy/gillespy/asGeneticToggleSwitch.ipynb.

Exploring model dynamics via a parameter sweep is a common task in computational 

biology. To perform a simple parameter sweep, we allowed our model to accept parameter 

arrays and assign these values to parameters upon initialization of the model object. Thus, 

GillesPy was used to algorithmically generate, simulate, and analyze model dynamics 

without forcing the user to manually create or parameterize different models. Instead, the 

user can simply use a loop (or a parallel loop) to parameterize a dynamically-generated 

model, perform simulations, analyze simulation trajectories, and return summary statistics.

As noted in Ref. [2], the mono- or bistability of the switch system is dependent on the values 

of cooperativity parameters (β, γ), and promoter strengths (αs). Eqns. 1 and 2 yield stable 

solutions where . For low cooperativity, this results in a single monostable 

steady state. Increased cooperativity results in an increased nonlinearity, and sigmoidal 

switch-like behavior of the promoter [21]. The sigmoidal shape of promoter kinetics results 

in two stable states, and one metastable state for the system. For this example, we 

investigated how the cooperativity parameter affects bistability by repeatedly generating and 

simulating the stochastic model with parameters β = γ ∈ [0, 4.0]. Figure 3 demonstrates the 

results of this process for varying β and γ in increments of 0.1. For our example, α1 = α2 = 

10.0, and a bimodal distribution of states first appeared at approximately β = γ > 1.3, 

indicating that this is where the transition to bistability occurs. This critical bistability 

threshold would increase with a lower α, as lower (or unbalanced) promoter activity results 

in less switch-like behavior.

V. Parallel Processing With MOLNs

GillesPy has been integrated with, and is distributed with MOLNs, a cloud computing 

platform for computational systems biology that focuses on reproducibility and scalability 

[22]. MOLNs allows computational scientists to easily create compute clusters using cloud 

computing resources. It further provides methods for automatically parallelizing workflows 

for computing large ensembles of trajectories or for conducting global parameter sweeps. 

This is combined with a facility for efficient post-processing of the resulting stochastic 

trajectories, designed to maximize data locality by distributing the code to worker nodes 

where the data is generated. This facility is built to utilize the simple to use programming 

paradigm of MapReduce [23]. The user interface for this system is an interactive web-based 

environment, the IPython Notebook [24]. These computable documents combine code, 

equations, narrative text, visualizations, images as well as other media. Integration with 

Abel et al. Page 5

IEEE Life Sci Lett. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://github.com/GillesPy/gillespy/asGeneticToggleSwitch.ipynb
http://github.com/GillesPy/gillespy/asGeneticToggleSwitch.ipynb


MOLNs provides GillesPy users with a simple and powerful interface to scale their 

computational workflows using public or private cloud computing infrastructures.

VI. Conclusion

GillesPy is an open source package for stochastic model building and simulation, and a 

Python interface to the StochKit2 solvers. GillesPy runs on Linux/Unix or Mac OS X. It is 

freely available under GPL version 3. Installation instructions and downloads are available 

at: http://github.com/GillesPy/gillespy. We welcome both bug reports and requests for 

assistance on our Github page.

Acknowledgments

This work was supported in part by the NIH under grant R01GM096873-01, the DOE under grant DE-SC0008975, 
and the Institute for Collaborative Biotechnologies under grant W911NF-09-0001 from the U.S. Army Research 
Office.

References

1. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Sci 
Signal. 2002; 297(5584):1183.

2. Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. 
Nature. 2000; 403(6767):339–342. [PubMed: 10659857] 

3. Ko CH, Yamada YR, Welsh DK, Buhr ED, Liu AC, Zhang EE, Ralph MR, Kay SA, Forger DB, 
Takahashi JS. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS 
Biol. 2010; 8(10):e1000513. [PubMed: 20967239] 

4. Lawson MJ, Drawert B, Khammash M, Petzold L, Yi T-M. Spatial Stochastic Dynamics Enable 
Robust Cell Polarization. PLoS Comput Biol. 2013; 9(7):e1003139. [PubMed: 23935469] 

5. St John PC, Taylor SR, Abel JH, Doyle FJ III. Amplitude Metrics for Cellular Circadian 
Bioluminescence Reporters. Biophys J. 2014; 107(11):2712–2722. [PubMed: 25468350] 

6. Cao Y, Li H, Petzold L. Efficient formulation of the stochastic simulation algorithm for chemically 
reacting systems. J Chem Phys. 2004; 121(9):4059. [PubMed: 15332951] 

7. Cao Y, Gillespie DT, Petzold LR. Adaptive explicit-implicit tau-leaping method with automatic tau 
selection. J Chem Phys. 2007; 126(2007):1–27.

8. Gillespie DT. Approximate accelerated stochastic simulation of chemically reacting systems. J 
Chem Phys. 2001; 115(4):1716–1733.

9. Slepoy A, Thompson AP, Plimpton SJ. A constant-time kinetic Monte Carlo algorithm for 
simulation of large biochemical reaction networks. J Chem Phys. 2008; 128(20)

10. Gillespie DT, Hellander A, Petzold LR. Perspective: Stochastic algorithms for chemical kinetics. J 
Chem Phys. 2013; 138(17):170901. [PubMed: 23656106] 

11. Sanft KR, Wu S, Roh M, Fu J, Lim RK, Petzold LR. StochKit2: software for discrete stochastic 
simulation of biochemical systems with events. Bioinformatics. 2011; 27(17):2457–2458. 
[PubMed: 21727139] 

12. Serban R, Hindmarsh AC. CVODES: the sensitivity-enabled ODE solver in SUNDIALS,” in. Proc 
2005 ASME Int Des Eng Tech Conf. 2005:257–269.

13. Thakur AK. Model: mechanistic vs empirical,” in. New trends Pharmacokinet Springer. 1991:41–
51.

14. Lawson MJ, Petzold L, Hellander A. Accuracy of the Michaelis-Menten approximation when 
analysing effects of molecular noise. J R Soc Interface. 2015; 12(106)

15. Grima R. Noise-induced breakdown of the Michaelis-Menten equation in steady-state conditions. 
Phys Rev Lett. 2009; 102(21):218103. [PubMed: 19519139] 

Abel et al. Page 6

IEEE Life Sci Lett. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://github.com/GillesPy/gillespy


16. Thomas P, Straube AV, Grima R. Communication: limitations of the stochastic quasi-steady-state 
approximation in open biochemical reaction networks. J Chem Phys. 2011; 135(18):181103. 
[PubMed: 22088045] 

17. Fortin F, Rainville D. DEAP: Evolutionary algorithms made easy. J Mach Learn Algorithms. 2012; 
13:2171–2175.

18. McKinney W. Data Structures for Statistical Computing in Python. Proc 9th Python Sci Conf. 
2010; 1697900:51–56.

19. Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007; 9(3):99–104.

20. F JE Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback 
and bistability. Curr Opin Cell Biol. 2002; 14(2):140–148. [PubMed: 11891111] 

21. Alon U. An introduction to systems biology: design principles of biological circuits CRC press. 
2006

22. Drawert B, Trogdon M, Toor S, Petzold L, Hel-lander A. MOLNs: A Cloud Platform for 
Interactive, Reproducible, and Scalable Spatial Stochastic Computational Experiments in Systems 
Biology Using PyURDME. SIAM J Sci Comput. 2016; 38(3):C179–C202. [PubMed: 28190948] 

23. Dean J, Ghemawat S. MapReduce Commun ACM. 2008; 51(1):107.

24. Pérez F, Granger BE. IPython: A system for interactive scientific computing. Comput Sci Eng. 
2007; 9(3):21–29.

Abel et al. Page 7

IEEE Life Sci Lett. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
A schematic showing the genetic switch model from Gardner et al. [2].

Abel et al. Page 8

IEEE Life Sci Lett. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Stochastic and deterministic simulation of the genetic toggle switch with GillesPy. 

Bistability is evident in the stochastic model of this switch (with β = γ = 2.0).

Abel et al. Page 9

IEEE Life Sci Lett. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Investigating bistability through β and γ. (A) Histograms of state (U − V) for three 

selections of cooperativity parameters β and γ. (B) Heatmap of state probability for a range 

of β and γ in increments of 0.1. A bimodal state distribution first appears when β = γ > 1.3. 

Simulations were performed for 25,000s and sampled in increments of 1s for each 

parameterization. Parallelization through IPython enables this computationally-intensive 

simulation to be performed on an 8-CPU desktop machine in approximately 5 minutes.

Abel et al. Page 10

IEEE Life Sci Lett. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	I. Introduction
	II. Mechanistic Modeling of Biological Systems
	III. GillesPy Design
	IV. Example: A Bistable Genetic Switch
	V. Parallel Processing With MOLNs
	VI. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3

