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Abstract

Brain-machine interfaces (BMIs) are a rapidly progressing technology with the potential to restore 

function to victims of severe paralysis via neural control of robotic systems. Great strides have 

been made in directly mapping a user's cortical activity to control of the individual degrees of 

freedom of robotic end-effectors. While BMIs have yet to achieve the level of reliability desired 

for widespread clinical use, environmental sensors (e.g. RGB-D cameras for object detection) and 

prior knowledge of common movement trajectories hold great potential for improving system 

performance. Here we present a novel sensor fusion paradigm for BMIs that capitalizes on 

information able to be extracted from the environment to greatly improve the performance of 

control. This was accomplished by using dynamic movement primitives to model the 3D endpoint 

trajectories of manipulating various objects. We then used a switching unscented Kalman filter to 

continuously arbitrate between the 3D endpoint kinematics predicted by the dynamic movement 

primitives and control derived from neural signals. We experimentally validated our system by 

decoding 3D endpoint trajectories executed by a non-human primate manipulating four different 

objects at various locations. Performance using our system showed a dramatic improvement over 

using neural signals alone, with median distance between actual and decoded trajectories 

decreasing from 31.1 cm to 9.9 cm, and mean correlation increasing from 0.80 to 0.98. Our results 

indicate that our sensor fusion framework can dramatically increase the fidelity of neural 

prosthetic trajectory decoding.
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I. Introduction

NEURAL control over robotic systems may soon enable victims of severe paralysis to 

regain the autonomy necessary to perform many essential activities of daily living. By 

directly tapping into patients' cortical signals, brain-machine interfaces (BMI) can deliver a 

basic level of control of prosthetic devices to quadriplegic users [1]. However, many daily 

tasks, such as using utensils or retrieving an object from a cluttered workspace, require 

complex trajectories with a degree of precision that has yet to be obtained from direct neural 

control. To achieve the level of robust neural control needed for widespread clinical use, it is 

likely that BMIs will need to incorporate shared control strategies that intelligently capitalize 

on information obtained from environmental sensors.

Environmental sensors (e.g. RGB-D cameras) and intelligent robotics have been shown to 

improve system performance in teleoperated robotics [2]. Augmenting tele-operation with 

shared control can be separated into two core components: prediction of the user's intent, 

and arbitration between system autonomy and direct user control. Prediction often focuses 

on inference of a goal location and/or trajectory prediction [3]. It can also involve 

segmentation of user inputs with a hidden Markov model (HMM) [4] in order to draw from 

a library of movement primitives that aid in task completion [5], [6]. Arbitration between the 

system predictions and user commands in teleoperated robotics is often accomplished with a 

continuous linear blending of user inputs with system predictions [3], [7], [8], which has 

been used to deliver shared control of a BMI [9]. Intelligent arbitration is paramount to user 

satisfaction [3] with teleoperated robotics, and is integral for the success of shared control 

with BMIs [10].

Probabilistic BMI control strategies have been employed with and without information about 

the user's goal, which can potentially be obtained from external sensors. Most commonly, 

recursive Bayesian estimation is employed with a state transition matrix built from a large 

corpus of kinematic data [11] or set manually according to system assumptions [12], [13]. 

Performance with recursive Bayesian estimation can be increased by including information 

about potential goals [14]–[17]. Static canonical trajectories have been created for the goal 

locations and traversed through with neural data [18]. HMMs have been used to segment 

primates' cognitive states during reaching tasks [19], [20], and switching Kalman filters have 

been used to improve results [21], [22]. Combining cortical signals with eye-tracking and/or 

computer vision can further improve system performance [16], [23]–[25]. However, these 

systems have all relied on simple linear models of motion that are incapable of reproducing 

the complex movements necessary for many tasks.

Here we present a probabilistic robotics framework for arbitrating between direct neural 

control and non-linear predictions of user intent, allowing for robust movement decoding of 

complex trajectories to novel locations. The type of task the user is engaged in (e.g. resting 

or pushing a button) is predicted through a hidden Markov model. The inferred task is then 

used to inform a non-linear prediction of the user's desired kinematics using dynamic 

movement primitives (DMPs) [26]. This prediction is fused with neural sensor 

measurements via unscented Kalman filtering in order to localize the user's intended 

position. We demonstrate the utility of this framework by reconstructing the complex 
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trajectories taken by a non-human primate performing four different actions on objects 

placed in various locations. By intelligently leveraging information from our motion models 

and potential environmental sensors, we dramatically improve offline 3D trajectory 

decoding over using neural signals alone.

II. Motion Planning Architecture

A. System Overview

We formalize the problem of tracking the user's desired movements by using a dynamic 

Bayesian network (DBN), shown in Figure 1. We observe features extracted from the neural 

signals (Neuro). We also assume we observe the type (Obj) and location (Goal) the user 

intends to reach to. This can be accomplished with eye-tracking and computer vision [23]. 

The continuous kinematics variable, Kin, is a 9-dimensional vector tracking the position, 

velocity, and acceleration of the user's desired 3D endpoint. Kin is assumed to have 

Gaussian noise and follows switching Kalman filter dynamics [27]. The switching variable, 

Act, represents the category/state of the current action the user wants to take. Act is a 

discrete-valued latent variable with first-order Markov properties.

In general, the value of Act can represent simple subcomponent of a movement (e.g. moving 

to the object) or sophisticated sequences of movements (e.g. moving to then turning a 

handle). The transitions of Act represent the onset/offset of movements, which determine 

when the DMPs start/stop their predictions. The value of Act can also determine the type of 

DMP selected (e.g. a DMP for a drinking motion vs. a pushing motion). Within this study, 

however, we make the simplifying assumption that each object has only one possible 

sequence of actions. During our global system evaluation, the estimated value of Act is only 

used for detecting the onset and offset of movement, and the type of DMP used for motion 

prediction is determined by the object type.

The value of Kint is predicted from Kint−1 using the current DMP. The parameters of the 

DMP are determined by the values of Actt−1 (the movement type) and Goalt−1 (the location 

of the object). Details of the DMP updates are outlined in section II-B. Actt is predicted 

from Actt−1 using an Obj dependent state transition matrix. For example, if the identified 

object is a cup, Act is more likely to transition from rest to drinking than from rest to 

poking.

After Actt and Kint are predicted from the previous time step, they are updated using the 

measurement of Neurot. The value of Actt is updated using the HMM forward algorithm, 

and Kint is updated using the Kalman filter update. The 3D position estimate from Kint is 

then used as the system output. Table I describes each of the tracked variables.

B. Dynamic Movement Primitives

BMIs often improve predictions of kinematics by combining a neural observation model 

with a state transition model with recursive Bayesian estimation. When modeling a user's 

kinematics with BMIs, previous efforts have typically assumed the user's kinematics evolve 

linearly over time [12] [21]. However, linear models are often unable to capture many of the 

dynamics associated with more sophisticated trajectories. We therefore used dynamic 
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movement primitives [26] to develop a library of motion models capable of capturing the 

nonlinearities involved in complex movements without sacrificing the flexibility needed for 

navigating dynamic environments. We used these models to predict the kinematic state 

transitions during Kalman filtering (see section II-E).

When modeling the non-rhythmic movement of a variable y to a goal location g, DMPs 

combine a simple point attractor system (a damped spring model) with a nonlinear forcing 

function f:

where τ is a time constant, and αy and βy are positive constants. The point attractor 

dynamics ensure that the system will end at g, while the forcing function f allows arbitrary 

trajectories to be taken while approaching g. The forcing function is composed of N 
weighted Gaussian kernels ψi indexed by a variable x that exponentially decays to zero over 

time:

where wi is the weight of kernel i and y0 is the initial position. As x decays, it causes f(x) to 

go to zero, leaving only the stable point attractor that approaches the goal. Readers are 

referred to [28] for a comprehensive overview.

C. HMM Temporal Update

To track the state of our switching variable, we apply a hidden Markov model approach. At 

every time step, the probability distribution over actions, Act, is first estimated using the 

estimate of Act from the previous time step and a state-transition model. We make a first-

order Markov assumption that Actt is conditionally independent of everything in the past 

given Actt−1 and Objt−1. To construct an initial estimate the state distribution, we multiply 

the posterior estimate of state from the previous time step by the object-dependent state 

transition matrix. The possible combinations of prior states and transitions are combined by 

marginalizing over the estimate of Act from the previous time step:

where the action state transition probabilities, P(Actt|Actt−1,Objt−1), can either be learned 

from example data or intelligently set by an operator.
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D. HMM Measurement Update

After obtaining P(Actt|Objt−1), we update our estimates of the action by using the most 

recent observations of the neural signals. The action is updated following the forward 

algorithm under the naive assumption that each neural feature is independent:

i

ii

iii

iv

v

where  is the Gaussian distribution of the ith neural feature given current 

action, with a mean and covariance estimated from training data. Equation v assumes Neurot 

is conditionally independent of Objt−1 given Actt. Equation v also incorporates the naive 

assumption of conditional independence of the neural features. The denominator of equation 

iii is a normalization constant, because P(Neurot|Objt−1) is not influenced by the Actt being 

estimated.

The estimated probabilities of the actions being performed over time can be used to inform 

the predictions of the continuous dynamics. However, tracking every possible sequence of 

trajectories with a switching dynamical system is intractable [27]. In our experimental 

validation, we make the simplifying assumption that each object has only one possible 

sequence of actions associated with it (rest, movement state 1, and movement state 2), which 

is consistent with the experiment performed. For example, when manipulating the mallet, 

the movement began at rest (Rest), moved to the mallet (Mallet 1), transitioned to holding 

the mallet in a constant position (Mallet 2), then rested at that position (Rest). We update the 

predictions of the kinematics using only the most likely action at any given time.
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E. UKF Temporal Update

The Kalman filter is a recursive Bayesian method for alternating between predicting the 

continuously valued state of a series, and updating the prediction with a noisy measurement 

of the true value. At each time step, both the estimate and the certainty (i.e. the covariance) 

of the value are tracked. Whenever a prediction is made, noise is introduced and the 

certainty decreases. Every time a measurement is made, the certainty of the estimate 

increases. When measurements have higher certainty, they correct the predictions more 

heavily.

To make a prediction with the standard Kalman filter, a linear model with zero mean offset is 

assumed. This can be represented with a matrix, F. The mean and covariance of the tracked 

state X can then be updated as follows:

where Q is the covariance of the noise introduced by the prediction. However, in this study, 

the predictions are performed using nonlinear DMP functions that can not be represented 

with a linear matrix multiplication.

Two methods are commonly employed with Kalman filters to account for the impact of a 

nonlinear transformation on the distribution of the random variable being tracked. The 

extended Kalman filter uses a first order, local linear approximation of the nonlinear 

transform. This linear approximation can then be used to update the estimates of the 

expected value and covariance. However, in situations where there is a large degree of 

uncertainty in the estimates, this local approximation can have an undesirable degree of 

inaccuracy that accumulates over time.

The other common method for utilizing a nonlinear function within the Kalman filter is to 

employ the unscented transform [29]. The unscented transform is a method of 

approximating the mean and covariance of a random variable after a nonlinear 

transformation. This is accomplished by propagating samples called sigma vectors through 

the nonlinear function. The first sigma vector is set to the mean of the distribution, and the 

rest of the sigma vectors are offset along the main axes of the random variable's covariance. 

After the nonlinear function is applied to the sigma vectors, they are used to calculate an 

empirical estimate of the new mean and covariance. Readers are referred to [29] for an in-

depth analysis of the method.

In this study, the random variable undergoing a nonlinear transformation is Kin, the 3D 

position, velocity, and acceleration. The nonlinear functions applied to Kin are the DMPs. 

The unscented transform is used to calculate  and Pt|t−1, the a priori estimates of the 

mean and covariance of Kint after the DMP is applied to the previous timestep. The a priori 
estimates are then updated with the measurements from the neural signals to get the a 

posteriori estimates, denoted as  and Pt|t respectively.
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F. Kalman Filter Measurement Update

While the prediction step is nonlinear, the mapping between Kin and Neuro, represented 

with a matrix H, can be represented as a set of linear equations [1]. This enables the standard 

Kalman filter measurement update to be employed:

Measurement Residual: 

Residual Covariance: St = HPt|t−1HT + R

Kalman Gain: 

A Posteriori State Estimate: 

A Posteriori Cov Estimate: Pt|t = (I − KtH)Pt|t−1

The residual covariance, St, dictates how much weight to place on the measurement. As the 

certainty of the measurement decreases and R goes to infinity, K will go to 0 and the weight 

will all be placed on the a priori estimate. As the measurement certainty increases and R 
goes to 0, the Kalman gain will approach H−1, thereby fully correcting the a priori estimate 

with the measurement residual, resulting in all the weight being placed on the measurement 

at every timestep.

III. Experimental Validation

A. Experimental Details

A male rhesus monkey was trained to perform a center-out reach, grasp, and manipulate 

task. All procedures were approved by the University Committee on Animal Resources at 

the University of Rochester. The monkey was implanted with floating microelectrode arrays 

(FMAs) containing 16 microelectrodes each. Eight FMAs were implanted in the left motor 

and premotor areas. Signals were sorted into spike trains using software from Plexon 

(Plexon, Dallas, TX). We excluded neurons with low mean firing rates, leaving 80 units of 

104 recorded.

A detailed description of the experimental setup can be found in [30]. In brief, the monkey 

was seated in front of an experimental apparatus consisting of a central home object, a 

sphere, push button, coaxial cylinder (pull), and perpendicular cylinder (mallet). The objects 

were spaced with 45° intervals in a circular arc centered on the home object with radius of 

13 cm. Target objects were indicated by an LED shortly after the monkey pulled on the 

home object. The monkey then rotated the sphere, pulled one of the two cylinders, or 

pressed the button. The final hold state was then maintained for one second for the monkey 

to get a reward. The apparatus was pseudo-randomly rotated in 22.5° intervals after the 

monkey performed a block of trials to an object/location pair. This resulted in eight potential 

locations for the four objects. The reaching kinematics of the monkey's wrist were recorded 

with a Vicon optical motion capture system (Vicon Motion Systems, Oxford, UK), shown in 

Figure 2.
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B. Neural Modeling

We modeled the smoothed multi-unit firing rates as a function of the kinematics and the 

action being taken. Firing rate was calculated by convolving spike times with a truncated 

exponential with a time constant of 20 ms, then smoothing with a moving average filter of 

100 ms. We used these features with additional tap delays of 0, 20, and 60 ms to allow for 

transduction delays from cortical activity to arm kinematics (consistent with previous works 

[11]). All firing rates and kinematics were standardized using the mean and standard 

deviation from the training data.

The mapping, H, between the neural features and the kinematics was modeled using 

ordinary least squares (OLS) regression, and the error covariance was estimated from the 

residuals. The neural only decoding model was likewise built using OLS. When performing 

decoding using neural signals alone, we decoded the trajectory continuously without the 

HMM. Cross-validation was performed by creating a hold-out set of all trials for a particular 

object/location pair and training on all remaining trials. The fitted model was then evaluated 

on the hold-out set. This process was repeated for all object/location pairs.

C. Action Prediction Fitting

The switching dynamics of the actions were used to predict the onset and offset of 

movement. Trials were segmented into rest, movement, and hold periods by thresholding the 

movement speed of the monkey's hand. An HMM with nine states was built to track the 

value of Act: one for rest, and two for each of the object/action types (push, pull, mallet, 

sphere). Two movement states were established for each movement type due to a substantial 

shift in neural activity as the monkey transitioned from moving towards the object to a 

constant grasp of the object. The Act variable tracked this shift in activity to provide an 

estimate of when the end effector should maintain its current position. Transition 

probabilities between the movement states for different actions were set to zero. The neural 

features were modeled as conditionally independent Gaussians given Act. For simplicity, we 

performed supervised learning of the HMM parameters. To do so, the early movement state 

was defined as the first 200 ms of the movement (the movement to/initial manipulation of 

the object), and the second state was the transition to hold. Knowledge of the duration of the 

states was not included in the testing phase. The HMM was assumed to start at rest, then 

progress to movement state 1, movement state 2, then rest again. The transition from rest to 

movement state 1 marked movement onset, the beginning of the continuous decoding of the 

trajectory.

D. Dynamic Movement Primitive Fitting

The DMPs were fit on the unnormalized kinematics using locally weighted regression [28] 

with 35 Gaussian kernels. It was noted that the monkey's movement strategy could 

substantially change in different regions of space. This indicated the need for a mixture of 

DMPs with a dependency on object location, similar to [31]. For each object-location pair, 

we trained one DMP on all the trajectories taken to the object-location pair to the left, and 

another DMP on all the trajectories taken to the object-location pair to the right. The weights 

for these two DMPs were then averaged together. For example, to predict the trajectory 

taken for the sphere at location 3, we fit a DMP on all the trials to sphere location 2 and 
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averaged it with a DMP fit on all trials to sphere location 4. To help ensure generalization to 

novel locations, we did not use any of the trajectories taken to the object-location pair in the 

test set when training the DMPs. Object locations that did not have examples to both the left 

and the right of the target location were excluded from testing to avoid the need for 

extrapolation, leaving 408 trials total across our testing sets.

We also noted that the final endpoint of the hold position ended at an offset from the object 

locations. The final goal location of the monkey's wrist was not the center of the object 

being manipulated. The offset from the center of the object was dependent on the object 

type, because different objects are grasped in different locations. We therefore averaged the 

offset from the two adjacent locations within the training set to approximate the desired 

offset at the test location.

The error covariance for the DMP models was estimated from the error when predicting Kint 

based on Kint−1.

E. Action Prediction Results

Prediction of movement transitions based on the neural signals was highly reliable, and is 

shown in Figure 3. There was one trial where a prediction occurred 289 ms after movement. 

In the rest of the 408 trials, the predictions occurred between 94 ms before movement onset 

and 55 ms after movement onset. Predictions occurred a median of 14 ms before movement 

onset, with a standard deviation of 26 ms. There were 13 false positives (ie predictions 

during the rest or hold periods) across the 20.8 minutes of data used in the testing sets. The 

hold period was detected in all the trials within 398 ms, with a median offset of 43.5 ms 

before hold onset, and a standard deviation of 77.6 ms. There were six false positives 

incurred by transitioning from state 1 to state 2 then back to state 1. Transitions to state 2 

directly from rest were ignored.

While the predictions of movement onset and offset were highly reliable, the HMM was 

relatively unreliable in determining which object manipulation was being performed. 

Although the transition probabilities between actions were set to 0, the action with the 

highest probability over time would often switch. This was due to the states all having 

nonzero probabilities, and measurements indicating different states being the most likely 

over time. The correct object manipulation was predicted an average of 64% and 94% of the 

time respectively when the first and second movement states were being predicted.

F. Trajectory Prediction Results

We first evaluated results of using the DMPs to augment motion prediction from neural 

signals assuming the correct movement (Act). This was done to test the accuracy of the 

trajectory decoding without any errors induced by the HMM. We excluded the initial and 

final hold periods of each trial, and assumed the movement onset time was known. Table II 

shows the median distance between the actual and predicted trajectories, the mean 

correlation across the three dimensions (i.e. the average correlation for the lateral, vertical, 

and forward dimensions), and the dynamic time warping (DTW) distance (to test for 

trajectory shape ignoring time). We compared performance using the neural signals alone, 

DMPs alone, and the unscented Kalman filter (UKF) combining the two.
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G. Global System Evaluation Details

The global performance (i.e. including the rest and hold periods) was evaluated by using the 

HMM dynamics to detect movement onsets for the DMPs (DMP-HMM) and UKF (UKF-

HMM) algorithms. The DMP-HMM relies only on the DMP for continuous decoding of the 

kinematics after the HMM has detected the movement from the neural signals. In contrast, 

the UKF-HMM fuses the DMP predictions of the kinematics with the neural measurements, 

as outlined in the Section II-E and II-F.

Figure 4 depicts the flow diagram used for system evaluation. At rest, the DMP-HMM and 

UKF-HMM both remained at the home location. Because the object type was known and 

every object was manipulated in only one way, we added up the HMM probabilities across 

all possible object types for movement state 1 and movement state 2 during global system 

evaluation. We then used the Act with the highest probability to determine whether the 

monkey was at rest, in movement state 1, or in movement state 2. When a movement 

transitioned from rest to movement state 1, the DMP-HMM and UKF-HMM began decoding 

the continuous trajectory. If the predicted Act with the highest probability reverted back to 

rest from movement state 1, a point attractor pulled the position back to the home location 

and the DMPs were reset. If the Act predicted with the highest probability transitioned from 

movement state 1 to movement state 2, then the predicted hand position was held constant 

after a 300 ms delay. This delay is used to allow the monkey's hand to settle into its final 

hold position.

When movement onset was predicted by the HMM, the DMP corresponding to the object 

being manipulated began decoding the continuous trajectory. The beginning of the second 

movement state marked a transition to hold, when the DMP was stopped and the predicted 

position was held constant (after a 300 ms delay to allow the monkey's hand to stabilize).

H. Global Performance Results

The average resulting traces are shown in Figure 5. Quantitative results are outlined in Table 

III. The use of the DMP with cortical signals predicting onset and offset of movement 

substantially improved results. Using the UKF-HMM, however, did not improve over using 

the DMP-HMM. The supplemental video shows the decoded trajectories at each object/

location combination used for testing.

IV. Discussion

Here we show that complex movement trajectories can be reconstructed from the Bayesian 

fusion of neural measurements and movement primitives by leveraging information 

attainable from environmental sensors. By only testing on object-location pairs not seen in 

the training data, we demonstrate that our strategy has the ability to generalize to new 

locations. In spite of the difficulty of decoding the non-linear kinematics with multiple 

points of inflection present in the monkey's movements, our system is able to maintain high 

performance.

The neural signals were essential for estimating the HMM movement state. The UKF-HMM 

also enabled the neural signals to continuously alter the DMP trajectories with performance 
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comparable to the DMP-HMM. While the UKF-HMM did not improve performance over 

the DMP-HMM in this study, the quality of neural control dramatically improves with 

closed loop practice [32]. Re-evaluation of model covariances would allow users to gain 

more autonomy as their neural control improves. Better cortical coverage would further 

improve decoding performance. Finally, it may be worth a small degradation in performance 

to enable users to continuously alter the automated trajectories via the UKF-HMM.

Upon detecting movements from the neural signals, the DMPs displayed remarkable 

performance in predicting the trajectories taken by the monkey. This may be in part due to 

the highly trained monkey performing very stereotyped movements across trials. Humans 

may move with more variability between trials, causing the deterministic DMPs to degrade 

in performance. The input of neural signals would be essential for enabling the system to 

account for inter-trial variability of the movements.

While the system was highly accurate in predicting movement onset and offset (rest, phase 

1, and phase 2 of the movements), the prediction of the specific object manipulation being 

performed (e.g. push vs pull) was unstable and often incorrect. In this study, this was 

resolved by limiting objects to only one possible sequence of actions. During global 

evaluation, the HMM predicted onset and offset of movement and the object type 

determined the type of manipulation being performed. However, in general, a single object 

can be manipulated in multiple ways. Future work will investigate how many actions 

performed on a single object can be reliably decoded with high accuracy. Techniques such as 

interacting multiple models (IMM) [33] can be employed to simultaneously track the most 

likely sequences of actions by employing parallel Kalman filters. The kinematics associated 

with multiple possible actions could also be tracked using particle filters [34], which can 

often improve accuracy. However, particle filters can quickly become computationally 

prohibitive to implement in an online setting.

The immense utility of incorporating continuous shared control with environmental sensors 

has been shown online with human subjects [9], [24]. By using environmental sensors for 

object localization, the subjects in [9] were able to complete tasks consistently that could not 

be completed as well with neural control alone. Here we built on this by incorporating 

DMPs with Bayesian inference to track the user's current action and handle the challenge of 

arbitration between user commands and the nonlinear dynamics of autonomous robot 

control.

V. Conclusion

The probabilistic robotics framework formalized here establishes a novel approach to 

arbitrate between system automation and neural control of prosthetics for individuals with 

severe motor impairment. Our system allows for cortical signals to determine a user's 

desired action, and uses DMPs to assist with the neural control over the end effector's 

movement trajectories. Our experimental validation demonstrates the system's potential to 

allow BMI users to gain robust control of the movement of neuroprosthetics, enabling them 

to achieve an unprecedented level of autonomy.

Hotson et al. Page 11

IEEE Robot Autom Lett. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dynamic Bayesian network of motion prediction using computer vision and neural signals. 

Rectangles represent categorical (discrete) variables, circles are continuous. Blue is 

observed, and orange is inferred at each time step. Obj represents the type of selected object 

(possibly none), Act is the desired action to execute (e.g. rest or drink), Goal is the 3D 

endpoint the user is trying to reach, Kin is the current 3D position, velocity, and 

acceleration, and Neuro is the feature vector extracted from the neurological signals. Arrows 

denote conditional dependencies between variables.
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Figure 2. 
Reach trajectories performed by the non-human primate recorded via optical tracking of the 

monkey's wrist. The origin corresponds to the home location. Line colors correspond to the 

location of the target object. Shapes are centered where the monkey completed its trajectory.
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Figure 3. 
Prediction of rest (grey), movement/object manipulation (light blue/green), and hold 

(orange/red) from neural data. Each row corresponds to a single trial (sorted by action type). 

Trials were aligned to movement onset (MO, solid line), and the median onset of the object 

hold period is shown with a vertical dashed line. Probabilities across action types (i.e. all 

blue/green and all red/orange labels) were subsequently summed together because each 

object only had one associated action. Green asterisks denote the 13 false positives 

transitioning from rest state to the first movement state, and black asterisks mark the 6 false 

positives transitioning from movement state 1 to 2, then back to state 1.
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Figure 4. 
Flow diagram of the UKF-HMM algorithm. A prediction of the current action is first made 

based on the previous estimate of the action probabilities. This is then updated with the 

measurement of the neural signals, and the output is used to decide whether to move using 

the UKF, hold position, or rest. Dashed lines represent inputs from the previous time step.
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Figure 5. 
Example trajectories (position relative to home location) for an example object-location pair 

(push). Line color corresponds to the three dimensions being decoded. The dashed lines are 

single trials, and thick solid lines are the averaged across all trials for that object-location 

pair.
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Table I
Variable Descriptions

Variable Type Values in this Study Observed

Obj Discrete Sphere, Push Button, Handle, Mallet Yes

Act Discrete Rest, and Two Movement States Per Object No

Goal Continuous 8 possible locations Yes

Kin Continuous Position, Velocity, Acceleration No

Neuro Continuous Spike Rate (Hz) of the Neurons Yes
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Table II
Movement Trajectory Decoding Performance

Correlation Distance DTW

Neural Alone 0.80 31.1 27.7

DMP 0.98 9.7 6.5

UKF 0.98 9.9 6.4
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Table III
Global Decoding Performance

Correlation Distance DTW

Neural Alone 0.80 31.1 29.5

DMP-HMM 0.99 6.4 6.4

UKF-HMM 0.99 7.0 6.7
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