The effect of excess β -chain synthesis on cell-surface expression of allele-mismatched class II heterodimers in vivo

(transgenic mice/chain pairing)

SUSAN GILFILLAN*, SADAKAZU AIso*, SARA A. MICHIEt, AND HUGH 0. MCDEVITT*t

Departments of *Microbiology and Immunology, [‡]Medicine, and [†]Pathology, Stanford School of Medicine, Stanford, CA 94305

Contributed by Hugh 0. McDevitt, June 22, 1990

ABSTRACT We have recently described 12 lines of H-2^{s/s} mice carrying from 1 to 65 copies of an A_B^k transgene. The transgene was coexpressed with the endogenous allele, and A_B^k mRNA expression correlated well with transgene copy number. Overexpression of the transgene was associated with a variety of defects, including a significant reduction in I-A cell-surface expression. In this paper, we assess the effect of increased levels of A_{β}^{k} mRNA synthesis on I-A cell-surface expression in these mice. Crossing representatives from several lines of A_B^k mice to A_{α}^{k} transgenic mice demonstrated that the A_{β}^{k} mRNA was translated and expressed at high levels on the cell surface in association with A_{α}^{k} . In H-2^{s/s} ($A_{\alpha}^{k}/A_{\beta}^{k}$) mice carrying >10 copies of the A_{β}^{k} transgene, excess A_{β}^{k} mRNA and protein synthesis did drive cell-surface expression of the less favored $A_{\alpha}^{s}/A_{\beta}^{k}$ heterodimers. However, the highest levels of A_B^k detected on the cell surface were only 50-70% of those observed in [B10.A(4R) \times nontransgenic]F₁ controls. Maximum levels of $A_{\alpha}^{s}/A_{\beta}^{k}$ cellsurface expression were accompanied by a significant reduction in $A_{\alpha}^{s}/A_{\beta}^{s}$ expression. Unpaired and improperly paired complexes were not detected intracellularly and appeared to be degraded quite rapidly. Thus, only a fraction of the chains competing for pairing reached the cell surface under conditions of asymmetric chain synthesis in these mice. This markedly reduced total Ia cell-surface levels in mice carrying >10 copies of the A_B^k transgene.

The major histocompatibility complex class II (Ia) antigens are highly polymorphic cell-surface glycoproteins consisting of α and β chains noncovalently associated on the surface of specific cells in the immune system (1). Although a high degree of genetic diversity is maintained within a population, genetic diversity is limited within an individual, and the variety of class II heterodimers expressed on the cell surface is dependent on combinatorial association of the α and β gene products. Two class II isotypes are expressed in the mouse, I-A ($A\alpha/A\beta$) and I-E ($E\alpha/E\beta$). Theoretically, four distinct class II α/β heterodimers could be displayed on the cell surface in homozygous mice expressing all four gene products, but constraints on α/β chain pairing limit this possible heterogeneity.

In vitro studies have shown that polymorphic residues in the NH₂-terminal 50 amino acids of the α 1 and β 1 domains largely control both inter- and intraisotypic chain pairing (2-4). In these studies, at least one mixed heterodimer $(A_{\alpha}^{b}/A_{\beta}^{k})$ was expressed on the cell surface at levels similar to those observed for haplotype-matched heterodimers, whereas other mixed heterodimers were expressed at low or barely detectable levels $(A_{\alpha}^{k}/A_{\beta}^{b}, A_{\alpha}^{k}/A_{\beta}^{d})$. In transfectants in which E_{α} , A_{α}^{d} , and A_{β}^{d} chains were allowed to compete for pairing, asymmetric chain synthesis was required for cellsurface expression of isotype-mixed E_{α}/A_{β}^{d} heterodimers (5).

In vivo, haplotype-matched α and β chains of the same isotype apparently pair more efficiently than do mixed chains. Preferential pairing of E^{u}_{α} with E^{u}_{β} results in a functionally significant decrease in $E_{\alpha}^{\alpha}/E_{\beta}^{\alpha}$ cell-surface expression in [B10.A(4R) \times B10.PL]F₁ (E_{α} $E_{\beta}^{k}/E_{\alpha}^{u}E_{\beta}^{u}$) mice (6). Mixedisotype heterodimers have been observed on the cell surface only in mice in which excess E_{α} chain is synthesized. Low levels of isotype-mixed $E_{\alpha}^{k}/A_{\beta}^{q}$ and $E_{\alpha}^{k}/A_{\beta}^{f}$ heterodimers are expressed on the cell surface in mice with defective E_β chains (7). Similarly, E_{α} protein is expressed at low levels on the cell surface in mice carrying E_{α}^{k} or E_{α}^{d} transgenes (7, 8). Although the expression of haplotype-mixed heterodimers has been documented both functionally and biochemically in $(H-2^{k/k} \times$ $H-2^{b/6}F_1$ mice (9–11), more rigid pairing constraints have been observed in transgenic mice. A_{α}^{κ} was not detected on the cell surface in association with A_{β}^{b} , A_{β}^{s} , or A_{β}^{q} in mice carrying A_{α}^{k} transgenes, and only low cell-surface levels of $A_{\alpha}^{b}/A_{\beta}^{k}$ and $A_{\alpha}^{s}/A_{\beta}^{k}$ have been observed in mice carrying A_{β}^{k} transgenes. However, high cell-surface levels of haplotype-matched A_{α}^{k} / A_{β}^{k} heterodimers have been observed in $A_{\alpha}^{k}/A_{\beta}^{k}$ doubletransgenic mice (12-14).

Collectively, these observations imply that in vivo, significant levels of mixed heterodimers are expressed on the cell surface only under conditions of asymmetric chain synthesis. We have addressed this question directly by analyzing ¹² independent lines of $H-2^{s/s}$ mice carrying from 1 to 65 copies of an A_{β}^{k} transgene. Because mRNA expression correlated well with transgene copy number, we were able to assess the effects of increasing A_{β}^{k} mRNA synthesis on chain pairing and cell-surface expression in these mice. Cell-surface expression of mixed $A_{\alpha}^{s}/A_{\beta}^{k}$ heterodimers was driven by asymmetric chain synthesis. However, the process was inefficient, and only a fraction of the chains competing for pairing reached the cell surface. This markedly reduced total Ia cell-surface levels in mice carrying >10 copies of this transgene. High copy number (extreme overexpression) of the transgene was associated with additional defects that have been described in detail elsewhere (15).

MATERIALS AND METHODS

Mice. A_{α}^{k} transgenic mice (from the A_{α}^{k} -26 line; refs. 12 and 13) were provided by Diane Mathis and Christophe Benoist. Production of the A_B^k transgenic mice has been described (15). These mice carry 1-65 copies of an 11.6-kilobase (kb) fragment of the pI-A $_{B}^{k}$ -1 genomic clone (16) containing 2–3 kb of sequence and $1-2$ kb of 3' sequence.

DNA Analysis. Mice carrying the transgene were identified by blotting (17) Bgl II-digested genomic DNA extracted from tail tissue onto Genatran (Plasco, Woburn, MA) filters. The filters were hybridized with an A_{β}^{k} cDNA clone (18) ³²Plabeled by random hexamer priming (19). Copy number was

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: NT, nontransgenic; $4R \times NT$, [B10.A(4R) \times NT]F₁; NEPHGE, nonequilibrium pH-gradient electrophoresis; mAb, monoclonal antibody.

determined by comparing the intensity of the transgene band with that of the endogenous allele or to those of BlO.A(4R) controls. DNA quantity was normalized using either the endogenous A_B^s bands or by reprobing with an A_α^k cDNA probe. Hybridization signal intensities were quantitated using an LKB Ultrascan XL laser densitometer.

RNA Extraction and Analysis. Tissues were homogenized in ⁵ M guanidine thiocyanate (Fluka), and RNA was centrifuged through a CsCl cushion following the method of Chirgwin et al. (20). RNA blot analysis was carried out following standard protocols (21).

For the RNase protection assays, an A_B^k -specific probe was constructed by cloning a 275-base pair (bp) EcoRI-Taq ^I fragment of an A_B^k cDNA clone (18), containing leader peptide and β 1 domain sequences, into the EcoRI and Acc I sites of the pGEM-1 vector. The plasmid was linearized with EcoRI, and A_{β}^{k} antisense probes were generated using SP6 polymerase purchased from Promega Biotec and [32P]CTP (SP6 grade) from Amersham. The protection assays were done according to the method of Melton et al. (22).

Monoclonal Antibodies (mAbs). mAbs 10-3.6 (anti- $A_{\beta}^{s,k,f,r,u}$; ref. 23), 40.N (anti- $A_{\beta}^{k,f,r,u}$; ref. 24), MKS4 (anti- $A_{\beta}^{s,f,u}$; ref. 25), and 4D5 (anti- $A_{\alpha}^{s,b,f,p,q,r,u,v}$; ref. 26) were grown in ascites and purified by ammonium sulfate precipitation followed by protein A chromatography. Preparations were directly fluoresceinated or biotinylated (27). Conjugated RA3-6b2 (anti-B220; ref. 28) antibody was provided by Alan Stall and Nabuko Uchida (Stanford University).

Fluorescence-Activated Cell Sorter (FACS) Analysis. FACS analysis was done essentially as described by Hayakawa et al. (29). Cells were analyzed on a dual-laser FACS IV (Becton Dickinson Immunocytometry) equipped with a logarithmic amplifier. Dead cells were excluded by propidium iodide staining.

Protein Methods. Metabolic labeling of splenocytes was done essentially as described by Jones (30). For pulse-chase experiments, 7.5×10^7 spleen cells were incubated at 10^7 cells per ml in RPMI 1640 lacking methionine (supplemented with 5% dialyzed fetal calf serum) at 37°C in 5% $CO₂$. After 1 hr, cells were incubated for 10-30 min with $600-1000 \mu$ Ci (1 Ci $=$ 37 GBq) of $[^{35}S]$ methionine (Amersham). Cells were washed in phosphate-buffered saline (PBS) containing ¹⁰ mM methionine and then incubated in complete medium containing 5-fold excess (10 mM) methionine, and samples were removed at the time points noted. Lysates were prepared in 0.5% Nonidet P40 containing protease inhibitors and stored at -70° C. Immunoprecipitation was carried out using the mAbs 40.N, 10-3.6, and MKS4 adsorbed to fixed Staphylococcus aureus. Immunoprecipitates were analyzed under reducing conditions on NaDodSO4/12.5% polyacrylamide gels.

RESULTS

mRNA Expression. From ¹⁴ founders, ¹² independent lines carrying from 1 to 65 copies of the A_{β}^{k} transgene were established (Fig. 1). RNA blot analysis using A_{β}^{k} and A_{α}^{k} cDNA probes (which detect both transgenic and endogenous transcripts) indicated that expression of A_β mRNA was elevated in mice carrying >10 copies of the transgene (Fig. 2). The ratio of A_β to A_α mRNA progressively increased from 1 to >60 in mice carrying from 1 to 65 copies of the transgene (in comparison with nontransgenic controls). The relatively low levels of A_{α} message seen in mice carrying $>$ 50 copies of the transgene reflected the significantly reduced numbers of B cells in these animals (15).

RNase protection assays using a probe that distinguishes the endogenous A_B^s transcript from the A_B^k transcript demonstrated clearly that the excess A_β mRNA was a product of the transgene (Fig. 3). The ratio of A_{β}^{k} to A_{β}^{s} message was \approx 1 in

FIG. 1. Southern blot analysis of genomic DNA from ^a representative of each A $\frac{1}{\beta}$ transgenic line. DNA was digested with Bgl II, which cleaves the A_{β}^{k} transgene once, and filters were hybridized with a full-length A_B^k cDNA clone. A_B^k line numbers are directly above each lane; transgene copy numbers are in parentheses. Control lanes
include B10.A(4R) (I-A^{k/k}) and (B10.S \times SJL)F₁ (I-A^{s/s}) DNA, and the intact 11.6-kb A_{β}^{k} genomic clone.

 $[B10.A(4R) \times nontransposenic (NT)]F₁ (4R×NT) control mice.$ In mice carrying one copy of the transgene, the ratio of A_{β}^{k} to A_B^s mRNA isolated from spleen tissue was 0.1 and progressively increased in mice carrying more copies of the transgene (Fig. 3A). Surveys of tissues from mice of several lines indicated that the transgene was coexpressed with the endogenous allele (Fig. 3B). No A_{β}^{k} message was seen in the absence of A_{β}^{s} message, and the ratio of A_{β}^{k} to A_{β}^{s} message was similar in all tissues examined within each mouse, including the thymus (data not shown).

Cell-Surface Expression. Cell-surface expression of the transgene and endogenous alleles was assessed by FACS analysis by using the mAbs MKS4, 40.N, and 10-3.6 (see Materials and Methods). mAb 40.N has been shown to recognize A_B^k in association with α chains other than A^k_{α} (31, 32), and mAb 10-3.6, which recognizes total la in these mice, can distinguish dissociated A_β chains (33). Total Ia levels were also confirmed with mAb 4D5 in several experiments (data not shown).

The A_B^k transgenic mice used for these experiments were on a B10.S \times SJL (H-2^{s/s}) background. Control mice in each experiment included NT littermates $(A_{\alpha}^{s}/A_{\beta}^{s}),$ B10.A(4R) mice $(A_{\alpha}^{k}/A_{\beta}^{k})$, and $4R \times NT$ mice $(A_{\alpha}^{k} A_{\alpha}^{s}/A_{\beta}^{k} A_{\beta}^{s})$. The mean fluorescence values of Ia on mature B cells were obtained for each reagent and normalized to those seen in $4R \times NT$ controls. Combined values obtained with mAbs MKS4 and 40.N coincided well with the value obtained for total Ia with mAb 10-3.6, and the mean fluorescence values obtained with mAb 10-3.6 on B10.A(4R), $4R \times NT$, and NT controls were quite similar (Fig. 4).

As shown in Fig. 4, low levels of A_{β}^{k} were detected on mature B cells from mice carrying from ¹ to 6 copies of the transgene. The highest cell-surface levels of A_{β}^{k} (50-70% of $4R \times NT$ values) were seen in mice carrying from 20 to 30 copies of A_{β}^{k} . However, no individual animal expressed A_{β}^{k} on the cell surface at levels equal to those observed in $4R \times NT$ control mice. In addition, cell-surface expression of the endogenous A_{β}^{s} chain was reduced significantly more than expected (to \leq 15% of nontransgenic, I-A^{s/s}, values) in mice carrying >20 copies of the transgene. Mean fluorescence values obtained with mAb 10-3.6 confirmed that cell-surface expression of total Ia was markedly reduced in these mice. A_{β}^{k} cell-surface expression varied from 10% to 40% of $4R \times NT$ levels, A_B^s was reduced to 15–30% of $4R \times NT$ levels (7–15%)

FIG. 2. Northern (RNA) blot analysis of spleen (S) RNA from A_{β}^{k} transgenic mice and controls. Fifteen micrograms of total RNA was run in each lane; liver (Li) RNA was run as ^a control. Filters hybridized with an A_B^k cDNA probe were stripped and then hybridized with A_{α}^{k} cDNA probe as noted. Copy numbers of the A_{β}^{k} mice are as follows: A_{β}^{k} -70, 20--25; A_{β}^{k} -99, 20–25; A§-92, 25–30; A§-124, 1; A§-110, 2; A§-111, 6; A_B-145, 10; A_B-40, 60–65; and A_B-105, 60-65.

of nontransgenic levels), and total Ta cell-surface expression ranged from 15% to 40% of control levels in mice carrying from 50 to 65 copies of the transgene. The reduction in cell-surface Ia did not affect cell-surface expression of other proteins. Cell-surface levels of B220, IgM, IgD, and class ^I on Ia' B cells were similar to those of controls in all transgenic lines.

The above data indicated that pairing of A_{β}^{k} with A_{α}^{s} was inefficient but could be driven by excess A_B^k mRNA and protein synthesis. Breeding A_{β}^{k} mice to A_{α}^{k} transgenic mice demonstrated that the transgene was expressed more efficiently on the cell surface when the haplotype-matched A_{α}^{k} pairing partner was present. The A_{α}^{k} mice used (from the A_{α}^{k} -26 line) carry 20 copies of A_{α}^{k} and express excess A_{α} mRNA. No A_{α}^{k} protein is expressed on the cell surface in association with either A_B^s or A_B^b , and cell-surface expression of the endogenous alleles is not affected by the excess of A_{α}^{k} mRNA expression (refs. ¹² and 13; data not shown).

We analyzed offspring from three $A_{\alpha}^{k} \times A_{\beta}^{k}$ pairs carrying 1, 10, and 65 copies of A_{β}^{k} and 20 copies of A_{α}^{k} (Fig. 4). Mice carrying 1 copy of A_{β}^{k} expressed 6% $4R \times NT$ levels of A_{β}^{k} in association with A_{α}^{s} , whereas double-transgenic mice expressed 29% $4R \times NT$ levels of A_{β}^{k} . Similarly, mice carrying 10 copies of A_B^k expressed 50% 4R ×NT levels of A_B^k in association with A_{α}^{s} but 250% 4R×NT levels when excess A_{α}^{k} was present. Finally, mice carrying 65 copies of A_B^k and 20 copies of A_{α}^{k} (in which the α chain was probably limiting) expressed 10-fold (1000%) more A_B^k on the cell surface than did $4R \times NT$ controls. These observations suggested that $A_{\alpha}^{k}/A_{\beta}^{k}$ chain pairing was four to five times more efficient than was pairing

C

FIG. 3. Comparison of A_B^k and A_B^s message levels using RNase protection. RNase protection assays were carried out using a 32P-labeled antisense probe containing 275 bp of A_B^k sequence and 20 bp of polylinker. Five to 15 μ g of total RNA was used in each lane. (A) Protection of A_{β}^{k} and A_{β}^{s} message by using spleen RNA isolated from B10.S \times SJL (I-A^{s/s}), B10.A(4R)
(I-A^{k/k}), and 4R×NT (I-A^{s/k}) control mice and A_{β}^{k} transgenic mice carrying the following copy numbers of A_B: A_B-124, 1; A_B-115, 5; A_B-92,
25–30; and A_B-40, 60–65. (B) Protection of RNA from tissues from an A_{β}^{k} -40 mouse carrying 60–65 copies of A_{β}^{k} (I), an A_{β}^{k} -111 mouse carry-
ing 6 copies of A_{β}^{k} (II), and spleen RNA from control mice (II). Br, brain; Ki, kidney; Li, liver; Lu, lung; He, heart; and Sp, spleen. Probe D, unprotected probe digested with RNase. (C) Expected protection of the A_B^k and A_B^s messages. /, Polylinker; X, expected cleavage sites.

Mean Fluorescence

FIG. 4. Relative Ia cell-surface levels on mature B cells from A_B^k transgenic mice. Mice were stained for Ia with mAb $40.N (A_{\beta}^k)$, mAb MKS4 (A_B^s) , and mAb 10-3.6 $(A_B⁸$ and $A_B⁸$; total Ia). Mean fluorescence values obtained with each reagent were normalized to those observed on $4R \times NT$ B220⁺ cells in the same experiment. mAb 40.N and mAb MKS4 mean fluorescence intensities were assigned a value of 1.0, and mAb 10-3.6 was assigned a value of 2.0 in $4R \times NT$ controls. Numbers in the table are means of all values obtained for A_{β}^{k} and $A_{\beta}^{k}/A_{\alpha}^{k}$ double-transgenic mice; when only two mice were analyzed no SEM is given. Copy numbers of the A_{β}^{k} and A_{α}^{k} transgenes are indicated at left.

of A_B^k with A_α^s . Expression of the transgene in thymic tissue and on macrophages paralleled that observed on B cells (ref. 15, data not shown).

Protein Analysis. Clearly, excess A_{β}^{k} mRNA that was translated and expressed on the cell surface in doubletransgenic mice did not reach the cell surface in single transgenic animals (Fig. 4). To determine whether excess A_{β}^{k} protein was being sequestered intracellularly in the A_B^k mice, spleen cells from representatives of each copy-number range were metabolically labeled with [³⁵S]methionine, and Ia complexes were immunoprecipitated with mAbs 40.N, MKS4, and 10-3.6. Quantitatively, the results agreed with the FACS data and appeared to reflect both decreased cellsurface expression of Ia and a reduction in the number of B cells in mice carrying >20 copies of the A_{β}^{k} transgene. No excess A_{β}^{k} protein was immunoprecipitated from the A_{β}^{k} high-copy-number lines, nor was excess A_B^k protein (or any additional protein) observed in total cell lysates analyzed by nonequilibrium pH-gradient electrophoresis (NEPHGE) (data not shown).

These observations implied that excess A_{β}^{k} protein and much of the endogenous $A_{\alpha}^{s}/A_{\beta}^{s}$ protein was being degraded intracellularly in the high-copy A_B^k mice. Pulse-chase experiments suggested that degradation occurred rapidly, before formation of epitopes recognized by the antibodies used. When spleen cells from A_B^k -92 mice (which carry 25-30 copies of A_{β}^{k}) were incubated with $[^{35}S]$ methionine for 10 min and samples were taken at 0, 10, and 20 min, no excess protein was observed at any early time point (Fig. 5A). The total amount of Ia immunoprecipitated (with a mixture of mAbs 10-3.6, 40.N, and MKS4) from the A_B^k-92 cells was consistent with the 50% reduction in cell-surface Ia and 10% reduction in B-cell number observed in these mice. This experiment was repeated several times and was confirmed in the A_B^k -145 line (which has an $\approx 40\%$ reduction in cell-surface Ia and control numbers of B cells). Thus, excess A_{β}^{k} protein appeared to be degraded before the formation of epitopes recognized by these antibodies or was folded aberrantly so that these epitopes were destroyed. mAb 10-3.6 has been shown to immunoprecipitate dissociated A_B^k chains (33) and should have immunoprecipitated all properly folded A_B^k chains present.

No significant differences in Ia turnover were observed in several experiments using several lines of mice and up to 6 hr of chase time (Fig. SB). In addition, no gross structural abnormalities in A_B^k protein structure were observed when immunoprecipitates from several lines of mice were analyzed by NEPHGE (data not shown).

DISCUSSION

Because A_{β}^{k} mRNA expression correlated with transgene copy number, we were able to assess competition of A_B^k with A_B^s for pairing with A_α^s in vivo. Excess mRNA and protein synthesis were accompanied by a significant increase in $A_{\alpha}^{s}/A_{\beta}^{k}$ cell-surface expression in mice carrying $>$ 10 copies of the transgene. Our results augment those from transfected cells in which various combinations of A_{β}^{d} , E_{β}^{d} , A_{α}^{d} , and E_{α} chains were allowed to compete for pairing and cell-surface expression (5). In this experiment, asymmetric chain synthesis drove cell-surface expression of the less favored I-A/I-E interisotypic heterodimers, although such heterodimers were not expressed under balanced (physiologic) conditions of chain synthesis.

Consistent with other studies (12, 13), pairing of the haplotype-matched A_{β}^{k} and A_{α}^{k} chains was at least 4-5 times more efficient than was pairing of A_B^k with A_α^s in our transgenic mice. Although asymmetric synthesis of A_{β}^{k} clearly resulted in increased cell-surface expression of the less favored α/β heterodimer, maximum levels of $A_{\alpha}^{s}/A_{\beta}^{k}$ were accompanied by a significant decrease in $A_{\alpha}^{s}/A_{\beta}^{s}$ expression. At best, 50-70% of $4R \times NT$ levels of A_B^k were observed on the cell surface in any line of mice. Extremely high levels of A_R^k mRNA and protein synthesis did not lead to ^a further increase in $A_{\alpha}^{s}/A_{\beta}^{k}$ cell-surface expression but rather interfered with expression of the endogenous $A_{\alpha}^{s}/A_{\beta}^{s}$ complex. These observations suggest that only relatively low levels of mixed heterodimers can be driven by asymmetric chain synthesis

Fig. 5. Immunoprecipitation of Ia from control and transgenic 3757–3761. lines of mice. (A) Spleen cells (7.5 \times 10⁷) from 4R×NT and A₈-92 mice (25-30 copies of A_{β}^{k}) were pulsed for 10 min with [³⁵S]methionine, and samples were removed at the indicated chase times. Total Ia from each sample was immunoprecipitated with a $(London)$ 306, 190–194. mixture of mAbs 40.N, MKS4, and 10-3.6. (B) Spleen cells (7.5×10^7) from $4R \times NT$, A_{α}^{k} -145 \times A_{α}^{k} -26 (10 copies A_{β}^{k} , 20 copies A_{α}^{k}), A_{β}^{k} -145 (10 copies A $_{\alpha}^{k}$) and A $_{\alpha}^{k}$ -92 (25–30 copies A $_{\alpha}^{k}$) mice were pulsed for 30 min with $[35]$ methionine, and samples were removed at the indicated chase times. Each sample was divided, and $A_{\alpha}^{s}/A_{\beta}^{s}$ and $A_{\alpha}^{s}/A_{\beta}^{k}$ complexes were immunoprecipitated with mAbs $\overline{MKS4}$ and $\overline{40.N}$. All immunoprecipitates were analyzed on 12.5% acrylamide gels, and the positions of the α , β , and invariant (i) chains are indicated at Spring Harbor, NY). right.

without a significant loss of those chains competing for pairing.

Improperly paired and unpaired proteins were not detected $\frac{115-129}{12}$. intracellularly, and pulse-chase experiments suggested that they were degraded quite rapidly. The sistent with the idea that α and β chains have relatively long half-lives and accumulate in the endoplasmic reticulum before pairing and transport; nor do they support a model in which a rate-limiting transport or processing event occurs after dimer formation (5). It was the formation of α/β 681–683. heterodimers that appeared to be limiting in the A_B^k mice, and this process was very inefficient under conditions of extreme (1983) J. Exp. Med. 157, 202-218. overexpression and asymmetric chain ^s of Ia expressed on the cell surface appeared to be limited primarily by the number of α and β chains that paired correctly. A 5- to 6-fold increase in total Ia was accommodated on the cell surface in $A_{\alpha}^{k}/A_{\beta}^{k}$ double transgenic mice.

Collectively, these mice have provided the opportunity to extend *in vitro* transfection studies of α/β chain pairing to a 130, 2277–2281.

well-defined *in vivo* system. By crossing various copy num-
 $\frac{10}{100}$ bers of the A₂^k transgene onto other haplotypes, pairing, $\frac{1}{6}$ 0 $\frac{1}{6}$ 0 $\frac{1}{6}$ 0 $\frac{1}{6}$ 0 $\frac{1}{6}$ bers of the A $\frac{1}{6}$ transgene onto other haplotypes, pairing, expression, and both qualitative and quantitative effects of various A_{α}/A_{β}^{k} heterodimers on T-cell selection and the Expression, and both qualitative and quantitative e
various A_{α}/A_{β}^{k} heterodimers on T-cell selection
response to specific antigens can also be assessed.

> We thank Ms. M. Vadeboncoeur, Ms. P. Sullivan, and Ms. D. α Louie for excellent technical assistance and Drs. H. Acha-Orbea, C. Jacob, and D. Wraith for helpful discussions. This work was sup- $\dot{\beta}$ ported by National Institutes of Health Grant AI 19512, and S.G. was supported by ^a predoctoral training grant (NIH 5T32 CA 09302) in the Cancer Biology Program.

- 1. Travers, P. & McDevitt, H. 0. (1987) in The Antigens, ed. Sela, M. 40.N $\qquad \qquad$ Academic, New York), Vol. 7, pp. 147–211.
	- 2. Braunstein, N. S. & Germain, R. H. (1987) Proc. Nati. Acad. Sci. USA 84, 2921-2925.
- $\begin{array}{ccc}\n\mathbb{E} & \mathbb{E} & \mathbb{E} \\
\mathbb{S} & \mathbb{S} & \mathbb{S} \\
\mathbb{S} & \mathbb{S} & \mathbb{S} & \mathbb{S} \\
\math$ Acad. Sci. USA 84, 8065-8069.
	- α 4. Germain, R. N., Bentley, D. M. & Quill, H. (1985) Cell 43, 233-242.
 β 5. Sant. A. J. & Germain, R. N. (1989) Cell 57, 797-805.
	- ^l 5. Sant, A. J. & Germain, R. N. (1989) Cell 57, 797-805.
		- McNicholas, J. M., Murphy, D. B., Matis, L. A., Schwartz, R. H., Lerner, E. A., Janeway, C. A., Jr., & Jones, P. P. (1982) J. Exp. Med. 155, 490-507.
	- α 7. Anderson, G. D. & David, C. S. (1989) J. Exp. Med. 170, 1003-
1008
	- $1-\beta$ 8. Mineta, T., Seki, K., Matsunaga, M. & Kimoto, M. (1990) Immunology 69, 385-390.
		- 9. Kimoto, M. & Fathman, C. G. (1980) J. Exp. Med. 152, 759-770.
10. Sredni, B., Matis, L. A., Lerner, E. A., Paul, W. E. & Schwartz. Sredni, B., Matis, L. A., Lerner, E. A., Paul, W. E. & Schwartz,
	- α R. H. (1981) J. Exp. Med. 153, 677–693.

	11. Beck. B. N., Frelinger, J. G., Shigeta. Beck, B. N., Frelinger, J. G., Shigeta, M., Infante, A. J., Cummings, D., Hammerling, G. & Fathman, C. G. (1982) J. Exp. Med. 156, 1186-1194.
		- 12. Le Meur, M., Waltzinger, C., Gerlinger, P., Benoist, C. & Mathis,
	- a

	D. (1989) J. Immunol. 142, 323-327.

	13. Fehling, H. J., van Ewijk, W., Pasquali, J. L., Waltzinger, C., Le 13. Fehling, H. J., van Ewijk, W., Pasquali, J. L., Waltzinger, C., Le
 β Meur, M., Gerlinger, P., Benoist, C. & Mathis, D. (1990) J. Immunol. 144, 2865-2874.
		- Anderson, G. D., Banerjee, S. & David, C. (1989) J. Immunol. 143, 3757-3761.
		- 15. Gilfillan, S., Aiso, S., Michie, S. A. & McDevitt, H. O. (1990) Proc. Natl. Acad. Sci. USA 87, 7319-7323.
16. Germain, R. N., Norcross, M. A. & M.
		- Germain, R. N., Norcross, M. A. & Margulies, D. H. (1983) Nature (London) 306, 190-194.
		- 17. Southern, E. M. (1975) J. Mol. Biol. 98, 503-513.
18. Estess. P., Begovich. A. B., Koo. M., Jones. P.
		- Estess, P., Begovich, A. B., Koo, M., Jones, P. P. & McDevitt, m. O. (1986) Proc. Natl. Acad. Sci. USA 83, 3594-3598.
19 Feinberg A. P. & Vogelstein B. (1983) Anal Biochem
		- 19. Feinberg, A. P. & Vogelstein, B. (1983) Anal. Biochem. 132, 6-13.
20. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. (1979) Biochemistry 18, 5294-5299.
		-
- nAbs MKS4 and 40.N. W. J. (1979) Biochemistry 18, 5294–5299.
12.5% acrylamide gels, 21. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular
Cloning: A Lahoratory Manual (Cold Spring Harbor Lah., Cold Cloning: A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY).
	- 22. Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K. & Green, M. R. (1984) Nucleic Acids Res. 12, 7035-7056.
	- 23. Oi, V. T., Jones, P. P., Goding, J. W., Herzenberg, L. A. & Herzenberg, L. A. (1978) Curr. Top. Microbiol. Immunol. 81, 115-129.
	- 24. Pierres, M., Devaux, C., Dosseto, M. & Marchetto, S. (1981) Immunogenetics 14, 481-495.
	- 25. Kappler, J. W., Skidmore, B., White, J. & Marrack, P. (1981) J. Exp. Med. 153, 1198-1214.
	- 26. Beck, B. N., Buerstedde, J.-M., Krco, C. J., Nilson, A. E., Chase, C. G. & McKean, D. J. (1986) J. Immunol. 136, 2953-2961.
	- 27. Goding, J. W. (1976) J. Immunol. Methods 13, 215-226.
	- 28. Coffman, R. L. & Weissman, I. L. (1981) Nature (London) 289,
	- 29. Hayakawa, K., Hardy, R. R., Parks, D. R. & Herzenberg, L. A. (1983) J. Exp. Med. 157, 202-218.
	- Jones, P. P. (1980) in Selected Methods of Cellular Immunology, eds. Mishell, B. & Shiigi, S. (Freeman, San Francisco), pp. 398-470.
	- 31. Frelinger, J. G., Shigela, M., Infante, A. J., Nelson, P. A., Pierres, M. & Fathman, C. G. (1984) J. Exp. Med. 159, 704-715.
32. Landais, D., Beck, B. N., Buerstedde, J.-M., Degraw.
- Landais, D., Beck, B. N., Buerstedde, J.-M., Degraw, S., Klein, ible transgenic mice.

Benoist, C. & Mathis, D. (1986) J. Immunol. 137, 3002-3005.

Senoist, C. & Mathis, D. (1986) J. Immunol. 137, 3002-3005.
	- 33. Kupinski, J. M., Plunkett, M. L. & Freed, J. H. (1983) J. Immunol.