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Abstract
Individuals of the same age may not age at the same rate. Quantitative
biomarkers of aging are valuable tools to measure physiological age, assess
the extent of ‘healthy aging’, and potentially predict health span and life span
for an individual. Given the complex nature of the aging process, the
biomarkers of aging are multilayered and multifaceted. Here, we review the
phenotypic and molecular biomarkers of aging. Identifying and using
biomarkers of aging to improve human health, prevent age-associated
diseases, and extend healthy life span are now facilitated by the fast-growing
capacity of multilevel cross-sectional and longitudinal data acquisition, storage,
and analysis, particularly for data related to general human populations.
Combined with artificial intelligence and machine learning techniques, reliable
panels of biomarkers of aging will have tremendous potential to improve human
health in aging societies.
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Introduction: Why do we need biomarkers of aging?
Aging is the time-dependent physiological functional decline that 
affects most living organisms, which is underpinned by alterations 
within molecular pathways, and is also the most profound risk fac-
tor for many non-communicable diseases. To identify biomarkers 
of aging would, on one hand, facilitate differentiation of people 
who are of the same chronological age yet have variant aging rates. 
Quantitative biomarkers of aging could also define a panel of meas-
urements for ‘healthy aging’ and, even further, predict life span. On 
the other hand, biomarkers of aging could also assist researchers 
to narrow their research scope to a specific biological facet in their 
attempts to explain the biological process behind aging or aging-
related diseases. Here, we review the phenotypic and molecular 
biomarkers of aging. Phenotypic biomarkers can be non-invasive, 
panoramic, and easy to obtain, whereas molecular biomarkers can 
reflect some of the molecular mechanisms underlying age status. 
This review is centered on humans (with mouse and nematode in 
some rare cases).

Molecular biomarkers of aging
This section is inspired by two high-impact reviews on the  
hallmarks of aging1,2. Following the framework of these reviews, 
we focus on developments since 2013. The American Federation 
for Aging Research (AFAR) has proposed the following crite-
ria for a biomarker of aging: (1) it must predict the rate of aging;  
(2) it must monitor a basic process that underlies the aging process, 
not the effects of disease; (3) it must be able to be tested repeat-
edly without harming the person; and (4) it must be something that 
works in humans and in laboratory animals.

Biomarkers fulfilling all of the criteria proposed by the AFAR are 
unlikely to exist3, so in the molecular part of this review we follow 
the first two criteria: a biomarker should predict the rate of aging, 
and it must monitor a basic process that underlies the aging process. 
For the first criterion, we required the biomarker to be correlated 
with aging; for the second criterion, we have organized the first 
part of this review according to the molecular pathways underling 
aging.

DNA and chromosomes
Telomeres. Telomeres are ribonucleoprotein complexes at the end 
of chromosomes and become shorter after each replication, as tel-
omerase, the enzyme responsible for its replication, is not regularly 
expressed in somatic cells4. The length of telomeres in leukocytes 
has been associated with aging and life span5 as well as age-related 
diseases, such as cardiovascular diseases6,7, cancer8, and neurologi-
cal disorders9.

DNA repair. The link between DNA damage and repair has been 
implicated in aging by the accumulation of senescent cells10 or 
genomic rearrangements11. More recently, this link was directly 
demonstrated, and controlled induction of DNA double-strand 
breaks in mouse liver inducing aging pathologies and gene expres-
sion was shown12. Immunohistochemistry of γ-H2A.X is an estab-
lished quantitative biomarker of aging because H2A.X is a variant 
of the H2A protein family, and phosphorylated H2A.X, γ-H2A.
X, is an initial and essential component of DNA damage foci and 

therefore a reliable marker of the extent of DNA damage13–15. Serum 
markers of DNA damage, including CRAMP, EF-1a, stathmin,  
N-acetyl-glucosaminidase, and chitinase, have also been  
established16. Of note, the dermal fibroblasts from centenarian 
donors were shown to be less sensitive to H

2
O

2
-induced DNA dam-

age than fibroblasts from young and old donors17. Such ex vivo 
experiments could also be a potential biomarker of aging.

Epigenetic modifications. Age-related changes in DNA methylation 
patterns, notably as measured by the epigenetic clock, are among 
the best-studied aging biomarkers18–20. Analysis of methylation pro-
files in the blood found that only three CpG sites could predict age 
with a mean absolute deviation from chronological age of less than 
5 years21. The association between age and DNA methylation can 
be extended to age-associated diseases, such as diabetes22. For a full 
review of the epigenetic regulation of aging, see Sen et al.23.

RNA and transcriptome
Transcriptome profiles. With rapid progress in single-cell RNA 
sequencing (RNA-seq) technology, it has begun to be applied to 
the study of biomarkers of aging. Lu et al. have recently shown that 
cell-to-cell expression variation, as measured by single-cell RNA-
seq of high-dimensional flow cytometry sorted T cells, is associated 
with aging and disease susceptibility24.

A recent study used whole-blood gene expression profiles from 
14,983 individuals to identify 1,497 genes with age-dependent  
differential expression and then used them to calculate the ‘tran-
scriptomic age’ of an individual, suggesting that transcriptome  
signatures can be used to measure aging25.

Non-coding RNAs. MicroRNAs (miRNAs) are a class of small 
(21- to 23-nucleotide) non-coding RNAs that, through base-pairing 
mechanisms, regulate a broad range of biological processes, includ-
ing metabolism26 and aging27. Among them, circulating miRNAs can 
be stable in plasma by residing in exosomes or binding to protein 
or lipoprotein factors, thus making them easy-to-access biomark-
ers. miR-34a was the first observed circulating miRNA with an 
altered expression pattern during mouse aging28. Its expression is  
found to correlate with age-related hearing loss in mice and 
humans29. miR-21 was defined as an inflammatory biomarker in a 
study of 365 miRNAs in the plasma of healthy and old humans30. 
miR-151a-3p, miR-181a-5p, and miR-1248 are reported to be sig-
nificantly decreased with age in humans, in which all three miR-
NAs also show indications of associations with inflammation31.  
miR-126-3p has been found to be positively correlated with age in 
136 healthy subjects from 20 to 90 years of age32. Through expres-
sion of GFP driven by miRNA promoters, Pincus et al. found that 
levels of mir-71, mir-246, and mir-239 in early adulthood vary 
across individuals and are predictive of life span33. A recent review27 
summarized the associations of other types of circulating non- 
coding small RNAs, such as tRNA and YRNA.

Long non-coding RNAs (lncRNAs) are a heterogeneous class of 
non-coding RNAs which are defined as transcripts longer than 
200 nucleotides and devoid of evident open reading frames34. Two 
recent reviews summarize the role of lncRNAs in aging35,36. The 
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diverse functional mechanisms of lncRNA are beyond the scope 
of this review, and readers may consult a recent review on this 
topic37; here, we list lncRNAs that function in aging. The lncRNA 
MIR31HG was identified to be upregulated in oncogene-induced 
senescence and required for polycomb group–mediated repres-
sion of the INK4A locus38. Downregulation of lncRNA AK156230 
occurs in replicative senescence and its knockdown in mouse 
embryonic fibroblasts induces senescence through dysregulation of 
autophagy and cell cycle pathways, as shown by expression pro-
files39. Meg3 is upregulated during cardiovascular aging as well as 
in senescent human umbilical venous endothelial cells40. As most of 
the lncRNAs studies have been anecdotal, high-throughput lncRNA 
studies, such as CRISPR-Cas9 screen of functional lncRNAs41, will 
be a useful future step toward understanding lncRNA functions in 
the aging process.

Metabolism
That dietary restriction is the most conserved means to extend life 
span and health span from yeast to mammals42 points to a pivotal 
role of metabolism in aging regulation and to the potential for meta-
bolic factors to be biomarkers.

Nutrient sensing. The insulin/insulin-like growth factor 1 (IGF-1) 
signaling (IIS) pathway, which participates in glucose sensing, is 
the earliest discovered and the most well-known pathway to antago-
nize longevity. Paradoxically, IGF-1 declines in wild-type mice or 
mouse models of premature aging whereas attenuating IIS activity 
extends life span43. Such observations led to the potential inclusion 
of IIS pathway members, such as growth hormone and IGF-1, as 
biomarkers of aging44,45.

The mechanistic target of rapamycin (mTOR) protein senses high 
amino acid concentrations. Inhibition of mTOR can extend life 
span46. Unlike the IIS pathway, mTOR activity increases with age 
in the ovarian surface epithelium of aged human and mouse ovaries, 
which contributes to pathological changes47. Phosphorylated S6 
ribosomal protein (p-S6RP, or pS6) is a downstream target and also 
a known marker of active mTOR signaling47,48, which is a potential 
biomarker of aging as indicated in the research of aged ovaries47.

In contrast to IIS and mTOR function, 5′-adenosine monophos-
phate (AMP)–activated protein kinase (AMPK) and sirtuins sense 
nutrient scarcity instead of abundance. AMPK detects high AMP 
levels whereas sirtuins are sensors of high NAD+ levels, and both 
mark low-energy states. The upregulation of AMPK activity by 
metformin, a drug for type II diabetes, could mimic some of the 
benefits of caloric restriction, and metformin extends life span in 
male mice49. AMPK is upregulated with age in skeletal muscles50.

Sirtuins have the ability to directly link cellular metabolic sig-
naling (reflected by NAD+) to protein post-translational modi-
fications through a chemical reaction (deacetylation of lysine).  
During aging, NAD+ is reduced51 and sirtuins are downregulated52,53. 
An analysis of primary human dermal fibroblasts found that SIRT1 
and SIRT6 are downregulated through passaging54. Similarly, levels 
of SIRT1, SIRT3, and SIRT6 detected by Western blotting showed 
significant decrease in ovaries of aged mice55. In human peripheral 
blood mononuclear cells, SIRT2 also decreases with age56.

Protein metabolism. Protein carbamylation is one of the non- 
enzymatic post-translational modifications which occur throughout 
the whole life span of an organism, leading to tissue accumulation 
of carbamylated proteins57. It is considered a hallmark of molecular 
aging and is related to aging-related diseases, such as cardiovascular  
disease58.

Advanced glycation end products (AGEs) are a heterogeneous 
group of bioactive molecules that are formed by non-enzymatic 
glycation of proteins, lipids, and nucleic acids59. Accumulation 
of AGEs in aging tissues leads to inflammation60, apoptosis61,  
obesity62, and other age-related disorders63. AGEs can be detected 
via high-performance liquid chromatography, gas chromatography-
mass spectrometry, and immunochemical techniques64. N-glycans 
are a class of glycoproteins with sugar chains bonded to the amide 
nitrogen of asparagine. The spectrum of N-linked glycans (the  
N-glycome) can now be investigated because of the development  
of high-throughput methods. The accumulation of N-linked glyca-
tion at Asn297 of the Fc portion of IgG (IgG-G0) can contribute  
to low-grade pro-inflammatory status in aging65.

Lipid metabolism. Triglycerides are found to increase monoto-
nously with age and thus could be a biomarker of aging66. Stud-
ies of serum samples by shotgun lipidomics found that phospho/ 
sphingolipids are putative markers, and biological modulators, of 
healthy aging67. However, the design of these studies is question-
able in that they have a group of elderly individuals as a ‘not healthy 
aging control’ and compare them with the ‘successful aging’ cente-
narian group67,68, but the two groups are obviously of very different 
ages. Therefore, it is not clear whether it was the age difference or 
the success of healthy aging that contributed to the differences in 
lipidomics.

Oxidative stress and mitochondria
Biomarkers of oxidative stress have long been regarded as a class 
of aging biomarkers. The products of oxidative damage to proteins 
include o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine. 8-iso pros-
taglandin F

2α is a biomarker for phospholipid damage. 8-hydroxy-
2′-deoxyguanosine and 8-hydroxyguanosine are produced by the 
oxidative damage of nucleic acids69. The concentration of these 
biomarkers in body fluids can be detected via high-performance liq-
uid chromatography and mass spectrometry. Shen et al. engineered 
a circularly permuted yellow fluorescent protein (cpYFP) expressed 
in Caenorhabditis elegans mitochondrial matrix as a sensor of oxi-
dative stress and metabolic changes; the authors found that adult 
day 3 mitochondrial cpYFP flash frequency is a good predictor of 
C. elegans life span under different genetic, environmental, and  
stochastic conditions70.

Although free radicals, the source of oxidative stress, are mainly 
produced in mitochondria, dysfunctional mitochondria can contrib-
ute to aging independently of reactive oxygen species. To meas-
ure mitochondria function, blood- and-muscle based respirometric 
profiling strategies are available, and the association of this poten-
tial reporter with bioenergetic capacity of other tissues71 or phe-
notypes, such as gait speed72, has been investigated. Extracellular 
mitochondria components can function as damage-associated 
molecular pattern molecules (DAMPs) (see also “Inflammation and 
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intercellular communication”) and these induce neuroinflammation 
when injected in mouse hippocampus73.

Cell senescence
In mitotic tissues, the gradual accumulation of senescent cells is 
thought be one of the causal factors of aging74–76. Thus, the biomar-
kers of cell senescence can also be used as markers. Such biomark-
ers have been summarized in recent reviews77,78. The most widely 
used marker is senescence-associated β-galactosidase (SAβ-gal)79 
and p16INK4A80,81. SAβ-gal reflects increased lysosomal mass82 but 
can yield false positives because of its low specificity83. SAβ-gal 
is a cell damage marker, and p16INK4A is required to induce, and is 
indicative of, permanent cell cycle arrest81.

Other senescent cell markers include activated and persistent  
DNA-damage response (see “DNA repair”), telomere shorten-
ing and dysfunction (see “Telomere”), and senescence-associated 
secretory phenotype (SASP) (see “Inflammation and intercellular 
communication”).

Inflammation and intercellular communication
SASP is a consequence of cell senescence and may occur in cells 
that, though undergoing cell cycle arrest, are still metabolically 
active and secrete proteins. SASP functions in an autocrine/para-
crine manner84,85. The major components of SASP factors are 
soluble signaling factors, including interleukins, chemokines, and 
growth factors. Proteins that are associated with the SASP, such as 
interleukin-6, tumor necrosis factor-alpha, monocyte chemoattract-
ant protein-1, matrix metalloproteinases, and IGF binding proteins, 
increase in multiple tissues with chronological aging and occur in 
conjunction with sterile inflammation86. Comprehensive catalogs 
of SASP also include secreted proteases and secreted insoluble 
proteins/extracellular matrix components and are summarized by 
Coppé et al.87 and the Reactome database (http://www.reactome.
org/content/detail/R-HSA-2559582).

The DAMPs, such as heat shock proteins, histones, high-mobility  
group box 1, and S100, compose a class of molecules released 
after injury or cellular death88 and mediate immune response. The 
association between DAMPs and other hallmarks of aging has been 
reviewed by Huang et al.89.

Phenotypic biomarkers of aging
Still following the criteria proposed by the AFAR3, here we cat-
egorize the phenotypic biomarkers of aging. It is difficult for 
phenotypic biomarkers to monitor a basic molecular process that 
underlies the aging process, so we follow three standards: a biomar-
ker should predict rate of aging, it must be able to be tested repeat-
edly without harming the person, and it monitors one or more 
physiological processes.

Physical function and anthropometry are the most practical meas-
urements among phenotypic biomarkers of aging. In this regard, 
walking speed, chair stand, standing balance, grip strength, body 
mass index, waist circumference, and muscle mass are well known90. 
These physical functional measurements, though simple, can actu-
ally perform better than DNA methylation in terms of relationship 
to health status in demographic research91.

Quantitative phenotypes of external human features also show 
significant relationships with aging92,93. Quantified facial features 
based on three-dimensional (3D) facial images, such as mouth 
width, nose width, and eye corner droop, are highly associated with 
age. In fact, 3D facial images can be used to quantify the biological 
age of an individual92.

Integration of aging biomarkers
Biomarkers of aging can be used to predict the physiological age, 
which reflects their state of health, via statistics and machine learn-
ing algorithms. A single class of biomarkers, which is intrinsically a 
matrix of features, can be used in the prediction. DNA methylation 
was used to predict age with an error of about 3.6 years using 8,000 
samples94. 3D facial images have also been used to predict age with 
a mean deviation of 6 years92.

Integration of multiple biomarkers can be even more powerful. 
The Dunedin Study91 has focused on middle-aged people and used 
different measurements (telomere lengths, epigenetic clocks, and 
clinical biomarker composites) and compared their performance 
in predicting health status, as measured by physical functional-
ity, cognitive decline, and subjective signs of aging. The three 
types of measurements in this study do not correlate with each 
other, suggesting that there is no single index of biological age. 
Therefore, another approach is to use statistic distance, D

M
95,96, to 

assess the degree of deviation of an individual’s biomarker profile 
from the reference population. D

M
 is the Mahalanobis distance97 

of multi-variants (in the simplest case, when all the variants are 
uncorrelated, this distance is the sum of the absolute values of 
z-scores), and is proven to be insensitive to biomarker choice 
across 44 available markers and to be generalizable with multiple 
marker variants. Recently, a modular ensemble of 21 deep neural  
networks was used to predict age by using measurements from 
basic blood tests by training over 60,000 samples, which revealed 
the five most important blood markers for predicting human chron-
ological age: albumin, glucose, alkaline phosphatase, urea, and 
erythrocytes98.

Conclusion and outlook
As expected from the complex nature of the aging process, aging 
biomarkers are multilayered and multifaceted and consist of a diz-
zying array of parameters, which we further summarized in an even 
more concise form as a table (Table 1). This, however, does not 
mean that they are equally useful. We need to point out that not all 
factors, although they might be involved in the underling biologi-
cal process of aging, are proven to be useful in terms of measuring 
human aging at this point.

Recently, the MARK-AGE project was announced as a large-scale 
integrated project aimed to find a powerful set of biomarkers for 
human aging based on over 3,200 subjects99. Although more details 
from this project remain to be seen, the pace of identifying and 
using biomarkers of aging to improve human health, preventing 
aging-associated diseases, and extending healthy life span will only 
be further increased by the myriad of data generated. These include 
not only data from large human cohort studies but also ordinary 
people’s genomic, functional genomic, phenotypic, and lifestyle 
data, which will be facilitated by the ever-growing capacity of data 
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Table 1. Biomarkers of aging. For species source, if there is one in humans, then other model organisms are omitted.

Biomarker 
Category

Biomarker 
Subcategory Biomarker Trend with age Species

M
o

le
cu

la
r 

b
io

m
ar

ke
rs

DNA and 
chromosome

Telomere Leukocyte telomere length Decrease Human

DNA repair γ-H2A.X immunohistochemistry Increase Human

Epigenetic 
modification DNA methylation Global hypomethylation and 

local hypermethylation Human

RNA and 
transcriptome

Transcriptome profiles

Heterogeneity of CD38 in CD4+CD27+ 
T cells Decrease Human

Heterogeneity of CD197 in CD4+CD25+ 
T cells Increase Human

Circulating microRNAs 
(miRNAs)

miR-34a, miR-21, miR-126-3p Increase Human

miR-151a-3p, miR-181a-5p, miR-1248 Decrease Human

Long non-coding 
RNAs

MIR31HG Increase in cell senescence Human

AK156230 Decrease in cell senescence Mouse

Meg3 Increase in cell senescence Human

Metabolism

Nutrient sensing

Growth hormone and insulin/insulin-
like growth factor 1 (IGF-1) Decrease Human

Mechanistic target of rapamycin 
(mTOR) and pS6RP Increase Human

NAD+, SIRT1, SIRT2, SIRT3, SIRT6 Decrease Human

Protein metabolism

Protein carbamylation, such as 
homocitrulline rate Increase Human

Advanced glycation end products 
and N-glycans Increase Human

Lipid metabolism Triglycerides Increase Human

Oxidative stress 
and mitochondria

o-tyrosine, 3-chlorotyrosine,  
3-nitrotyrosine, 8-iso prostaglandin 
F2α, 8-hydroxy-2′-deoxyguanosine, 
8-hydroxyguanosine

Increase Human

Cell senescence
Senescence-associated  
β-galactosidase Increase in cell senescence Human

p16INK4A Increase in cell senescence Human

Inflammation 
and intercellular 
communication

Senescence-associated secretory 
phenotype Increase Human

P
h

en
o

ty
p

ic
 

b
io

m
ar

ke
rs

Physical function and 
anthropometry

Walking speed, chair stand, standing 
balance, grip strength, muscle mass Decrease

Body mass index, waist circumference Increase

Facial features

Mouth width Increase

Nose width Increase

Mouth-nose distance Increase

Eye corner slope Decrease
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acquisition, storage, and analysis. It would not be far-fetched for 
there one day to be an artificial intelligence program capable of 
precise prognosis of how long a person can live, based on his or her 
quantitative measurements in a large panel of biomarkers of aging.
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