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Abstract

Research in psychology and neuroscience has successfully modeled decision making as a process 

of noisy evidence accumulation to a decision bound. While there are several variants and 

implementations of this idea, the majority of these models make use of a noisy accumulation 

between two absorbing boundaries. A common assumption of these models is that decision 

parameters, e.g., the rate of accumulation (drift rate), remain fixed over the course of a decision, 

allowing the derivation of analytic formulas for the probabilities of hitting the upper or lower 

decision threshold, and the mean decision time. There is reason to believe, however, that many 

types of behavior would be better described by a model in which the parameters were allowed to 

vary over the course of the decision process.

In this paper, we use martingale theory to derive formulas for the mean decision time, hitting 

probabilities, and first passage time (FPT) densities of a Wiener process with time-varying drift 

between two time-varying absorbing boundaries. This model was first studied by Ratcliff (1980) in 

the two-stage form, and here we consider the same model for an arbitrary number of stages (i.e. 

intervals of time during which parameters are constant). Our calculations enable direct 

computation of mean decision times and hitting probabilities for the associated multistage process. 

We also provide a review of how martingale theory may be used to analyze similar models 

employing Wiener processes by re-deriving some classical results. In concert with a variety of 
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numerical tools already available, the current derivations should encourage mathematical analysis 

of more complex models of decision making with time-varying evidence.

1. Introduction

Continuous time stochastic processes modeling a particle's diffusion (with drift) towards one 

of two absorbing boundaries have been used in a wide variety of applications including 

statistical physics (Farkas and Fulop, 2001), finance (Lin, 1998), economics (Webb, 2015), 

and health science (Horrocks and Thompson, 2004). Varieties of such models have also been 

applied extensively within psychology and neuroscience to describe both the behavior and 

neural activity associated with decision processes involved in perception, memory, attention, 

and cognitive control (Heath, 1992; Ratcliff and Rouder, 1998; Ratcliff and McKoon, 2008; 

Simen et al., 2009; Gold and Shadlen, 2001, 2007; Brunton et al., 2013; Feng et al., 2009; 

Shadlen and Newsome, 2001; Diederich and Oswald, 2014, 2016); for reviews see (Ratcliff 

and Smith, 2004; Bogacz et al., 2006; Busemeyer and Diederich, 2010).

In these stochastic accumulation decision models, the state variable x(t) is thought to 

represent the amount of accumulated noisy evidence at time t for decisions represented by 

the two absorbing boundaries, that we refer to as the upper (+) and lower (–) thresholds 

(boundaries). The evidence x(t) evolves in time according to a biased random walk with 

Gaussian increments, which may be written as dx(t) ~ Normal(μ dt, σ2 dt), and a decision is 

said to be made at the random time τ, the smallest time t for which x(t) hits either the upper 

threshold (x(τ) = +ζ) or the lower threshold (x(τ) = −ζ), also known as the first passage time 

(FPT). The resulting decision dynamics are thus described by the FPT of the underlying 

model. In studying these processes one is often interested in relating the mean decision time 

and the probability of hitting a certain threshold (e.g. the probability of making a certain 

decision) to empirical data. For example, these metrics can offer valuable insight into how 

actions and cognitive processes might maximize reward rate, which is a simple function of 

the FPT properties (Bogacz et al., 2006).

However, not all decisions can be properly modeled if parameters are fixed throughout the 

duration of the decision process. Certain contexts can be better described by a model whose 

parameters change with time. In this article we analyze the time-dependent version of the 

Wiener process with drift between two absorbing boundaries, building on recent work that is 

focused on similar time-varying random walk models (Hubner et al., 2010; Diederich and 

Oswald, 2014). After reviewing how martingale theory can be used to analyze and re-derive 

the classical FPT results for the time independent case, we calculate results for the time-

dependent case. The main theoretical results are presented in §5.2, where we provide closed 

form expressions for threshold-hitting probabilities and expected decision times. In 

Appendix D, we also describe how our methods can be applied to the more general 

Ornstein-Uhlenbeck (O-U) processes, which are similar to the Wiener diffusion processes 

albeit with an additional “leak” term. We conclude with a summary of the results and a 

discussion of how the present work interfaces with other similar analyses of time-varying 

random walk models.
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2. Notation and terminology

Here we introduce the notation and terminology for describing the model we analyze, which 

is a Wiener process with (time-dependent) piecewise constant parameters. This simple 

stochastic model, and others close to it, have been studied before (Ratcliff, 1980; Heath, 

1992; Smith, 2000; Diederich and Busemeyer, 2003, 2006; Diederich and Oswald, 2014; 

Bogacz et al., 2006; Wagenmakers et al., 2007), although the reader should note that our 

parameterization differs from that of some previous studies. Before describing the model, we 

first review the case where parameters are unchanging with time. In order to easily discuss 

this simpler model alongside the main time-dependent model analyzed in §5, we use the 

terms single-stage model and multistage model, respectively. Readers familiar with the 

popular Diffusion Decision Model of Ratcliff and McKoon (2008) should be aware that 

parameters in our model do not vary randomly trial-to-trial. Readers familiar with Bogacz et 

al. (2006) should be aware that the single-stage model (1) is equivalent to what Bogacz et al. 

(2006) call the “pure” Drift Diffusion Model.

2.1. The single-stage model/process with constant parameters

Consider the stochastic differential equation (SDE):

(1)

where parameters μ and σ are constants referred to as the drift and diffusion rates, 

respectively; x0 is the initial condition (the initial evidence or starting point) of the decision 

process; and σdW(t) are independent Wiener increments with variance σ2dt. This simple 

stochastic model has successfully modeled the evolution of evidence between two decisions 

during a two-alternative forced choice task (Ratcliff and Rouder, 1998; Bogacz et al., 2006; 

Ratcliff et al., 2016), so that (1) can be interpreted as modeling a decision process in which 

an agent is integrating noisy evidence until sufficient evidence is gathered in favor of one of 

the two alternatives.

A decision is made when the evidence x(t) crosses one of the two symmetric decision 

thresholds ±ζ for the first time, also referred to as its first passage time (FPT). In other 

words, a decision occurs the instance x(t) crosses and is absorbed by one of the two 

boundaries. The two boundaries each correspond to one of the two possible decisions for the 

task. We will refer to the absorbing thresholds at +ζ and −ζ as the upper and lower decision 

boundaries/thresholds. To contrast with the next section, we will sometimes refer to this 

model with time-invariant parameters as the single-stage model or single-stage process. We 

again note that the parameterization used here differs from that employed by others (Smith, 

2000; Ratcliff and Smith, 2004; Navarro and Fuss, 2009), although the underlying model is 

equivalent. Our formulation, compared to some others, does not include a parameter for 

“non-decision time” or “timeout” for a given trial. Such a term could be incorporated by 

shifting the entire reaction time distribution – it has no effect on any of our analyses.
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2.2. Time-dependent, piecewise constant parameters

The assumption that model parameters remain constant throughout the decision process is 

unlikely to hold in many situations. For example, the quality of evidence may not be 

stationary (i.e., the drift rate and diffusion rate are not a constant with respect to time) or 

decision urgency may require thresholds to collapse in order to force a decision by some 

deadline (Cisek et al., 2009; Mormann et al., 2010; Zhang et al., 2014; Drugowitsch et al., 

2012).

In order to analyze such situations, we focus our present study on a two-stage model 

originally analyzed by Ratcliff (1980), which we generalize to an arbitrary number of stages. 

We refer to this slightly generalized model as a multistage model or multistage process, to 

distinguish it from (1) above. The multistage model allows for the drift rate, diffusion rate, 

and thresholds to be piecewise constant functions of time.

To fully describe the multistage model, we first partition the set of non-negative real 

numbers (i.e. time axis) into n intervals (or stages) [ti–1, ti], i ∈ {1, . . . , n} with t0 = 0 and tn 

= +∞. We then assume that the drift rate, the diffusion rate, and the decision thresholds are 

constant within each interval, but that their values change between intervals. Evidence 

integration is thus modeled by

(2)

where

for each i ∈ {1, . . . , n}. The above assumptions are identical to the assumptions in 

Diederich and Oswald (2014, 2016). If n = 1, the multistage model reduces to the single-

stage model (1). For expository clarity, we begin by assuming the decision thresholds are 

fixed at ±ζ, and in §6 we generalize to time-varying (piecewise constant) thresholds. Let τ 
be the first passage (decision) time for the multistage model.

We will frequently refer to the i-th stage of (2), which for t > ti–1, is written as

(3)

where the initial condition Xi–1 is a random variable defined as x(ti–1) conditioned on there 

being no decision (threshold-crossing) before time ti–1. More precisely, the density of Xi–1 is 

the conditional distribution of x(ti–1) given that τ > ti–1. Thus, the random variable Xi–1 

corresponds to realizations of the multistage model that remain within the thresholds ±ζ 
until time ti–1. For the first stage, X0 could be a point mass centered at x0, or it may be a 

random variable capturing the variability in starting points (Ratcliff and Rouder, 1998). The 
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key difference between (3) and the single-stage process (1) is that the initial condition Xi–1 

is a random variable whose distribution is determined by previous stages.

3. Martingale theory applied to the single-stage model

In this section, we give an introduction to the basic properties of martingales and the 

optional stopping theorem, which are the key mathematical tools used in calculating our 

main results in §5. For readers who are less familiar with martingale methods, we first derive 

the mean decision time, hitting probabilities, and FPT densities for the single- and two-stage 

models. These analyses provide an alternate approach to deriving these classical results as 

compared to other non-martingale based approaches (Ratcliff, 1980; Diederich and Oswald, 

2014). We discuss the differences between these various approaches in §8.

3.1. Continuous time martingales

Consider a continuous time stochastic process η(t), t > 0. Let η(t1 : t2) denote the portion of 

η(t) between times t1 and t2. A stochastic process M(t) is said to be a martingale with respect 

to η(t) if the following three conditions hold:

1. M(t) is a function of η(0 : t) and does not depend on future values of η(t)1

2.

3. M(t) satisfies the stationarity condition in expected value

(4)

The first condition means that given the realized values η(0 : t), we should be able to 

compute M(t) deterministically, so that M(t) does not depend on the future. The second 

condition is a regularity condition that ensures that M(t) is sufficiently2 light-tailed and 

holds under several decision-making scenarios. The third condition is the most crucial – it 

enforces stationarity in expected value. This last condition can be interpreted as a “fair play” 

condition ensuring that chances of gaining and losing starting with value M(t1) at time t1 are 

the same, as in the classic example of a sequence of flips of a fair coin. When introducing a 

martingale, one often does not explicitly specify the process η(t), and in this case η(t) is 

assumed equal to M(t).

Martingale theory is very broad and there are many different choices for M(t) and η which 

are interesting. All of the calculations and results of this paper are constructed from two 

fundamental stochastic processes, which we now introduce. Let W(t) be the standard Wiener 

process and X(t) = μt + σW(t) be a single-stage Wiener process with drift rate μ and 

diffusion rate σ (without boundaries). We now consider some martingales associated with 

these two stochastic processes:

1More precisely, M(t) is progressively measurable with respect to the sigma algebra generated by η(0 : t). See (Doob, 1953, chap. 2), 
(Karatzas and Shreve, 1998, chap. 1), or (Revuz and Yor, 1999, chap. 1).
2M(t) may be heavy tailed due to non-existence of second and higher moments.
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1. W(t) is a martingale. It is easy to verify that for 0 ≤ t1 < t2, 

. Similarly, X(t) – μt is a martingale.

2. W(t)2 – t is a martingale. Note that for 0 ≤ t1 < t2, conditioned on W(t1), W(t2) 

has a Gaussian distribution with mean W(t1) and variance (t2 – t1). Therefore,

3. For any , exp(λX(t) – λμt – λ2σ2t/2) is a martingale. Note that for 0 ≤ t1 < t2, 

conditioned on X(t1), X(t2) has a Gaussian distribution with mean X(t1) + μ(t2 – 

t1) and variance σ2(t2 – t1). Thus,

For λ = −2μ/σ2, this martingale reduces to exp(−2μX(t)/σ2) which is referred to as the 

exponential martingale.

3.2. Stopping times and the optional sampling theorem

The first passage time τ is a random variable defined by τ = inf{t > 0|x(t) ∉ (−ζ, ζ)}. We are 

interested in computing conditional expectations and probability densities of τ, which 

correspond to expected decision times and the corresponding distributions of response times. 

The key tool we borrow from the theory of martingales is a classic result known as Doob's 

optional sampling theorem (also known as the optional stopping theorem), which we 

motivate and introduce here. To understand the optional sampling theorem, one must first 

recall that the expected value of a martingale M(t) computed over all realizations starting 

from M(0) is equal to the initial expectation of M(0). That is, martingales by definition must 

satisfy the following:

One then wonders: Does a similar property extend to the random time τ? More specifically, 

if we consider different realizations of τ and compute averages of M(τ) at these realized 

values, does this average, as the number of realizations grow large, converge to M(0)? The 

answer is affirmative if τ is well behaved and is independent of the process M(t). Indeed, in 

this case

(5)

where the outer expectation is with respect to τ and the inner expectation is with respect to 

M(t).

But what if τ is not independent of M(t)? In these cases the situation is more subtle. Suppose 

τ is bounded from above by t̄. Then, we can write
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where 1(·) is the indicator function that takes value 0 if its argument is false and 1 otherwise, 

and dM(u) is the (random) increment in M(u) at time u. If we assume that the value 1(τ ≥ u) 

can be deterministically computed based on the knowledge of M(0 : u), we can then write

where the second equality follows from the law of total expectation3. The first equality 

requires swapping of integral and expectation operators, which is allowed because t̄ is finite. 

Furthermore, 1(τ ≥ u) is a deterministic function of M(0 : u) and thus, 

, where the last equality 

follows by definition of martingale. Consequently, for a random variable τ and martingale 

M(t),  if (i) the event τ ≥ u is determined by M(0 : u), and (ii) τ is bounded 

from above with probability one. A random variable satisfying the first condition is called a 

stopping time, and the above discussion is the optional sampling theorem which we formally 

state:

The optional sampling theorem—Suppose M(t), t ≥ 0 is a martingale with respect to 

η(t) and τ is a bounded (with probability one) stopping time with respect to η(t), then 

.

Heuristically, the optional sampling theorem states that different realizations of a martingale 

M(t) stopped at random times average out to constitute a fair game. The crucial aspect is that 

the stationarity of the expected value holds even for random (stopping) times, including our 

first passage time τ. As we will see in §3.3, this stationarity enables us to calculate analytic 

expressions for first passage time properties by finding appropriate martingales.

A helpful example is to consider the standard Wiener process with initial position at X(0) = 

x0, and absorbing thresholds at ±ζ, with x0 between ±ζ. In this case X(t) is itself a 

martingale, the first passage time τ is a stopping time, and the optional sampling theorem 

says that . The expectation on the left hand side is simply the average of the 

initial distribution of X(0) which is the number x0. The right hand side is more interesting: 

X(τ) is the random value of X(t) at the random decision time τ, the instant X(t) crosses +ζ 
or −ζ. Thus X(τ) attains one of two possible values, +ζ or −ζ, and  heuristically 

resembles an average over all +ζ's and −ζ's corresponding to sample paths starting at x0 and 

diffusing until they hit either +ζ or −ζ at τ. The optional sampling theorem says that this 

average of +ζ's and −ζ's, over all such sample paths, ends up being equal to the number x0.

3For an integrable random variables Y and an arbitrary random variable Z, E[Y] = E[E[Y|Z]]. Loosely speaking, the law of total 
expectation states that the expectation of a random variable can be computed by first computing the expectation conditional on another 
random variable, and then computing the expected value of the resulting expectation.
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3.3. Applications to the single-stage model

The optional sampling theorem is a powerful mathematical tool for decision-making models 

that associate decisions and decision times with a diffusion processes crossing a threshold. 

Ratcliff's Diffusion Decision Model (Ratcliff, 1978; Ratcliff and McKoon, 2008), the leaky 

competing accumulator model (Usher and McClelland, 2001), and the EZ diffusion model 

(Wagenmakers et al., 2007), are popular examples of such models. The optional sampling 

theorem reduces the problem of computing analytic expressions for the statistics of the first 

passage times to identifying appropriate martingales. In this section we illustrate the flavor 

of such calculations for the single-stage model from (1) in §2.1. Recall that the decision time 

τ is defined by τ = inf{t > 0|x(t) ∉ (−ζ, ζ)}. Throughout this this section, we introduce θ = 

(μ, σ, ζ) to slightly condense the notation when desired.

We first compute , the probability of hitting the lower threshold. First, we let s = 

μ/σ2, the ratio of the drift parameter to the squared diffusion parameter (i.e. signal to noise). 

Recall from §3.1 that for μ ≠ 0, exp(−2sX) is a martingale. Applying the optional sampling 

theorem, we get

Substituting  and solving for , we obtain a closed 

form expression

Similarly, for μ = 0, we note that X(t) is a martingale. Applying optional sampling theorem, 

we get

and following the same argument we obtain . In summary, we 

get

(6)

where P±(x0, θ) is the probability of hitting the upper and the lower threshold, respectively.

To compute the expected decision time , recall from §3.1 that X(t) – μt is a martingale. For 

μ ≠ 0, applying the optional sampling theorem yields
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Solving for , we get . When μ = 0, recall from §3.1 that 

 is a martingale, and the same argument as above yields . In 

summary, the mean decision time mDT(x0, θ) is given by

(7)

We also wish to find τ's Laplace transform, or moment generating function4, . We 

remember from §3.1 that exp(λX(t) – λμt – λ2σ2t/2) is a martingale, and choose λ so that 

the coefficient of t becomes −α, i.e., λ solves the equation . The two 

solutions to this equation are

Applying the optional sampling theorem, we obtain a pair of equations,

which we can solve simultaneously for  to obtain

Thus, the moment generating function of the decision time is

(8)

As a byproduct, we also get the Laplace transform of conditional decision times:

4The moment-generating function (technically, the two-sided Laplace transform) of a random variable X is , 
a function of . It is often of interest because it specifies the probability distribution of X, and can be used to obtain the 
moments of X.
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(9)

(10)

The derivatives of the Laplace transform yield moments of decision time (see Srivastava et 

al. (2016) for detailed derivation of conditional and unconditional moments of decision time 

using Laplace transforms). Here, we focus on expressions for conditional expected (mean) 

decision times that are the derivative of the Laplace transform with respect to −α computed 

at α = 0. The expected decision time conditioned on hitting the upper and lower boundaries 

are denoted by mDT+ and mDT−, and may be computed by differentiating (9) and (10):

(11)

(12)

where  and 1(·) is the indicator function. We again note, just as 

with , mDT± also depend on the underlying parameters μ, x0, ζ, and σ.

We now compute τ's first passage time density f(t; x0, μ, σ, ζ), i.e., the probability density 

function of the decision time. This amounts to calculating the inverse Laplace transform of 

(8). In this case, the inverse Laplace transform needs to be expressed as an infinite series 

(see Lin (1998) for a detailed derivation):
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(13)

where θ = (a, σ, ζ), and ϑ(t; u, v) is a function (Borodin and Salminen, 2002, pp. 451) 

defined by

Similarly, the first passage time density conditioned on a particular decision is given by

(14)

(15)

where , i.e., f±(t; x0, θ)dt is the probability of the 

event τ ∈ [t, t + dt) and x(τ) = ±ζ. Note that f defined in (13) is the sum of f+ and f−.

Alternate derivations for the hitting probabilities, mean decision times, and FPT densities 

may be found in the decision making literature (Ratcliff and Smith, 2004; Bogacz et al., 

2006; Navarro and Fuss, 2009). It is worth noting that the infinite series solution for the FPT 

density given in (13) is equivalent to the small-time representations for the FPT analyzed in 

(Navarro and Fuss (2009) and Blurton et al. (2012)). For completeness, we provide the 

alternative expression for density in Appendix A.

4. Analysis of the two-stage model

In this section, we use the tools developed in §3 in order to analyze the two-stage process 

originally presented and analyzed in Ratcliff (1980). While our calculations lead to 

equivalent formulas for the first passage time densities, a martingale argument provides us 

with additional closed form expressions for the probability of hitting a particular threshold 

and expected decision times. Computations of these FPT statistics using the results of 

Ratcliff (1980) requires numerical integration of the FPT density, which our formulas now 

avoid.
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We may explicitly write the two-stage model as

(16)

where

As before, the decision time τ = inf{t > 0|x(t) ∉ (−ζ, ζ)} is the first passage time with 

respect to boundaries at ±ζ. Let θi = (μi, σi, ti, ζ) and , for i ∈ {1, 2}.

We interpret the first stage as a single-stage model with a deadline at t1. For a single-stage 

model with thresholds ±ζ and a deadline t1, the joint density gddln(x, τ; x0, t1, θ1) of the 

evidence x(t1) and the event τ ≥ t1 is given by (Douady, 1999; Durrett, 2010):

(17)

Here superscript “ddln” refers to the deadline. gddln may then be used to determine the FPT 

distribution by integrating it over the range of x. More importantly, dividing gddln by 

yields the conditional density on the evidence x(t1) conditioned on no decision until time t1.

4.1. Probability of hitting the lower threshold

In trying to compute , we view the two-stage process as two single-stage 

processes in sequence. Let τ1 be the first passage time for the first stage by itself (without 

any deadline at t1) and define the random time  which is a stopping time. 

Applying the optional sampling theorem to the exponential martingale for the first stage 

gives us

which yields
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In this expression, both  and  may be obtained from 

(17).

The second stage is another single-stage process, this time starting at time t1 with a random 

initial condition x(t1) with distribution given by (17). Computing the expected value of the 

standard lower threshold hitting probability (6) with respect to the random initial condition 

X1, i.e., x(t1) conditioned on τ1 > t1 we obtain

The  term can be readily computed from (17). Combining the 

previous two conditional expressions allows us to obtain

This probability depends on all of the parameters of the two-stage model: x0, μ1, σ1, t1, μ2, 

σ2, ζ.

4.2. Expected decision time

To compute the expected decision time, we apply the optional sampling theorem to the 

martingale x(t) – μ1t with the stopping time  from the previous section to obtain

Solving for  we obtain

Much like in the previous section, we observe that the second stage is similar to a single-

stage process starting at time t1 with a random initial condition determined by (17). Thus, 

the associated expected first passage time is

Combining the above expressions, we obtain
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4.3. First passage time density

We now compute the first passage time probability density function. Let F(t; θ, x0) be the 

cumulative distribution function of the decision time for the single-stage process (1) 

obtained by integrating (13). For t ≤ t1, the two-stage model is identical to the first-stage 

model and the first passage time distribution is F(t; θ1, x0). For t > t1, the first passage time 

distribution is

i.e., the distribution function corresponds to trajectories that reach threshold before t1 and 

trajectories that reach threshold between t1 and t. The latter trajectories can be modeled as 

trajectories of a single stage process starting at time t1 with stochastic initial condition. The 

stochastic initial condition leads to the expectation operator on the second term. The 

distribution of decision time conditioned on particular decisions can be computed 

analogously.

5. Analysis of the multistage model

In this section we derive first passage time (FPT) properties of the multistage process 

defined in §2.2 using an approach similar to that employed throughout §4. The model is 

viewed as n modified processes in sequence in which for each stage, the initial condition is a 

random variable and only the decisions made before a deadline are considered. For the i-th 

stage process with a known distribution of initial condition Xi–1, we derive properties of the 

FPT conditioned on a decision before the deadline ti, along with the distribution of Xi for i ∈ 
{1, . . . , n}. This latter distribution, more precisely, is the distribution of x(ti) conditioned on 

the FPT for the i-th stage being greater than ti. We then use these properties sequentially for i 
∈ {1, . . . , n} to determine the FPT properties during each stage. Finally, we aggregate FPT 

properties at each stage to compute FPT properties for the whole multistage process. Our 

calculations have features similar to an idea of Diederich and Busemeyer (2006), who first 

proposed that the bias (i.e. initial condition) of a stage may have a time dimension. In some 

sense our formulas below elucidate how previous temporal stages of processing affect the 

bias of future stages.

The extension of the FPT distribution computation from the two-stage model (Ratcliff , 

1980) to the multistage model requires careful computation of expressions similar to (17) at 

the end of each stage. Also, in contrast to Ratcliff (1980), as in §4, our martingale based 

approach allows direct computation of probability of hitting a particular threshold and 

expected decision times. As in the previous section, this avoids integration of the first 

passage time density to compute these quantities.
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Throughout this section we use the following notations:

• τ = inf{t > 0|x(t) ∉ (−ζ, ζ)}, the first passage time through either threshold for 

the entire multistage process;

• τi = τ|τ > ti–1, the first passage time for the i-th stage (3) without any deadline;

• θi = (μi, σi, ti, ζ), and  representing the 

parameters for the i-th stage and stages 1, . . . , , respectively;

• , the i-th stage ratio of signal to squared noise.

Here we are concerned with computation of FPT properties and allow θ1:n to be free 

parameters. For scenarios such as estimation of parameters, to ensure identifiability of the 

parameters, all diffusion rates may be set equal to unity. However, such cases are beyond the 

scope of this manuscript and we do not discuss these issues here.

5.1. FPT properties of the i-th stage

For the i-th stage, the initial condition Xi–1 is a random variable and only decisions made 

before the deadline ti are relevant. The analysis thus focuses on the random variable Xi–1 and 

the random time τi. Conditioned on a realization of Xi–1, the density of Xi can be computed 

using (17). If the density of Xi–1 is known, then the unconditional density of Xi can be 

obtained by computing the expected value of the conditional density of Xi with respect to 

Xi–1. Since the density of X0 is known, this procedure can be recursively applied to obtain 

densities of Xi–1, for each i ∈ {1, . . . , n}. Formally, the joint density  of 

the evidence x(ti) and the event τ ≥ ti is

(18)

where  denotes the expected value with respect to Xi–1. Note that

Thus, the density of Xi, i.e., x(ti) conditioned on τi > ti is determined by dividing  by 

 which can be computed by integrating  over the range of x(ti). Note that the 

parameters in  are x0 and θ1:i; this highlights the fact that the distribution of Xi depends 

on all previous stages.

Similarly, the FPT density for the i-th stage conditioned on a realization of Xi–1 can be 

computed using (13), and the unconditional density can be obtained by computing the 

expected value of the conditional density with respect to Xi–1:
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(19)

where t > ti–1. The cumulative distribution function  is obtained by 

integrating fi(t; x0, θ1:i). Note that every trajectory crossing the decision threshold before ti 
does so irrespective of the deadline at ti. Thus, the expression for density fi does not depend 

on ti.

To conclude this section, we state equations for computing hitting times, mean decision 

times, and first passage time densities, conditional on a response during the i-th stage. The 

derivation of these expressions are found in Appendix B.

(i) The probability of hitting the lower threshold given that a response is made 

during the i-th stage, denoted by 

, is given by

(20)

 is the probability of hitting the upper threshold during the i-th 

stage. These expression depends on all of the model parameters up to and 

including the i-th stage (i.e.  and  both 

depend on x0 and θ1:i) and will be used in subsequent calculations.

(ii) The joint FPT density for the i-th stage process and a given upper/lower 

response, denoted by , is given by

(21)

(22)
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where the functions f±(t; x0, θi) are taken from (14) and (15). Again, these 

expressions depend on all of the multistage model parameters up to and 

including the i-th stage (i.e. both  depend on x0 and θ1:i).

(iii) The mean decision time given a response during stage i, denoted by mDTi(x0, 

θ1:i), is given by

(23)

(iv) The mean decision time conditioned on a given upper/lower response made 

during the i-th stage, denoted by , is given by

(24)

(25)

where  and is calculated 

using (11) and (12), , and 

 is calculated using (6) and (18).

5.2. FPT properties of the multistage model

For a given multistage process (2) with initial condition x0, we sequentially compute all of 

the distributions of the initial conditions Xi for each i ∈ {1, . . . , n} using (18). Then, we 

compute the properties of the FPT associated with the i-th stage. Finally, the total probability 

formula aggregates these results into FPT properties of the entire multistage model. The 
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calculations are contained in Appendix C and are given in terms of earlier formulas. In the 

following, we omit the arguments of functions whenever it is clear from the context.

(i) Let t ≥ 0 be given such that t ∈ (tk–1, tk] for some k ∈ {1, . . . , n}. The FPT 

distribution for the multistage process is

(26)

Note that  and .

(ii) The mean decision time, denoted by mDTms(x0, θ1:n), for the multistage process 

is

(27)

Put simply, the expected decision time is the sum of the expected decision times 

for the individual stages (mDTi) weighted by the probability of the decision in 

each stage .

(iii) The probability of hitting the lower threshold, denoted by , is

(28)

This expression is similar to (27), with the probability of hitting the lower 

threshold being the sum of the hitting probabilities for each stage 

weighted by the probability of the decision in each stage 

.

(iv) The mean decision time conditioned on hitting the upper/lower threshold is

(29)
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(30)

Note that  and 

. Similar to (27), these equations show 

that the conditional decision times are weighted sums of the expected 

conditional decision times for each stage, with the weights being the conditional 

probability of the decision in each stage.

(v) The FPT cumulative distribution functions conditioned on hitting upper/lower 

threshold are

(31)

(32)

Note that  and 

.

6. Time-varying thresholds for the multistage process

The results in §5 were obtained under the assumption that the thresholds are constant 

throughout each stage. Now suppose that the thresholds for the i-th stage are ±ζi, i.e., 

piecewise constant thresholds. If the upper thresholds decrease at time ti (i.e. ζi+1 < ζi) and 

x(ti) is in the interval (ζi+1, ζi), then the path is absorbed by the upper boundary, and the 

probability of this instantaneous absorption is calculated by integrating (18) from ζi+1 to ζi. 

Likewise, the probability of instantaneous absorption into the lower threshold at ti is 

determined by integrating (18) from −ζi to −ζi+1. The density of Xi is then found by 
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truncating the support of the density in (18) to (−ζi+1, ζi+1) and normalizing the truncated 

density. In the cases where the upper threshold in the (i + 1)-th stage is larger than the upper 

threshold in the i-th stage, i.e., ζi+1 > ζi, there is no instantaneous absorption, and the 

density of Xi is found by extending the density in (18), assigning zero density to the 

previously undefined support (see Figure 1). In all cases, the new, updated Xi may be used 

for computations dealing with the (i + 1)-th stage of the multistage model. Codes 

implementing all of the formulas through §5 with time-varying thresholds may be found at 

https://github.com/sffeng/multistage. In Appendix D, we describe how these ideas extend to 

a time varying Ornstein-Uhlenbeck (O-U) model.

7. Numerical examples

In this section we apply our calculations from §5 and §6 to a variety of numerical 

experiments. In doing so, we compare the theoretical predictions obtained from the analysis 

in this paper with the numerical values obtained through Monte-Carlo simulations, thereby 

numerically verifying our derivations above. We also provide examples illustrating time 

pressure or changes in attention over the course of a decision process, and demonstrate how 

our work can help to find the optimal speed-accuracy trade-off by maximizing reward rate 

(or any other function of mean first passage time, threshold-hitting probability, and reward). 

Unless otherwise noted, Monte Carlo simulations were obtained using 1000 runs; relatively 

few runs are used so that curves are visually distinguishable. Stochastic simulations use the 

Euler-Maruyama method with time step size 10−3. All of the above calculations have been 

implemented in MATLAB, and all codes used to produce the figures in this section may be 

found at https://github.com/sffeng/multistage.

7.1. A Four-stage process

Consider a four stage process with drift and diffusion rates given by (μ1, μ2, μ3, μ4) = (0.1, 

0.2, 0.05, 0.3) and (σ1, σ2, σ3, σ4) = (1, 1.5, 1.25, 2), respectively, with (t0, t1, t2, t3) = (0, 1, 

2, 3) and initial condition x0 = −0.2. The cumulative distribution function (CDF) of the 

unconditional and conditional decision time for ζ = 2 obtained using the above analytic 

expressions (solid lines) and Monte-Carlo simulations (dotted lines) is shown in Figure 2(a). 

Similarly, the unconditional mean decision time, the lower hitting probability, and the mean 

conditional decision times (for upper/lower responses) are shown in Figure 2(b) as a 

function of threshold ζ. Note that the analytic expressions match closely with quantities 

computed using Monte-Carlo simulations. Also, notice that the CDF almost looks like a 

double-sigmoidal function (it starts to saturate around 0.6 before picking up and eventually 

saturating at 1) due to the drop in drift rate from 0.2 to 0.05.

7.2. FPT Distribution for a process with Alternating Drift

In this example, the sign of the drift rate changes from stage to stage. This may be used to 

describe situations in which evidence accumulation changes dynamically with the decision-

maker's focus of attention. For instance, Krajbich et al. (2010) have shown that the process 

of weighing two value-based options (e.g., foods) can be modeled with a process in which 

drift rates vary based on the option being attended at any given moment. We consider such a 

case using a 30-stage model in which the drift rates 1 and −0.75 alternate (i.e., μ1 = 1, μ2 = 
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−0.75, μ3 = 1, . . .) to capture a situation in which the decision maker's attention alternates 

between two options, one of which has greater perceived value (higher drift rate) than the 

other. Let t0 = 0 and the remaining 29 stage initiation times be a fixed realization of 29 

uniformly sampled points between 0 and 10. Assume x0 = 0, ζ = 2, and let the diffusion rate 

be stationary and equal to unity (σi = 1). The unconditional and conditional FPT 

distributions in this scenario obtained using both the analytic expressions (solid lines) and 

Monte-Carlo simulations (dotted lines) are shown in Figure 3. Note that the analytic 

expressions match closely with quantities computed using Monte-Carlo simulations.

7.3. FPT Distribution for a model with gradually time-varying drift

Changes in evidence accumulation may occur gradually over time. For instance, White et al. 

(2011) proposed a “shrinking spotlight” model of the Eriksen Flanker Task, a task in which 

participants responding to the direction of a central arrow are influenced by the direction of 

arrows in the periphery (see also Servan-Schreiber et al., 1990; Liu et al., 2009; Servant et 

al., 2015). According to these models, evidence accumulation is initially influenced by all of 

the arrows (central as well as flankers, which may drive an incorrect response, modeled here 

as as a lower threshold response) but as the attentional spotlight narrows the drift rate is 

gradually more influenced by the central arrow alone. The multistage model, in spite of 

having discontinuous changes in parameters, can still be used to approximate a model with 

gradually time-varying parameters.

As a demonstration, we use a 20-stage model as an approximation to a model with 

continuously time-varying drift rate. Assume σi = 1, x0 = 0, ζ = 2, and let the stage initiation 

times t0, t1, . . . , t19 be equally spaced throughout the interval [0, 5]. Furthermore, suppose 

the drift rate during the i-th stage is −0.2 + 0.0263(i – 1). The unconditional and conditional 

FPT distributions for such a 20-stage process obtained using the analytic expressions (solid 

lines) and using Monte-Carlo simulations (dotted lines) are shown in Figure 4. Note that the 

analytic expressions match closely with quantities computed using Monte-Carlo simulations. 

We also show the error due to piecewise constant approximation of the drift rate as a 

function of number of stages (Figure 4, right). It should be noted that even for 5 stages the 

approximation error is very small.

7.4. Collapsing Thresholds

One may be interested in modeling a decision process in which thresholds are dynamic 

rather than constant across stages. This can be used to describe discrete changes in choice 

strategy, or a continuous change in thresholds over time; the latter approach has been 

successful at describing behavior under conditions that either involve an explicit response 

deadline (e.g., Milosavljevic et al., 2010; Frazier and Yu, 2008) or where there is an implicit 

opportunity cost for longer time spent accumulating evidence (Drugowitsch et al., 2012). 

Recently, (Voskuilen et al., 2016) used analytic methods to model collapsing boundaries in 

order to compare fixed boundaries against collapsing boundaries in diffusion models.

Here, we model such a situation using a 20-stage process, as an approximation to a diffusion 

model with continuously collapsing thresholds, i.e., ζ ↓ 0 with time, the drift rate and the 

diffusion rate are constant and equal to 0.15 and 1, respectively, x0 = 0, and stage initiation 
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times t0, t1, . . . , t19 are equally spaced throughout the interval [0, 5]. The threshold in the i-

th stage is . The unconditional and conditional FPT distributions for such a 

20-stage process obtained using the analytic expressions (solid lines) and using Monte-Carlo 

simulations (dotted lines) are shown in Figure 5. Note that the analytic expressions match 

closely with quantities computed using Monte-Carlo simulations.

7.5. Optimizing the Speed-Accuracy Trade-off in a Two-stage Model

Human decision-making in many two alternative forced choice signal detection tasks has 

been successfully captured by the single stage model. In such tasks, hitting the upper/lower 

boundary is interpreted as a correct/incorrect response. The accuracy of a decision can then 

be determined by the sign of the drift rate – if μ is positive, participants are said to be more 

accurate the more likely they are to hit the upper threshold and more error-prone the more 

likely they are to hit the lower threshold. One then assumes without loss of generality that 

the drift rate is positive, in which case the lower hitting probability is called the error rate 
and the upper hitting probability is called the accuracy. Here, the choice of threshold dictates 

the speed-accuracy trade-off, i.e., the trade-off between a fast decision and an accurate 

decision. In the previous examples, the thresholds have been known and we have 

characterized the associated error rate and first passage time properties. These can be used to 

define a joint function of speed and accuracy that may dictate how humans/animals choose 

to set and adjust their threshold. In particular, it has been proposed (Bogacz et al., 2006) that 

human subjects choose a threshold that maximizes reward rate (RR), defined as

(33)

where Tnd is the sensory and motor processing time (non-decision time) and P− and  are 

computed using the expressions derived in §5.

The reward rate for a two-stage process is shown in Figure 6. For the set of parameters in 

Figure 6, reward rate is maximal at approximately (ζ1, ζ2) = (0.06, 0.01). Thus, the 

maximizing reward rate in this setting interestingly requires that the threshold across stages 

be different.

Setting the threshold to be constant across stages (ζ1 = ζ2), we can compare how reward rate 

changes with this constant threshold in a single-stage (traditional) versus a two-stage mode. 

As shown in Figure 7(a), we find that this reward rate function is unimodal in a single-stage 

model (as previously observed) whereas it is bimodal in a two-stage model. Figure 7(b) 

explores this parameter space in greater depth and shows that the curvature of reward rate 

(and in particular the relative height of its first and second modes) vary as a function of the 

length and drift rate of the first stage (for example). As a result, this analysis reveals a 

discontinuous jump in optimal threshold as these parameters vary. Whether individuals are 

sensitive to these discontinuities when setting thresholds for a multistage decision-making 

task deserves further exploration.
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8. Discussion

In this paper we analyze the first passage time properties of a Wiener process between two 

absorbing boundaries with piecewise constant (time-dependent) parameters, which we call a 

multistage model or multistage process. Our main theoretical results, collected in §5, add to 

previous work on analyzing time-dependent random walk models in psychology and 

neuroscience. Broadly speaking, these can be split into three approaches. One approach is 

the integral equation approach introduced and developed in Smith (1995, 2000); Smith and 

Ratcliff (2009). Another approach is the matrix based Markov Chain approximation which 

has been applied to a wide variety of multi-attribute choice settings (Diederich and 

Busemeyer, 2003; Diederich and Oswald, 2016, 2014). A third approach analyzes the 

backward partial differential equation associated with the multistage process (Ratcliff, 1980; 

Heath, 1992). The results of §5 align most closely with the work of the third approach, as we 

also directly analyze the multistage stochastic process, albeit with different techniques. 

Whereas Ratcliff (1980) and Heath (1992) analyzed a multistage process by solving the 

Kolmogorov partial differential equation, we employ martingale theory (e.g. the optional 

sampling theorem) in order to obtain analytic results which extend those of previous studies. 

In doing so, our work also builds on martingale-based analyses described by Smith (1990) 

for a single stage model.

The modeler utilizing time-dependent random walk models in decision making should be 

aware of all of the above approaches, as one approach may demand additional 

approximations compared to another, due to differences in how they discretize temporal 

dynamics. For example, when modeling experiments with continuously (gradually) 

changing stimuli (e.g., White et al. (2011); Zhang et al. (2014)) one may find the integral 

equation approach more natural, given the continuity and smoothness assumptions built in to 

the techniques. Diederich and Oswald's model also allows for continuous changes in 

boundaries. In contrast, our methods must approximate the underlying gradually changing 

drift with a piecewise constant function, thereby inducing some additional error in the 

calculations of first passage times. If, however, the application lends itself well to discrete 

changes in drift rate or threshold (e.g., Krajbich et al. (2010)), then both the matrix based 

methods and methods discussed in this paper may be more natural, as they explicitly 

consider such discrete changes in the underlying calculations. Ornstein-Uhlenbeck processes 

lend themselves more naturally to the matrix based approach of Diederich and Busemeyer 

(2003), compared to our analysis in Appendix D, since our analysis requires a change in 

time scale that the matrix method does not. In the specific case of a multistage model (2), 

our work provides semi-analytic formulas that can be easily computed or studied further (see 

below). In general, the modeler should be ready to employ the most suitable approach given 

their situation.

The reader should also be aware of the software tools available for each approach, as there 

already exist several good non-martingale based software packages for computing FPT 

statistics. One package implementing the integral equation approach is that of Drugowitsch 

(2014), which computes first passage time densities using the stable numerical 

approximations developed in Smith (2000). More recently, highly optimized codes for a 

broad class of diffusion models have been developed by Verdonck et al. (2015), with 
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implementations on both CPUs and GPUs. Compared to other available codes, Diederich 

and Busemeyer (2003)'s matrix approach is substantially simpler and more elegant to 

implement – one can compute desired choice probabilities and mean decision times in less 

than a few dozen lines of MATLAB code. For practitioners wishing to write all of their own 

model code from scratch, this may be a considerable advantage. The MATLAB code 

released with this report5 provides implementations of the results from §5 and allows one to 

reproduce all of the figures from §7. Unlike the work of Verdonck et al. (2015), our work is 

not immediately focused on developing a rapid numerical tool for simulation, but rather on 

introducing martingale theory as a useful mathematical tool for analyzing multistage 

decision models. Thus, the codes released with this report are not intended to compete with 

the efficiency of the aforementioned codes, which have been highly optimized and tuned for 

throughput, but instead to demonstrate the simplicity and effectiveness of our analysis. 

These considerations notwithstanding, our results do suggest promising avenues for future 

numerical work. Particularly relevant is work by Navarro and Fuss (2009); Blurton et al. 

(2012); Gondan et al. (2014) who developed efficient numerical schemes for evaluating the 

relevant infinite sums involved in FPT calculations. Similar methods could be applied to 

results in §5.1 and §5.2 to develop efficient multistage codes, which could in turn contribute 

to the growing collection of numerical tools available for practitioners using diffusion 

models to study decision making.

In §3 we re-derived classical mean decision times and choice probabilities equivalent to 

results first derived for a discrete time random walk model using the Wald identity (Laming, 

1968; Link and Heath, 1975; Link, 1975; Smith, 1990), which itself is a corollary of the 

optional sampling theorem. Smith (1990) notes that results concerning the discrete time 

random walk model with Gaussian increments and the continuous time single stage Wiener 

diffusion model of §3 should be equivalent, which is indeed the case. Furthermore, the 

moment generating function derived in §3.3 is identical to that obtained by (Smith, 1990, p. 

9) via the Wald identity. Our aim in presenting §3 was to introduce the martingale analysis 

used in §5 by first demonstrating its utility in re-deriving these classical results. We hope 

these calculations provide an intuition for the computations in §5 in a less technical setting. 

For reviews of the classical results on random walks in psychological decision making, see 

(Townsend and Ashby, 1983, pp. 300-301) and (Luce, 1986, pp. 328-334).

One particularly useful aspect of equations (20) through (32) is that they demonstrate how 

various other measures of performance, such as the lower-threshold hitting probability 

during each stage, evolve as the underlying dynamics change. Using these, one may 

efficiently compute a variety of behavioral measures of performance without resorting to 

first computing the FPT densities. Our results may also serve as a starting point for further 

analysis of more complicated stochastic decision models. In appendix D, we show how our 

results apply to Ornstein-Uhlenbeck processes, which approximate leaky integration over the 

course of evidence accumulation, e.g., the Leaky Competing Accumulator model [LCA] 

(Usher and McClelland, 2001). Given that the LCA itself can in certain cases approximate a 

reduced form of more complex and biologically plausible models of interactions across 

5https://github.com/sffeng/multistage
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neuronal populations (e.g., Wang, 2002; Wong and Wang, 2006; Bogacz, 2007), our work 

may help analysts better understand time-varying dynamics within and across neural 

networks, and how such dynamics relate to complex cognitive phenomena.

Beyond its analytic and numerical utility, our uses of martingale theory, and the optional 

sampling theorem in particular, provide some theoretical insights into random walk decision 

models. For example, a single stage model with zero drift rate (i.e. Wiener process) and 

lower/upper thresholds at 0 and 1 necessarily has the qualitative property that the probability 

of hitting the upper threshold equals the initial (nonrandom) position x0. Although these 

results are known in the probability literature (Doob, 1953), they provide practitioners and 

experimentalists a unique way of planning and analyzing experiments based on decisions 

thought to evolve according to diffusion processes. In summary, we hope that the tools 

described in this article and the results of §5 will encourage computational and mathematical 

analyses of decision models involving time-dependent parameters.
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Appendix A. Alternative expression for FPT density of the single stage 

model

An alternative expression to the FPT density (13) that can be obtained by solving the 

Fokker-Planck equation (Feller, 1968) is:

Appendix B. Derivation of expressions in §5.1

We first establish (20). First consider the case μi > 0. Let  be the filtration defined 

by the evolution of the multistage process (2) until time t conditioned on τ > ti–1. A filtration 

can be thought of as an increasing sequence of available information. For some s ∈ (ti–1, t), 
as shown in §3, {exp(−2six(t))}t≥ti–1 is a martingale, i.e., 

.

Furthermore,  is a stopping time. Therefore, it follows from optional 

sampling theorem that
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Solving the above equation for , we obtain the desired expression.

For μi = 0, , as shown in §3, {x(t)}t≥ti is a martingale. Therefore, applying the optional 

sampling theorem, we obtain

Solving the above equation for , we obtain the desired expression.

The formulas (21) and (22) immediately follow from applying expectation to (14) and (15), 

respectively.

To establish (23) for μi ≠ 0, we note from §3 that for the i-th stage, {x(t) – μit}t≥ti is a 

martingale. Therefore, applying the optional sampling theorem, we obtain

Solving the above equation for  yields the desired expression.

For μi = 0, we note from §3 that  is a martingale. Therefore, applying the 

optional sampling theorem, we obtain

Solving the above equation for  yields the desired expression.

Next, we need to establish that the Laplace transform of the density for the FPT for a 

particular decision made before ti is
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To establish this, we consider the stochastic process . From 

§3, we note that  is a martingale for each , i.e.,

We choose two particular values of λ:

Note that for . Therefore, stochastic processes {exp(λ1x(t) – 

αt)}t≥0 and {exp(λ2x(t) – αt)}t≥ti–1 are martingales. Now applying the optional sampling 

theorem, we obtain

(B.1)

Similarly,

(B.2)

Equations (B.1) and (B.2) are two simultaneous equations in two unknowns 

 and . 

Solving for these unknowns, we obtain
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and

Simplifying these expressions, we obtain the desired expression.

Finally, (24) and (25) follow from differentiating the Laplace transform with respect to −α, 

and then evaluating at α = 0.

Appendix C. Performance metrics for the overall multistage process

We start by establishing (26). Since t ∈ (tk–1, tk],

We now establish (27). We note that

To establish (28), we note that

Equations (29) and (30) follow similarly to (27), and Equations (31) and (32) follow 

similarly to (26).

Appendix D. Time-varying Ornstein-Uhlenbeck model

In this section, we discuss how the ideas presented in §5 and §6 can be used to computed 

FPT properties for a time varying Ornstein-Uhlenbeck (O-U) model.
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The O-U model captures decision-making through the first passage of trajectories of an O-U 

process (Cox and Miller, 1965) through two thresholds. Our calculations for the multistage 

process also help analyze the Ornstein-Uhlenbeck (O-U) model. Similar to the multistage 

process, the n-stage O-U process with piecewise constant parameters is defined by

(D.1)

where

for each i ∈ {1, . . . , n}. Due to the extra −λ(t)x(t)dt term, the O-U process is a leaky 

integrator, while the original single stage process is a perfect integrator (λ(t) = 0).

Here, leaky integration means that as the noisy signal is integrated in time with 

exponentially increasing (λ < 0) or decreasing (λ > 0) weights on past observations. Such 

exponential weights lead to ‘recency’ or ‘decay’ effects, i.e., the earlier stages (or late 

stages) may have greater influence on the ultimate decision, whereas with the single stage 

process, all of the signal throughout the entire decision period is weighed equally.

Appendix D.1. The O-U process as a transformation of the Wiener process

In this section we show how our calculations for the multistage process can be easily applied 

to decision models driven by O-U processes via a transformed Wiener process (Cox and 

Miller, 1965, §5.9).

Consider the single-stage O-U process

(D.2)

The O-U process (D.2) can be written as a time-varying location-scale transformation of the 

Wiener process (Cox and Miller, 1965, §5.9), i.e.,

(D.3)

In order to derive (D.3), note that for O-U process (D.2)

Srivastava et al. Page 29

J Math Psychol. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that the stochastic process  is equivalent to the stochastic process 

σW((1 – exp(−2λt))/2λ) in the sense of distribution. Furthermore, σW((1 – exp(−2λt))/2λ) 

is equivalent to the stochastic process e−λtW(σ2(exp(2λt) – 1)/2λ) in a similar sense. This 

means that for each realization of the process  there exists an identical 

realization of the process e–λtW(σ2(exp(2λt) – 1)/2λ).

If we define the transformed time by  so that . Then

We refer to this process as a Wiener process evolving on exponential time scale.

Appendix D.2. First passage time of the O-U process

We now consider the first passage time of the O-U process (D.2) with respect to symmetric 

thresholds ±ζ. If x(t) = ±ζ, we have . We denote this last 

quantity ζ±(u). Consequently, the FPT for x(t) with respect to thresholds ±ζ is a continuous 

transformation of the FPT of a Wiener process starting at x0 and evolving on the transformed 

time u with respect to time-varying thresholds at ζ±(u). Since u is a monotonically 

increasing function, the distribution of the first passage time τ can be obtained from u(τ), the 

FPT distribution of the Wiener process. Furthermore, the lower threshold hitting 

probabilities of the two processes are the same.

Note that in transforming the FPT problem for the O-U process (D.2) to the FPT problem for 

the Wiener process evolving on exponential time scale, removes all the parameters from the 

underlying process x0 + W(u) and puts them in thresholds ζ±(u) and exponential time scale 

u. In addition to utilizing the results of §5 to multistage O-U processes, the above 

transformation is also helpful is speeding up Monte-Carlo simulations of the O-U process. 

Since the transformed process evolves on exponential time scale, the Monte-Carlo 

simulations with transformed process should roughly take time that is a logarithmic function 

of time taken by the O-U process (D.2).

Computation of FPT distributions for the Wiener process with time-varying thresholds is, to 

our knowledge, not analytically tractable. However, the time-varying thresholds can be 

approximated by piecewise constant time-varying thresholds and approximate FPT 

distributions can be computed using the multistage model. While the thresholds ζ± are 

asymmetric for the transformed process (i.e. ζ+ ≠ −ζ−), unlike in the case described for the 

multistage process; such a case can be easily handled by replacing the expression in (13) and 

(18) with corresponding expressions for asymmetric thresholds (see Douady, 1999; Borodin 

and Salminen, 2002).
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Appendix D.3. Approximate computation of the FPT distribution of the 

multistage O-U process

Similar to the transformation described in Appendix D.1, the multistage O-U process (D.1) 

for t ∈ [ti–1, ti) can be written as

(D.4)

Let . Also, let τi and Xi–1, i ∈ {1, . . . , n} be 

defined similarly to the multistage model. Then, conditioned on a realization of Xi–1, the 

FPT problem of the i-th stage O-U process can be equivalently written as the FPT problem 

of the Wiener process Xi–1 + W(ui(t)) with respect to thresholds

We can approximate each stage of the O-U process (D.1) by a multistage process 

representing the above Wiener process with time varying thresholds. This sequence of 

multistage processes is itself a larger multistage process that approximates (D.1) and its FPT 

distribution can be computed using the method developed in §5. Note that this method only 

yields FPT distributions. The expected decision times and probability of hitting a particular 

threshold can be computed by integrating these distributions.
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Highlights

1. Multistage processes model decisions involving time-varying stimuli

2. Martingale theory provides derivations of classical reaction time properties

3. Semi-analytic formulas for mean decision time and hitting probability are 

derived

4. These derivations contribute to the study richer decision processes
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Figure 1. 
Illustration of the key ideas for computation of FPT properties of the multistage model with 

piecewise constant drift and thresholds. The distribution of evidence x(ti) conditioned on no 

decision until ti serves as the distribution of initial condition for the i-th stage process. If 

threshold ζi+1 < ζi, then probability of instantaneous decision at time ti is computed as the 

probability of x(ti) conditioned on no decision until ti not belonging to the set (−ζi, ζi). If 

threshold ζi+1 > ζi, then there is no instantaneous decision and only the support of x(ti) 
conditioned on no decision until ti is increased to (−ζi+1, ζi+1).
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Figure 2. 
FPT calculations for a four-stage process with drift rates (μ1, μ2, μ3, μ4) = (0.1, 0.2, 0.05, 

0.3), diffusion rates (σ1, σ2, σ3, σ4) = (1, 1.5, 1.25, 2), stage initiation times (t0, t1, t2, t3) = 

(0, 1, 2, 3), and initial condition x0 = −0.2. The FPT distribution is computed for threshold ζ 
= 2.
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Figure 3. 
Unconditional and conditional FPT distributions for a 30-stage model with alternating drift 

rate. The drift rates are (μ1, μ2, μ3, . . .) = (1, −0.75, 1, . . .), diffusion rate at each stage is 

unity, the threshold ζ = 2, and stage initiation times are equally spaced throughout the 

interval (0, 10).
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Figure 4. 
Unconditional (left) and conditional (middle) FPT distributions for a 20-stage process with 

gradually increasing drift rate. The drift rate for the i-th stage is μi = −0.2 + 0.0263(i – 1), 

diffusion rate at each stage is unity, the threshold ζ = 2, and stage initiation times are equally 

spaced throughout the interval [0, 5]. Right: The total squared error between the simulated 

and analytic CDFs (left) decreases with increasing discrete stages of the model. 10,000 

simulations were used for each approximation.
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Figure 5. 
Unconditional and conditional FPT distributions for a 20-stage process with collapsing 

thresholds. The drift rate and diffusion rate at each stage are 0.15 and 1, respectively. The 

stage initiation times are equally spaced throughout the interval [0, 5], and the threshold at i-

th stage is , for i = {1, . . . , 19}.
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Figure 6. 
Reward rate as a function of the thresholds for the two-stage model. The parameters are μ1 = 

0.5, μ2 = −0.1, σ1 = σ2 = 0.1, x0 = ζ1/2, and t1 = 0.1. The non-decision time Tnd = 0.3. Note 

that the maximum reward rate is achieved for ζ1 ≠ ζ2.
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Figure 7. 
(a) For the single-stage model μ1 = 0.2, σ1 = 0.1 and x0 = 0, while for the two-stage model 

μ1 = 0.1, μ2 = 0.5, σ1 = σ2 = 0.1, x0 = 0 and t1 = 0.15. The non-decision time Tnd = 0.3. The 

reward rate for the single-stage model is a unimodal function and achieves a unique local 

maximum, while the reward rate for the two-stage model has two local maxima. (b) Optimal 

threshold for two-stage model obtained by maximizing reward rate. The left panel shows the 

variation of the optimal threshold as a function of t1 and μ1. The other parameters are μ2 = 

0.5, σ1 = σ2 = 0.1, and x0 = 0. The regions of the contour plot associated with t1 = 0 and μ1 

= 0.5 correspond to the single-stage model.
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