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Abstract

Arhinia, or absence of the nose, is a rare malformation of unknown etiology that is often 

accompanied by ocular and reproductive defects. Sequencing of 40 people with arhinia revealed 

that 84% of probands harbor a missense mutation localized to a constrained region of SMCHD1 
encompassing the ATPase domain. SMCHD1 mutations cause facioscapulohumeral muscular 

dystrophy type 2 (FSHD2) via a trans-acting loss-of-function epigenetic mechanism. We 

discovered shared mutations and comparable DNA hypomethylation patterning between these 

distinct disorders. CRISPR/Cas9-mediated alteration of smchd1 in zebrafish yielded arhinia-

relevant phenotypes. Transcriptome and protein analyses in arhinia probands and controls showed 

no differences in SMCHD1 mRNA or protein abundance but revealed regulatory changes in genes 

and pathways associated with craniofacial patterning. Mutations in SMCHD1 thus contribute to 

distinct phenotypic spectra, from craniofacial malformation and reproductive disorders to 

muscular dystrophy, which we speculate to be consistent with oligogenic mechanisms resulting in 

pleiotropic outcomes.

Arhinia, or the complete absence of an external nose, is a rare congenital malformation 

reported in only 80 patients without holoprosencephaly in the past century (Supplementary 

Table 1). This severe malformation can be isolated or accompanied by other craniofacial 

defects, including anophthalmia, coloboma, cataracts, nasolacrimal duct atresia, choanal 

atresia and cleft palate (Fig. 1). Seventeen patients with arhinia and ocular defects have been 

reported with coexistent hypogonadotropic hypogonadism, a triad called Bosma arhinia 
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microphthalmia syndrome (BAM; MIM603457)1. The rarity of these malformations and the 

cross-disciplinary nature of coexistent features have limited efforts to systematically catalog 

associated phenotypes, though these comorbidities suggest that the genetic architecture 

underlying this condition has broad developmental implications.

Genetic studies of arhinia have been limited to targeted approaches related to cranial neural 

crest cells (NCC) or craniofacial placodal development. To date, no causal locus has been 

identified. Homozygous null mutations in Pax6 arrest nasal placodogenesis in mice2 and (in 

PAX6) cause rudimentary or malformed noses in humans3–5, yet null mutations in PAX6 
also cause aniridia and structural brain abnormalities that are not observed in individuals 

with arhinia3–5. We formed an international consortium to aggregate all available cases and 

determine the genetic etiology of arhinia. We sequenced 40 individuals with arhinia (38 

independent families) and 55 family members without arhinia using a combination of whole-

exome, whole-genome and targeted sequencing. These analyses revealed that rare missense 

variants in SMCHD1 represent the predominant genetic contributor to arhinia. Notably, 

SMCHD1 encodes a protein with established epigenetic repressive activities that has been 

implicated in FSHD2 (MIM158901), a rare, oligogenic form of muscular dystrophy. 

Methylation studies in arhinia subjects and complementation testing of arhinia- and FSHD2-

associated variants in zebrafish (Danio rerio) revealed a common direction of allele effect in 

these disorders, a surprising observation considering their substantial differences in 

phenotype. Supporting these results, we observed the same mutations in BAM and FSHD2 

probands, as well as at least one individual that met all diagnostic criteria and displayed 

symptoms for both disorders. Given the known oligogenic architecture of FSHD2, these 

results suggest that missense variants in an evolutionarily constrained region of SMCHD1 
contribute to the diverse manifestations of arhinia, BAM and FSHD2, probably as a result of 

alteration to a critical function of the protein and/or interaction with other genomic loci.

RESULTS

Samples, phenotypes and epidemiology of arhinia

Our international consortium established a cohort of 40 subjects (38 probands and 2 affected 

siblings) that encompassed 24% of all 80 previously reported individuals and 21 new cases, 

facilitating a comprehensive phenotypic picture of arhinia and its associated comorbidities 

(Supplementary Tables 1 and 2). Six subjects were also included in an independent analysis 

by Gordon et al.6. All subjects had complete arhinia, accompanied in most cases by other 

craniofacial abnormalities, including high-arched or cleft palate, absent paranasal sinuses, 

hypoplastic maxilla, nasolacrimal duct stenosis or atresia and choanal atresia (Fig. 1), and 

41% had dysmorphic pinnae or low-set ears. Ocular phenotypes included anophthalmia or 

microphthalmia (77%), uveal coloboma (79%) and cataract (53%), and six subjects had 

normal eye anatomy and vision. Of the 31 assessable subjects (22 male; 9 female), 97% 

demonstrated hypogonadotropic hypogonadism (HH), and the seven subjects for whom 

brain MRI data were available had no olfactory structures. Fate mapping would support 

arhinia as a primary malformation, with HH representing a developmental sequence7. Ocular 

defects, which are not an obvious part of a developmental sequence with arhinia, were 
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observed in 26 of 31 individuals, indicating that 84% of subjects met BAM diagnostic 

criteria.

Gene discovery

We sequenced all 40 arhinia subjects as well as 55 family members representing six 

multiplex and 32 simplex families. We performed whole-exome sequencing (WES) on 27 

arhinia subjects and targeted sequencing in 16 subjects, and we applied both methods to 4 

probands (Online Methods and Supplementary Fig. 1). Whole-genome sequencing (WGS) 

was concurrently performed in four members of a multiplex family (family O) that included 

a proband and affected sister with BAM, a half-aunt with arhinia and relatives with 

subphenotypes including anosmia and subtle nasal and dental anomalies8,9 (Supplementary 

Fig. 1). Collectively, these analyses identified rare missense variants in SMCHD1 in 84% of 

probands (32/38), none of which were present in the Exome Aggregation Consortium10 

(ExAC, n = 60,706). To test whether this represented an unexpected accumulation of rare 

missense variants, we compared the rare mutation burden among 22,445 genes in the initial 

22 probands with WES to variants observed in ExAC (minor allele frequency (MAF) < 

0.1%). Powered by the size of our aggregate cohort, we found only one gene that achieved 

genome-wide significance: SMCHD1 (P = 2.9 × 10−17, two-sided Fisher’s exact test; odds 

ratio (OR) of 34.4 (95% CI 18.8–57.9); Fig. 2). This result was significant irrespectively of 

ethnicity (Supplementary Table 3). Notably, in an independent study, Gordon et al.6 included 

six of these probands and eight additional probands (Table 1). All SMCHD1 variants arose 

de novo from the 10 complete simplex trios, and mutations were likewise absent in 

unaffected family members from the remaining simplex families (Supplementary Fig. 1). 

Segregation of an SMCHD1 mutation was observed in all three multiplex families with 

available parental samples, including one (family T) in which the variant was inherited from 

a father who had no craniofacial abnormalities and had been contemporaneously diagnosed 

with muscular dystrophy.

SMCHD1 is highly constrained, or intolerant to loss-of-function variation (probability of 

being loss-of-function intolerant (pLI) = 1.00)11, with an estimated prevalence of 1 in 10,000 

heterozygous null individuals in ExAC. Notably, all arhinia-associated variants localized to 

exons 3–13 of SMCHD1 (Ensembl ENST00000320876.10), spanning a GHKL-type ATPase 

domain (Table 1 and Supplementary Table 2). We thus considered the possibility that this 

specific domain is intolerant to missense variation using models of regional constraint. We 

found that the entire gene is not particularly intolerant to missense variation (81% of 

expected missense variants observed; P = 0.016, two sided Z-test; Z-statistic = 2.14; 

constraint was taken from the ExAC database10 and therefore the values to calculate 95% CI 

are unavailable), but this significance is driven by strong constraint in the 5′ region that 

harbors all detected arhinia-associated variants and encompasses the ATPase domain (exons 

1–19, 61% of expected variants observed, χ2 = 32.40, P = 1.26 × 10−8; exons 20–48, 95% of 

expected variants observed, χ2 = 0.86, P = 0.36; Fig. 3). This regional constraint suggests 

that these alleles may impede protein function, and in silico prediction of pathogenicity from 

the Combined Annotation Dependent Depletion (CADD) database revealed that the 20 

arhinia-specific SMCHD1 variants were more deleterious than rare, nonsynonymous 

variants in ExAC (MAF < 0.01%, ExAC n = 378, P = 1.27 × 10−5, two-sample t-test; t = 
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4.42; Supplementary Fig. 2). However, 19 missense variants in ExAC in exons 3–13 have 

CADD scores exceeding the median arhinia score (17.03), consistent with the observation in 

arhinia families that SMCHD1 variants segregated with subtle dysmorphism, no dysmorphic 

features and muscular dystrophy. These data support our speculation that deleterious 

SMCHD1 variants are not fully penetrant, and such variants alone may not be sufficient to 

cause arhinia.

Mutational overlap between arhinia and FSHD2

SMCHD1 is an epigenetic regulator of autosomal and X-linked genes12–15. The discovery of 

an association between SMCHD1 and craniofacial development was unexpected, given that 

mutations in the gene are associated with FSHD2, a rare, trans-acting oligogenic form of 

muscular dystrophy. In FSHD2, loss of SMCHD1 repressive activity, in combination with a 

permissive D4Z4 haplotype at 4q35, allows for the ectopic expression of the transcript 

encoding the DUX4 protein, which is cytotoxic to skeletal muscle16. SMCHD1 mutations in 

FSHD2 span the entire gene and include missense and truncating variants, whereas all 

arhinia-associated missense variants clustered tightly around the ATPase domain (Fig. 3), 

which is thought to control the release of DNA bound by SMCHD1 (ref 17). However, the 

mutational distribution was not fully distinct between these disorders; several previously 

reported FSHD2-specific missense variants were localized to exons 3–13, and one causal 

variant in FSHD2 (p.Gly137Glu) was also detected in an arhinia proband (subject AG1)18. 

Neither the FSHD2 nor the arhinia subject had features of both disorders, indicating that 

these phenotypes either arise by divergent mechanisms or are influenced by additional loci.

Methylation profiles in arhinia and FSHD2

Haploinsufficiency and dominant-negative loss-of-function models have been invoked for 

SMCHD1 mutations associated with FSHD2 (ref. 18). In both models, loss of SMCHD1 

repressive activity manifests as a decrease in DNA methylation at SMCHD1 binding 

sites16,19–21. Although SMCHD1 interacts with numerous genetic loci, only the 4q35 D4Z4 

macrosatellite array, which contains DUX4, and the highly homologous 10q26 D4Z4 array 

are associated with FSHD2, and hypomethylation of these two loci is assessed during 

diagnostic evaluation22,23. To explore mechanistic overlap between arhinia and FSHD2, we 

quantified 4q35 D4Z4 methylation in 23 arhinia subjects (19 with SMCHD1 missense 

variants) and 22 family members using a bisulfite sequencing (BSS) assay specific for the 

FSHD2-affected D4Z4 arrays on 4q35 and 10q26 (ref. 23). Of these family members, four 

harbored SMCHD1 missense variants, including two individuals with anosmia, one with a 

hypoplastic nose and one with muscular dystrophy (Fig. 4 and Supplementary Table 4). We 

observed that 74% of arhinia subjects (and two of the four family members) with an 

SMCHD1 variant had D4Z4 hypomethylation characteristic of FSHD2, whereas all four 

arhinia subjects and 16 of the 18 family members without a missense SMCHD1 variant had 

normal methylation patterns. These data confirm that arhinia-specific mutations in 

SMCHD1 produce the same methylation patterning at D4Z4 as seen in FSHD2, 

demonstrating that two completely distinct phenotypes can arise from deleterious changes in 

the same gene and indeed the same alleles. We thus turned to animal models to probe the in 
vivo functional impact of SMCHD1 variants.
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In vivo modeling of SMCHD1

We evaluated the functional consequences of SMCHD1 variation using zebrafish larvae. The 

zebrafish genome encodes one SMCHD1 ortholog (49% identical, 67% similar to human) 

with a highly conserved ATPase domain (Supplementary Fig. 3). Of relevance to BAM, eye 

development is highly conserved between species, making the zebrafish a robust model to 

study microphthalmia-associated candidate genes24–26. Further, D. rerio possesses two 

GnRH paralogs that exist in humans27, and GnRH neuronal ontogeny is largely conserved 

between humans and teleosts28–30. Cognizant that there is no credible zebrafish structure 

homologous to the human nose, we evaluated facial cartilage patterning in zebrafish as a 

potential surrogate phenotype in studies of smchd1 ablation or ectopic expression.

We designed and validated two morpholino antisense oligonucleotides targeting splice donor 

sites of two smchd1 exons encoding the ATPase domain (e3i3 and e5i5, targeting exons 3 

and 5, respectively; Supplementary Fig. 3). The e3i3 or e5i5 smchd1 morpholinos were 

injected (at 3, 6 or 9 ng per embryo) into −1.4col1a1:egfp embryo batches at the one-to-two-

cell stage, and larvae were phenotyped quantitatively for aberrant cartilage patterning, ocular 

development and reproductive axis integrity 1.5–3 d after fertilization (dpf) (Fig. 5). All 

morphants demonstrated dose-dependent narrowing of the ethmoid plate (Fig. 5a,b, 

Supplementary Fig. 4a and Supplementary Table 5), a dose-dependent increase in ceratohyal 

arch angle, delayed (or absent) development of ceratobranchial arches (Fig. 5a and 

Supplementary Fig. 4b,c) and microphthalmia (tested at the 9-ng dose) (Fig. 5c,d and 

Supplementary Table 5). Moreover, ventral imaging of wholemount embryos immunostained 

with a pan-GnRH antibody revealed a prominent phenotype: morphant olfactory bulbs and 

hypothalami were intact, but the average projection length of the terminal nerve, where 

GnRH3 neurons reside, was reduced by 45% compared with controls (P = 1.35 × 10−13, 

Student’s t-test, reduced by 45%, (95% CI: 39.83–50.17)) (Fig. 5e,f and Supplementary 

Table 5). The cartilage, eye and GnRH phenotypes were highly specific; each defect was 

reproduced with both morpholinos tested and rescuable with full-length human wild-type 

(hWT) SMCHD1 mRNA (Fig. 5b,d,f, Supplementary Fig. 5 and Supplementary Table 5). To 

confirm these findings, we used CRISPR/Cas9-mediated genome editing to generate small 

insertions and deletions into exon 1 of smchd1, achieving high mosaic fractions 

(Supplementary Fig. 6). These F0 mutants recapitulated the craniofacial, ocular and GnRH 

defects observed in the morphant models (Fig. 5, Supplementary Fig. 5 and Supplementary 

Table 5).

Having established quantitative in vivo assays of disrupted smchd1 activity, we next tested 

both gain- and loss-of-function paradigms. To evaluate gain of function, we injected hWT 

SMCHD1 mRNA or equivalent doses of human mRNA bearing recurrent arhinia-associated 

variants (p.Ser135Cys, p.Leu141Phe or p.His348Arg) into zebrafish embryos; none of these 

overexpression assays yielded craniofacial phenotypes (Supplementary Fig. 7a–c and 

Supplementary Table 5). Higher doses of mutant mRNA alone and combinatorial injections 

of mutant and hWT mRNA likewise had little effect, suggesting that, in the context of this 

assay, a gain-of-function biochemical mechanism is unlikely (Supplementary Fig. 7d–f and 

Supplementary Table 5). Given that suppression of smchd1 resulted in three phenotypes 

relevant to BAM, we next performed in vivo complementation, focusing on our most 
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sensitive assay, the GnRH-positive terminal nerve length. We co-injected the e5i5 

morpholino with (i) full-length hWT SMCHD1 mRNA, (ii) human mRNA encoding one of 

three recurrent arhinia-associated variants or (iii) human mRNA encoding an FSHD2-

associated mis-sense variant (p.Pro690Ser)16. Full-length hWT SMCHD1 mRNA, but none 

of the mutant mRNAs, rescued the terminal nerve phenotype (Fig. 5 and Supplementary 

Table 5). Complementation of mRNA with a common, presumably benign, variant from 

ExAC (p.Val708Ile; rs2270692) also rescued the phenotype, supporting assay specificity. 

The likely mode of action of the arhinia-associated alleles is therefore loss of function, and 

we found no foundational differences between the arhinia-specific mutations and FSHD2-

associated alleles.

To extend these functional assays to a mammalian system, we introduced two variants, 

p.Leu141Phe and p.Glu136Asp, into mouse embryos using CRISPR/Cas9 editing. The 83 

embryos recovered carried a range of variants including WT, homozygous knock-ins, 

homozygous knockouts, compound heterozygotes and complex deletions (Supplementary 

Table 6), but no embryos harbored heterozygous knock-in of the same allele observed in 

arhinia subjects. Examination of embryos at 13.5 d after conception (dpc) using optical 

projection tomography31 revealed no morphological or growth anomalies (Supplementary 

Fig. 8). These results do not support a simple haploinsufficiency or a null mechanism in 

mammals but are consistent with previous Smchd1 knockdown studies in mice that 

demonstrated no craniofacial phenotype12,32. These observations support the idea that 

mutation of a single copy of SMCHD1 alone may be insufficient to induce pathology in 

mammals. DUX4, the gene product responsible for FSHD, is not conserved outside of Old 

World monkeys and higher primates so neither the mouse nor the zebrafish genome contains 

orthologous sequences. The partial phenocopy associated with loss of Smchd1 in the 

zebrafish would therefore appear to preclude developmental overexpression of DUX4 in the 

olfactory placode as a mechanism of arhinia.

Protein modeling

The structure of the N-terminal region of SMCHD1, where the constrained GHKL ATPase 

domain resides (amino acids 111–365), is unknown. However, the crystal structure of heat 

shock protein 90 (Hsp90), a yeast GHKL ATPase protein, is known (PDB 2CG9), and the 

SMCHD1 and Hsp90 ATPase domains are structurally similar21. We generated a structural 

model of the N-terminal region of SMCHD1 with Phyre2 (ref 33) (Fig. 6a) and found that 

the top ranking templates were Hsp90 structures (residues 115–573; strongest homology 

from residues 120–260). The structural model indicates that the arhinia-specific mutations 

tend to cluster on the protein surface, suggesting that these residues may be part of an 

interaction surface. This hypothesis is supported independently by sequence-based 

predictions of solvent accessibility, indicating that arhinia mutations tend to be exposed on 

the protein surface (Fig. 6b).

Human expression studies and protein abundance

To initially characterize arhinia-associated SMCHD1 variants in humans, we measured 

SMCHD1 protein abundance and performed RNA-seq on lymphoblastoid cell lines (LCLs). 

We extracted protein from 23 total subjects (Supplementary Fig. 1) from 10 families: 10 
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subjects with arhinia harboring SMCHD1 variants, 11 unaffected family members without 

SMCHD1 mutations and 2 family members with a mutation in SMCHD1 and anosmia or a 

hypoplastic nose (AH3 and AH5, respectively). SMCHD1 expression was generally similar 

in LCLs from all subjects, as assessed by immunoblot analysis using two different anti-

Smchd1 antibodies (Bethyl A302–872A-M and Abcam ab122555; Supplementary Fig. 9). 

We performed RNA-seq on a subset of 10 cases and 10 controls (unaffected family 

members) from the protein analysis. After confirming all mutations in the expressed 

transcripts, we found that arhinia subjects showed a slight but not significant decrease in 

SMCHD1 mRNA expression compared to controls (fold-change = 0.94, P = 0.49, 

permutated t-test) with no average difference in allelic expression of the missense variant 

compared to the reference allele (P = 0.50, paired t-test with t = 0.71, P = 0.5 (95% CI: 

-6.77–12.97)) (Supplementary Table 7). These results indicate normal message stability in 

arhinia subjects, at least in the available LCLs.

We next evaluated global patterns of differential gene expression between arhinia subjects 

and familial controls and, given the limited power of the data set for this rare condition, 

integrated these data with orthogonal ChIP and RNA-seq data from Smchd1-null mouse 

neural stem cells (NSCs)13 to identify differentially expressed genes and repeat families with 

comparable alterations in both data sets (Supplementary Figs. 10 and 11, and Supplementary 

Table 8). These data revealed an enrichment of differential expression among downregulated 

(but not upregulated) genes in humans compared to mouse at nominal thresholds 

(downregulated gene enrichment P = 0.015, one-tailed Fisher’s exact test; OR = 2.49; 

Supplementary Table 9). From these analyses emerged a high-confidence set of nine 

downregulated genes that were differentially expressed in both data sets. Pathway and 

geneset analyses of these genes revealed that, across all 6,067 human phenotypes evaluated 

in ToppGene enrichment34, only one phenotype, ‘depressed nasal tip’, achieved statistical 

significance (P = 6.9 × 10−6; Supplementary Table 10). These results were driven by four 

genes: DOK7, TGIF1, KDM6A and ICK. Biallelic mutations in DOK7 cause fetal akinesia 

deformation sequence (FADS; MIM208150), which may include depressed nasal bridge35, 

though FADS is a deformation, whereas arhinia is a malformation. Heterozygous loss-of-

function mutations in TGIF1 cause holoprosencephaly-4 (MIM142946), which may include 

arhinia, microphthalmia and cleft palate36. Mutations in KDM6A, which encodes a histone 

demethylase and methyltransferase, cause Kabuki syndrome type 2 (refs. 37,38) 

(MIM300867), and mutations in ICK, which encodes a protein kinase, cause endocrine-

cerebroosteodysplasia39 (ECO; MIM612651). Patients with Kabuki and ECO syndromes 

display characteristic facies that can include a wide or depressed nasal bridge and cleft 

palate. These data suggest that mutations in SMCHD1 result in regulatory changes of genes 

implicated in craniofacial development, and these four genes are therefore rational 

mechanistic candidates for modifiers of the arhinia phenotype in the presence of SMCHD1 
mutations.

Predicting comorbid FSHD2

This study identified variants in the 5′ constrained region of SMCHD1 that were associated 

with both FSHD2 (ref 18) and arhinia. This overlap included one identical variant 

(p.Gly137Glu), and tested hypomethylation signatures were largely indistinguishable 
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between arhinia and FSHD2 probands. To our knowledge, arhinia and FSHD2 have never 

been reported in the same individual. However, only a small subset of subjects with arhinia, 

an already rare condition, would be expected to harbor the requisite oligogenic architecture 

for FSHD2 at the D4Z4 locus, and those that do meet criteria may be too young to be 

symptomatic or may go undiagnosed because facial weakness might be overlooked in a 

patient who has undergone reconstructive craniofacial surgery. We addressed this question in 

subjects with available material in our cohort and identified two arhinia probands (A1 and 

E1) with SMCHD1 mutations who met all four clinical criteria for susceptibility to FSHD2: 

(i) an SMCHD1 pathogenic variant (p.Asn139His and p.Leu141Phe), (ii) D4Z4 

hypomethylation (bisulfite sequencing <25%), (iii) a permissive haplotype and (iv) an 11- to 

28-D4Z4 repeat unit at the 4q array16,22,40,41 (Supplementary Table 4). Phenotypic 

evaluation of A1 and E1 suggested that at least one subject had symptoms of FSHD2, 

suggesting yet another variant (p.Asn139His) shared by the disorders and implicating a 

common mechanism between disorders for these identical alleles. Five other arhinia subjects 

may be at risk for FSHD2 (on the basis of hypomethylation data), but material was not 

available for confirmatory clinical testing. Overall, these results suggest that at least two 

alterations (p.Gly137Glu and p.Asn139His), in the presence of a specific genetic 

background, can manifest as extremely divergent phenotypes.

DISCUSSION

We present genetic, genomic and functional evidence implicating SMCHD1 as the 

predominant driver of arhinia in humans. Overall, 84% of subjects harbored a missense 

mutation in a constrained region encompassing the ATPase domain of SMCHD1. Through a 

large collaborative effort, we were able to combine data from 24% of subjects reported in the 

literature with data from 21 new subjects, facilitating a uniform evaluation of the clinical 

phenotype associated with this condition and revealing that most subjects with arhinia who 

could be assessed presented with the BAM triad. These analyses represent the first evidence 

of a genetic cause for this rare craniofacial malformation and its associated reproductive 

phenotype, suggesting a novel and complex role for SMCHD1 in cranial NCC migration 

and/or craniofacial placode development.

These observations raise broader questions about the molecular mechanisms by which 

mutations in the same gene can produce distinct phenotypes. For SMCHD1, these include 

arhinia, BAM and FSHD2. Truncation variants are common in FSHD2, but missense 

variants have also been reported, whereas all arhinia-associated variants were missense 

alleles. This suggests that the mutant SMCHD1 protein must be synthesized in arhinia and 

that these mutations probably interfere with one or more critical protein functions. We found 

largely identical hypomethylation patterns at the 4q35 D4Z4 locus in arhinia and FSHD2 

probands, indicating that neither a loss nor a gain of this particular function of SMCHD1 

alone (gene silencing by methylation) explains the difference in phenotype. We also 

investigated the possibility that arhinia-associated SMCHD1 mutations inflict genome-wide 

de-repression of repeat silencing but found no significant differences (Supplementary Fig. 

10). Additional factors must therefore be involved in producing these distinct phenotypes, 

such as interactions with variants at other loci or disruption of SMCHD1 protein interactions 

that are critical to its epigenetic functions. Indeed, we found that the arhinia-specific variants 
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tend to cluster on the surface of the protein, potentially disrupting ATP or DNA binding 

and/or interfering with assembly of the SMCHD1 homodimer21. Correspondingly, results in 

peripheral tissue of arhinia probands and controls precluded models of simple 

haploinsufficiency or overexpression resulting from these mutations, further suggesting that 

the bioactivity of the protein, rather than the total amount of protein, is the critical defect in 

humans.

Distinct findings in two model systems reinforce the complexity suggested by our data in 

humans. In the zebrafish model, loss of function was sufficient to drive specific phenotypes 

that were rescued with full-length hWT SMCHD1 mRNA but not with mRNA containing 

arhinia or FSHD2 variants, and overexpression conferred no discernible phenotype. In 

mouse, complete loss of function of Smchd1 (homozygous exon 23 nonsense mutation) 

produces hypomethylation, which causes female-specific embryonic lethality12. 

Heterozygosity for this nonsense mutation likewise produces no phenotype in mice, nor did 

CRISPR/Cas9-mediated induction of homozygous or compound heterozygous deletions in 

the current study. Unfortunately, we were unable to replicate the heterozygous missense 

genotypes characteristic of human arhinia in the mouse (Supplementary Fig. 8). The fact that 

loss of Smchd1 produced distinctive phenotypes in zebrafish but not in mouse supports the 

importance of genetic background and functional interactions of the mutant protein in the 

pathogenesis of human arhinia.

The complex oligogenic architecture of FSHD2 suggests that only a small fraction of 

individuals with arhinia, an exceedingly rare condition on its own, will be at risk for FSHD2. 

Our analyses identified seven subjects potentially at risk for FSHD2, and at least one appears 

to be symptomatic. Notably, one-quarter of individuals who meet genetic criteria for FSHD2 

are clinically asymptomatic, indicating that some of the factors that mediate FSHD2 are 

unknown42. The absence of arhinia in patients with FSHD2 who harbor SMCHD1 mutations 

within the constrained ATPase domain argues that loss of SMCHD1 activity alone is 

insufficient to produce a craniofacial phenotype, comparably to mutations in DNMT3B in 

FSHD2 patients43,44. Indeed, the expressivity of this phenotype is clearly complex, as we 

observed family members harboring SMCHD1 mutations with only mild dysmorphism or 

anosmia and at least one individual without dysmorphic features. Given the epigenetic 

function of SMCHD1, it is plausible that one or more interacting loci influence 

susceptibility to arhinia. Variants at these secondary loci need not be ultra-rare: TAR 

syndrome (MIM274000)45 and SMAD6-associated craniosynostosis46 are two examples of 

severe developmental disorders caused by the combination of a rare, deleterious, frequently 

de novo mutation with a common variant. Disentangling these genetic interactions and 

biochemical consequences of SMCHD1 missense mutations will be a critical area of further 

study.

In conclusion, through an international network of collaborators we discovered that rare 

missense variants in an evolutionarily constrained region of SMCHD1 are the predominant 

cause of isolated arhinia and BAM. Using multigenerational families, we found that 

phenotypes associated with these mutations can be subtle or even absent in family members. 

The distributions of these variants and their molecular mechanisms are not fully distinct 

from those in FSHD2, and the molecular pathways leading from SMCHD1 dysfunction to 
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either arhinia or FSHD2 remain unknown. Our findings thus emphasize yet another example 

in a growing list of genes in which mutations can give rise to pleiotropic phenotypes across 

the spectrum of human anomalies. For SMCHD1, these phenotypes—a rare muscle disease 

and a severe craniofacial and reproductive disorder—are notably diverse. Identifying the 

genetic modifiers influencing SMCHD1-related disease will significantly enhance 

understanding of the pathogenesis of the arhinia–BAM–FSHD spectra and placode biology 

and, more broadly, the architecture of oligogenic disorders.

URLs

cBioPortal Mutation Mapper, http://www.cbioportal.org/mutation_mapper.jsp; Ensembl, 

http://www.ensembl.org/; Leiden Open Variation Database, http://www.lovd.nl/3.0/; Mouse 

Genome Informatics, http://www.informatics.jax.org/; RefSeq, https://

www.ncbi.nlm.nih.gov/refseq/; ExAC, http://exac.broadinstitute.org/; UCSC Genome 

Browser, https://genome.ucsc.edu/; CHOPCHOP, http://chopchop.cbu.uib.no/; OMIM, 

http://www.omim.org; Picard Tools (http://picard.sourceforge.net); BISMA (http://

services.ibc.uni-stuttgart.de/BDPC/BISMA/).

METHODS

Methods, including statements of data availability and any associated accession codes and 

references, are available in the online version of the paper.

ONLINE METHODS

Research subject enrollment

We collected existing DNA or blood samples from 40 subjects with arhinia (23 male, 17 

female). Whenever possible, DNA was also collected from family members. Phenotypic 

information was obtained via questionnaires completed by patients, parents or referring 

physicians and confirmed by review of official medical records and consultation with the 

referring physician. Reproductive axis dysfunction could not be determined in pre-pubertal 

girls or in pre-pubertal boys without congenital microphallus or cryptorchidism. All research 

was approved by the Institutional Review Board of Partners Healthcare. Informed consent 

was obtained from all subjects, of whom a subset consented to the publication of 

photographs (Fig. 1).

WES

We performed WES on 26 total probands with arhinia (WES was performed after targeted 

sequencing did not detect an SMCHD1 variant for four subjects) and 11 family members. 

The majority of participants (n = 28) were sequenced at the Broad Institute, including 21 

independent probands and 1 set of affected siblings from a consanguineous family. We also 

sequenced 6 unaffected family members at the Broad Institute (families A, D and E; 

Supplementary Fig. 1). We collected data for two families that had previous WES from the 

University of Zurich (Zurich, Switzerland; one trio (family V) and a mother-proband pair 

(family U)), as well as a trio (family T) with WES performed by GeneDx in which the 

affected proband also had a deceased great aunt with arhinia and coloboma. We also 
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received exome results for a subject (AJ1) with arhinia from the Department of Human 

Genetics at Nagasaki University. WES data were aligned with BWA-MEM v.0.7.10 to 

GRCh37 and underwent joint variant calling by GATK53 following best practices54,55. 

Familial relationships were confirmed by KING v1.4 (ref. 56), and variants were annotated 

with Annovar v.2016-02-01 (ref. 57) against the RefSeq annotation of the genome58.

WGS

We obtained samples from four members of multigenerational family O8,9 (Supplementary 

Fig. 1) and performed deep WGS to 30× average coverage on an Illumina X Ten platform. 

Family O had multiple individuals with craniofacial abnormalities beyond the proband’s 

arhinia, including a deceased maternal half aunt with arhinia, a sister with arhinia, a mother 

with anosmia and subtle nasal and dental anomalies, and a maternal grandmother with mild 

nasal and dental anomalies. Samples from the affected sister, unaffected brother and 

unaffected maternal half-aunt were obtained after WGS had been completed and were 

screened for the p.Gln345Arg variant by targeted sequencing. Variants were aligned with 

BWA-MEM v.7.7 to GRCh37, and GATK was used to call single nucleotide variants (SNVs) 

as described above.

Targeted sequencing

SMCHD1 variants discovered by WES and WGS analyses were confirmed by Sanger 

sequencing (see Supplementary Table 11 for primers) in all subjects, except T1 and AJ1, for 

whom additional DNA was not available. Initial WES analyses identified rare mutations in 

SMCHD1 restricted to exons 3, 8–10, 12 and 13. We therefore performed targeted 

sequencing of these exons in subsequent subjects (n = 15). Targeted screening found rare, 

missense SMCHD1 variants in 10/15 subjects. Of the five SMCHD1-negative subjects, 

sufficient DNA was available for four to perform WES, which identified SMCHD1 variants 

in adjacent exons for three subjects. Of interest, targeted sequencing identified one variant 

(p.Leu107Pro) in individual K1 that was missed by initial WES analyses.

Association analyses

We compared the burden of rare, nonsynonymous variants detected by WES in independent 

arhinia probands from an initial cohort with WES data (n = 21) from more than 60,706 

controls in ExAC10. Analyses were restricted to include variants that passed the following 

criteria: (i) high quality (GATK Filter = PASS); (ii) rare (ExAC MAF < 0.1%); (iii) mean 

depth ≥ 10 reads; (iv) a mapping quality ≥ 10; (v) predicted to be nonsynonymous, to alter 

splicing, or to cause a frameshift. As there was no gender bias among our arhinia subjects to 

suggest sex-linkage (42.5% female), and we could not ascertain gender from the ExAC 

database, analyses were restricted to autosomes. Counts between ExAC and the arhinia 

cohort were compared by Fisher’s exact test. Results were visualized as a Manhattan and 

QQ plot created by the R package qqman59.

Inheritance testing

For samples with a predicted de novo variant from targeted sequencing, we confirmed 

familial relationships by determining repeat length of 10 STS markers (d15s205, d12s78, 
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d4s402, d13s170, d4s414, d22s283, d13s159, d2s337, d3s1267, d12s86). Expected parental 

relationships were confirmed in all families. Inheritance for proband (P1) was similarly 

confirmed at the University of Edinburgh with the following nine markers: cfstr1, d7s480, 

dxs1214, amel, nr2e3_22, d4s2366, i1cahd, d5s629, d5s823.

Transcriptome sequencing (RNA-seq)

Total RNA from ~1 million cells was extracted from EBV-transformed lymphoblastoid cell 

lines (LCLs) using TRIzol (Invitrogen) followed by RNeasy Mini Kit (Qiagen) column 

purification. We prepared 20 strand-specific RNA-seq libraries (10 cases, 10 controls; 

Supplementary Table 7) using the Illumina TruSeq kit and the manufacturer’s instructions, 

as described60,61. Libraries were multiplexed, pooled and sequenced on multiple lanes of an 

Illumina HiSeq2500, generating an average of 46 million (46M) paired-end (PE) reads of 75 

bp per sample, of which an average 44M PE reads passed vendor quality filters. Further 

quality control of sequence reads was assessed by fastQC (v.0.10.1). Subsequently, 

sequenced reads were N-trimmed and quality trimmed using cutadapt62 (v.1.9.1) with 

options–trim-N,–quality-cutoff = 14,–minimum length = 70, which resulted in an average of 

42.2M PE reads per subject. Post-trimming sequence reads were aligned to human reference 

genome Ensembl GRCh37 (v.71) using GSNAP63 (19 December 2014 version) with options 

−N 1, −B 3,−quality-unk-mismatch = 1. Alignment quality was assessed by a custom 

script60 using Picard Tools RNASeQC64, RSeQC65 and SamTools66.

RNA-seq analyses assessed allele-specific expression for SMCHD1 variant carriers (n = 10) 

using Samtools mpileup (v.1.2) to call variants, requiring base and mapping quality >30. We 

tested for differences between allele-specific expression patterns across subjects with 

SMCHD1 mutations using paired t-tests. For differential expression between 10 arhinia 

cases and 10 unaffected familial controls, gene level counts were tabulated using BedTools’s 

multibamcov algorithm67 (v.2.17.0) on unique alignments for each library relying on 

Ensembl gene annotation68 (GRCh37 v.71). 17,097 genes met the following filtering 

criteria: (i) > 7 uniquely mapped reads, (ii) gene transcript length ≥ 250 nucleotides, (iii) not 

classified as rRNA or tRNA. A two-sample permutation test from the perm package69 (v.1.0) 

in R70 (v.3.2.2) was applied to expression values of genes (counts per million), with the 

following options: alternative = two.sided, method = exact.ce, control = permControl 

tsmethod = abs. We compared all nominally (P < 0.05) differently expressed genes with 

previously published ChIP-seq and RNA-seq data of the Smchd1-null mouse13. A complete 

list of human-to-mouse homologs was retrieved from the Mouse Genome Informatics 

database71 as of 9 August 2016. Enrichment of genes overlapping the RNA-seq and the 

ChIP-seq data was assessed with Fisher’s exact test. Pathway analysis of overlapping gene 

lists was performed using ToppFun in the ToppGene Suite34, in which genes are represented 

by unique Ensembl IDs.

Repeat element analysis (RNA-seq)

The GNSAP mapped reads from above were filtered for unique hits using the SAM flag 

NH:i:1. SAMtools (v0.1.19-44428cd) ‘sort’ was used to sort reads by coordinate and 

subsequently to remove potential PCR duplicates using ‘rmdup’. The human (hg19) repeat-

masker annotation was downloaded from the UCSC Genome Browser using ‘Table browser’ 
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and reshaped using custom R scripts (v3.1.0) to the format chr/start/stop/strand/

Repeat_name/Repeat_class/Repeat_family/unique_identifier. BEDTools (v2.23.0) 

interesectBED was used to inner join mapped reads against the hg19 repeatmasker modified 

table in Unix. Next, the R ‘table’ function was implemented to count the frequency of 

unique ID repeat elements within the intersectBed outputs. Counts from controls and 

patients were concatenated into a master table and analyzed using the R packages edgeR72 

(v3.8.6) and DESeq2 (ref. 73) (v1.18.0). Finally, beeswarm (v0.2.3) was used to plot control 

and patient median repeat levels across annotated LTR, L1, L2, Satellite and SINE repeats 

using Student’s t-test to test for significant differences between groups.

Immunoblotting

Protein was harvested from 1M LCLs in 23 total subjects: 10 subjects with arhinia and 

harboring SMCHD1 mutations, 11 unaffected family members without SMCHD1 mutations 

and two family members with a mutation in SMCHD1 and anosmia or a hypoplastic nose 

(AH3 and AH5, respectively; Supplementary Fig. 9). Protein extraction was performed with 

the following procedure. Cells were washed in 1× PBS and lysed in 300 μl ice-cold 1× RIPA 

buffer (bioWorld) supplemented with 5 mM PMSF. After 30 min incubation on ice, cell 

lysates were cleared by centrifugation (15 × g, 15 min, 4 °C) and soluble protein 

concentration was assayed with a Pierce BCA protein assay kit. Extracted proteins (15–30 

μl/sample) were next separated by 8% SDS-PAGE (Bio-Rad MiniProtean 3 Cell, 2 h 15 mA) 

and transferred onto a polyvinylidene fluoride (PVDF) membrane (Bio-Rad) using liquid 

transfer system (Bio-Rad Ready Gel Cell) at 4 °C, 10 V for 16 h. Immunoblotting was 

performed using two sets of antibodies to SMCHD1: Bethyl Laboratories A302-872A-M 

(anti-SMCHD1, C terminus) and Abcam ab122555 (anti-SMCHD1, N terminus). We used 

two loading control antibodies: Abcam ab6046 (β-tubulin loading control) and Abcam 

ab8227 (β-actin loading control). Antibody dilutions were used as recommended by 

manufacturer. Primary antibodies were diluted in TBS and Tween 20 (TBST) buffer and 1% 

BSA, secondary HRP-conjugated antibody (1:20,000 dilution) in TBST without BSA. The 

membrane was cut alongside 75 kDa marker (Bio-Rad Precision Plus Protein standards), and 

the upper part was used for SMCHD1 (molecular weight (MW) = 250 kDa), and the lower 

part for β-tubulin (MW = 50 kDa) and β-actin (MW = 42 kDa) controls. Blotting with 

primary antibody was carried out overnight at 4 °C on a rocking platform, followed by three 

10-min washes in TBST at room temperature. Blotting with secondary antibody was carried 

out at room temperature for 1 h, followed by three 10-min washes in TBST. When re-

blotting SMCHD1 with an alternative antibody, the previously used primary antibody was 

stripped off with mild stripping buffer, as recommended in Abcam’s stripping-for-reprobing 

protocol. Blots were luminesced with ECL reagent (Bio-Rad) and developed with the 

ChemiDoc MP system (Bio-Rad). Automated protein quantification was done using Image 

Lab 5.2.1 software (Bio-Rad).

CRISPR/Cas9 genome editing in mouse embryos

To generate mouse embryos carrying the p.Leu141Phe disease-associated missense variant 

in Smchd1, a double-stranded DNA oligomer that provides a template for the guide RNA 

sequence was cloned into px461 (see Supplementary Table 11). The full gRNA template 

sequence was amplified from the resulting px461 clone using universal reverse primer and 
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T7 tagged forward primers. The guide RNA PCR template was used for in vitro RNA 

synthesis with T7 RNA polymerase (New England Biolabs), and the RNA template was 

subsequently purified using an RNeasy mini kit (Qiagen) purification columns. Cas9 mRNA 

was procured from Tebu Bioscience. The wild-type and mutant repair templates for Phe141/

Leu141 (chr17:71,463,705–71,463,818 GRCm38) and Glu136/Asp136 (chr17:71,463,701–

71,463,822 GRCm38) were synthesized as 114-bp ultramers bearing the desired sequence 

change from IDT. The injection mix contained Cas9 mRNA (50 ng/μl), guide RNA (25 ng/

μl) and repair template DNA (150 ng/μl). Injections were performed in mouse zygotes, and 

the embryos were later harvested for analysis at 11.5 and 13.5 dpc.

Optical projection tomography

Whole mouse embryos were mounted in 1% agarose, dehydrated in methanol and then 

cleared overnight in BABB (1:2 benzyl alcohol:benzyl benzoate). The sample was then 

imaged using a Bioptonics OPT Scanner 3001 (Bioptonics) using tissue autofluorescence 

(excitation 425 nm, emission 475 nm) to capture the anatomy. The resulting images were 

reconstructed using Bioptonics proprietary software, automatically thresholded and merged 

to a single 3D image output using Bioptonics Viewer software.

DNA methylation analysis

The DNA methylation status of the D4Z4 region was assayed as described22. Bisulfite 

conversion was performed on 1 μg genomic DNA using the EpiTect Bisulfite Kit (Qiagen) 

per the manufacturer’s instructions, and 200 ng of converted genomic DNA was used for 

PCR. Bisulfite sequencing (BSS) analysis of 52 CpGs in the DUX4 promoter region of the 

4q and 10q D4Z4 repeats was performed using primers BSS167F and BSS1036R followed 

by nested PCR with BSS475F and BSS1036R using 10% of the first PCR product (primer 

sequences are listed in Supplementary Table 11). PCR products were cloned into the pGEM-

T Easy vector (Promega), sequenced, and analyzed using web-based analysis software 

BISMA (http://biochem.jacobs-university.de/BDPC/BISMA/)74 with the default parameters. 

Standard genomic PCR was performed on nonconverted DNA to identify the 4qA, 4qA-L 

and 4qB chromosome75. Specific 4q and 10q haplotypes were identified and assigned as 

previously described76,77. The presence of the DUX4 polyadenylation site was determined 

by BS-PCR as previously described42.

Determination of 4q35 and 10q26 D4Z4 array sizes

Peripheral blood leukocytes or cultured lymphoblasts were embedded in agarose plugs and 

digested with three different restriction enzymes (EcoRI, EcoRI/BlnI and XapI). Restriction 

fragments were separated by pulsed-field gel electrophoresis (PFGE) and visualized by 

Southern blot with a p13E-11 probe. For some subjects, the Southern blot were rehybridized 

with a D4Z4 probe78.

Gene suppression and in vivo complementation in zebrafish embryos

Splice-blocking morpholinos (MOs) targeting the Danio rerio smchd1 exon 3 splice donor 

(e3i3) or exon 5 splice donor (e5i5) were designed and synthesized by Gene Tools LLC 

(Supplementary Table 11). To determine the optimal MO dose for in vivo complementation 
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studies, we injected increasing doses (3 ng, 6 ng, and 9 ng of each MO; 1 nl MO injected per 

embryo; 1- to 2-cell stage) into −1.4col1a1:egfp79 embryos harvested from natural mating of 

heterozygous transgenic adults maintained on an AB background. To determine MO 

efficiency, we used TRIzol (Thermo Fisher) to extract total RNA from embryos at 1 dpf 

according to the manufacturer’s instructions. Resulting total RNA was reverse transcribed 

into cDNA using the Superscript III Reverse Transcriptase kit (Thermo Fisher) and used as 

template in RT-PCR reactions to amplify regions flanking MO target sites. RT-PCR products 

were gel purified using the QIAquick gel extraction kit (Qiagen), cloned (TOPO-TA; 

Invitrogen), and plasmid purified from individual colonies was Sanger sequenced according 

to standard protocols to identify the precise alteration of endogenous transcript. For rescue 

experiments, a wild-type (WT) human SMCHD1 ORF (GenBank NM_015295) construct 

was obtained commercially (OriGene Technologies) and subcloned into the pCS2+ vector. 

Point mutations were introduced into pCS2+ vectors as described80, and all vectors were 

sequence confirmed. WT and variant SMCHD1 constructs were linearized with NotI, and 

mRNA was transcribed using the mMessage mMachine SP6 transcription kit (Thermo 

Fisher). Unless otherwise noted, 9 ng MO (either e3i3 or e5i5) was used in parallel or in 

combination with 25 pg SMCHD1 mRNA for in vivo complementation studies.

CRISPR/Cas9 genome editing in zebrafish embryos

We used CHOPCHOP81 to identify a guide (g)RNA targeting a sequence within the smchd1 
coding regions (see Supplementary Table 11). gRNAs were in vitro transcribed using the 

GeneArt precision gRNA synthesis kit (Thermo Fisher) according to the manufacturer’s 

instructions. Zebrafish embryos were obtained from −1.4col1a1: egfp embryos harvested 

from natural mating of heterozygous transgenic adults maintained on an AB background; 1 

nl of injection cocktail containing 100 pg/nl gRNA and 200 pg/nl Cas9 protein (PNA Bio) 

was injected into the cell of embryos at the 1-cell stage. To determine targeting efficiency in 

founder (F0) mutants, we extracted genomic DNA from 2 dpf embryos and PCR amplified 

the region flanking the gRNA target site. PCR products were denatured, reannealed slowly 

and separated on a 15% TBE 1.0-mm precast polyacrylamide gel, which was then incubated 

in ethidium bromide and imaged on a ChemiDoc system (Bio-Rad) to visualize hetero- and 

homoduplexes. To estimate the percentage of mosaicism of smchd1 F0 mutants (n = 5), PCR 

products were gel purified (Qiagen), and cloned into a TOPO-TA vector (Thermo Fisher). 

Plasmid was prepped from individual colonies (n = 10–12 colonies/embryo) and Sanger 

sequenced according to standard procedures.

Phenotypic analyses in zebrafish

To study craniofacial structures (cartilage or eye development), larval batches were reared at 

28 °C and imaged live at 3 dpf using the Vertebrate Automated Screening Technology 

Bioimager (VAST; software version 1.2.2.8; Union Biometrica) mounted on an AxioScope 

A1 (Zeiss) microscope using an Axiocam 503 monochromatic camera and Zen Pro 2012 

software (Zeiss). Fluorescence imaging of GFP-positive cells on ventrally positioned larvae 

was conducted as described82. In parallel, we obtained lateral brightfield images of whole 

larvae using the VAST onboard camera. To evaluate gonadotropin-releasing hormone 

(GnRH) neurons, 1.5 dpf embryos were dechorionated and fixed in a solution of 4% PFA 

and 7% picric acid for 2 h at room temperature. Embryos were then washed with a solution 
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of PBS with 0.1% Triton X-100 (PBS-T) and stored at 4 °C until staining. For whole-mount 

immunostaining, embryos were washed briefly with 0.1% trypsin in PBS, washed in PBS-T 

and dehydrated at −20 °C in pre-chilled 100% acetone for 15 min. Next, embryos were 

washed in PBS-T and blocked in a solution of 2% BSA, 1% DMSO, 0.5% Triton X-100 and 

5% calf serum for 1 h at room temperature. We used rabbit anti-GnRH antibody (1:500 

dilution; Sigma-Aldrich, G8294) for primary detection. After overnight incubation of 

primary antibody, embryos were washed with blocking solution and incubated with Alexa 

Fluor 555 anti-rabbit secondary antibody (1:500; Thermo Fisher) for 2 h at room 

temperature. Images were acquired manually with an AxioZoom. V16 microscope and 

Axiocam 503 monochromatic camera and were z-stacked using Zen Pro 2012 software 

(Zeiss). Cartilage structure, eye area, and GnRH neuron projection length was measured 

using ImageJ (NIH); pairwise comparisons to determine statistical significance were 

calculated using Student’s t-test. For ceratobranchial pair counts, we used a χ2 test to 

determine statistical significance. All experiments were repeated at least twice.

Statistics and general methods

For zebrafish studies, sample size was based on prior experiments to evaluate similar 

phenotypes25,82. For mouse studies, given that we were looking for a dichotomous effect, we 

set up the CRISPR experiment with both wild-type and mutant repair template, which is our 

standard practice for modeling heterozygous variants. The gRNA was very efficient in 

targeting the locus, so >50 embryos was chosen as a reasonable number. For mouse studies, 

we scored the phenotype visually prior to genotyping. For zebrafish studies, injections and 

scoring were accomplished with the investigator blinded to the experimental condition. The 

phenotype was scored on mouse embryo dissection prior to genotyping. None of the 

embryos was thought to be craniofacially abnormal. After genotyping, we chose the 

genotypes to compare and performed optical projection tomography (OPT), which showed 

no difference.

Data availability

Sequencing data are available under dbGaP accession phs001246.v1.p1. SMCHD1 variant 

information has been deposited at ClinVar under accessions SCV000328594–

SCV000328618.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Phenotypic spectra associated with arhinia. (a–e) Five representative subjects demonstrate 

complete arhinia and variable ocular phenotypes: Subject V1 (age 2) with left-sided iris 

coloboma (a), subject AC1 (age 10) with left-sided microphthalmia and bilateral 

nasolacrimal duct stenosis (b), subject U1 (as a newborn) with normal eye anatomy and 

vision (c), subject 04 (age 16) with right-sided microphthalmia (d) and subject A1 (age 1) 

with bilateral colobomatous microphthalmia, cataracts and nasolacrimal duct atresia (e). (f–

j) Craniofacial radiographic images from subject V1: surface rendering reconstruction from 

a MRI 3D T1 weighted sequence showing complete absence of the nose (arrow) (f), 3D 

volume rendering technique (VRT) reconstruction from spiral CT showing complete absence 

of nasal bones (arrow) (g), coronal reconstruction from CT showing absence of nasal septal 

structures (h; the maxilla articulates with the nasal process of the frontal bone (arrow)), 

coronal MRI T2 weighted sequence showing absence of the olfactory bulb and olfactory 

sulcus (arrow) (i) and midline MRI sagittal T1 weighted sequence (j) showing a high-arched 

palate (cleft not visible on this image) and decreased distance between the oral cavity and 

the anterior cranial fossa (black arrow). The rudimentary nasopharynx (j, asterisk) is blind 

and air filled. The pituitary gland (j, white arrow) appears normal.
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Figure 2. 
Association analyses for rare mutation burden in arhinia Manhattan plot and quantile-

quantile (q-q) plot demonstrating the significant accumulation of rare SMCHD1 mutations 

in subjects with arhinia compared to the ExAC cohort (P = 2.9 × 10−17, Fisher’s exact test; 

OR = 34.4 (95 CI: 18.8–57.9)). Analyses established a variant count at each gene for arhinia 

subjects compared to ExAC controls (who presumably do not have arhinia; n = 60,706) after 

filtering for allele frequency (MAF < 0.1%), quality (mean depth ≥10; mapping quality ≥10) 

and predicted function (nonsynonymous, splice site and frameshift mutations). Any gene 

with at least one mutation passing these criteria was included in the analysis (n = 22,445 

genes). Genome-wide significance threshold was P < 2.2 × 10−6 after Bonferroni correction 

(red line), and only SMCHD1 exceeded this threshold.
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Figure 3. 
Arhinia-associated mutations occur near the 5′ GHKL-type ATPase domain. (a–c) The 

distribution of arhinia-associated mutations across (a) SMCHD1 is tightly clustered between 

exons 3 and 12 of the gene compared to the distribution of variants observed in FSHD2 
subjects (b) and ExAC controls (c). FSHD2 variants were taken from the Leiden Open 

Variation Database (LOVD 3.0)47. Constraint analysis revealed that the gene displays slight 

overall intolerance to missense mutations (P = 0.016), but this significance is driven by 

regional constraint across the first 19 exons of SMCHD1 (black box; χ2 = 37.73; P = 8.12 × 

10−10), which includes the GHKL-type ATPase domain (ATPase), whereas the region from 

exons 20–48 is not constrained (χ2 = 0.87; P = 0.35). SMC hinge, structural maintenance of 

chromosomes flexible hinge domain. Figures were modified from the cBioPortal Mutation 

Mapper software v1.0.1 (refs. 48,49).
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Figure 4. 
DNA methylation analysis of D4Z4 repeats. (a) Bisulfite sequencing (BSS) analysis of DNA 

hypomethylation at chromosome 4q and 10q D4Z4 repeats. DNA hypomethylation was 

consistent with dominant SMCHD1 hypomorphic mutations found in FSHD2 patients. A 

total of 52 CpGs were analyzed, arranged linearly from left to right, for 12 clones arranged 

top to bottom, each representing an independent chromosome analyzed. Each predicted CpG 

is represented by a box, with red boxes indicating methylated CpGs and blue boxes 

indicating unmethylated CpGs. (b) Cartoon of the chromosome (chr.) 4q and 10q D4Z4 

macrosatellites that vary in repeat units (RU) from 1 to ~120 RUs. The region analyzed by 

BSS in each RU is indicated by a green bar. FSHD2 requires a mutation in SMCHD1 
combined with at least one chromosome 4q D4Z4 array ranging in size from 11 to 28 RUs 

and a permissive A-type 4q sub-telomere. (c) Methylation rate determined by BSS in arhinia 

probands with SMCHD1 mutations for which material was available for analysis. 74% had 

D4Z4 hypomethylation characteristic of FSHD2, whereas the single proband tested without 

a SMCHD1 mutation showed a normal methylation pattern. BSS was measured from the 

lowest quartile as previously described22, and a methylation rate of <25% was considered 

consistent with hypomethylation observed in FSHD2. See supplementary table 4 for further 

details on individual methylation status.
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Figure 5. 
In vivo modeling of smchd1 in zebrafish. (a) Suppression of smchd1 results in altered 

cartilage structures in −1.4col1a1:egfp zebrafish larvae at 3 dpf. Representative ventral 

images of smchd1 morphants (e5i5 MO and e3i3 MO) and F0 mutant larvae (CRISPR/Cas9) 

display smaller ethmoid plates (EP, white arrow); a broadened ceratohyal angle (CH, dashed 

white line) and fewer ceratobranchial arches (CB, asterisks). A, furthest distal width; B, 

width at the ethmoid plate-trabecula junction. Orientation arrows indicate anterior (A), 

posterior (P), left (L) and right (R). Scale bar, 200 μm. (b) Ethmoid plate width measured on 
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ventral images in a. The furthest distal width (A) was normalized to the width at the ethmoid 

plate-trabecula junction (B). g, guide RNA. (c) Loss of smchd1 results in smaller eyes 

(dashed white circle); lateral bright-field images of representative 3 dpf larvae are shown. 

Scale bar, 300 μm. (d) Eye size (area) in larval batches from c. (e) Representative 

immunostaining of GnRH neurons in 1.5 dpf embryos with a pan-GnRH antibody shows 

shorter terminal nerve (TN, arrowheads and dashed white lines) projection from the 

olfactory bulb (OB) in smchd1 models. Ventral views are shown. H, hypothalamus; scale 

bar, 100 μm; dashed white lines in insets highlight TN projections. (f) Complementation 

assay of missense SMCHD1 variants using GnRH TN length as a readout. p.Ser135Cys 

(S135C), p.Leu141Phe (L141F) and p.His348Arg (H348R) are recurrent variants in arhinia 

cases; p.Pro690Ser (P690S) is associated with FSHD2 (ref. 18), and p.Val708Ile (V708I; 

rs2276092) is a common variant in ExAC. NS, not significant. All experiments were 

repeated at least twice, with masked scoring; controls were uninjected embryos from the 

same clutch. See supplementary table 5 for details about embryo numbers and statistical 

comparisons.
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Figure 6. 
SMCHD1 protein modeling predicts that arhinia-associated alterations are more likely to 

occur on the surface of SMCHD1 and disrupt a binding surface than are FSHD2-associated 

variations. (a) Homology model of the N-terminal region of SMCHD1 generated with 

Phyre2 (ref. 33) with residues altered in arhinia (red; n = 11) and FSHD2 (blue; n = 10). All 

of the top 20 structural templates had GHKL domains: 16 were Hsp90 structures, 2 were 

mismatch repair proteins (MutL, Mlh1) and 2 were type II topoisomerases. Only the 

residues modeled with high confidence are shown (115–295; 314–439; 458–491; 504–535; 

552–573). (b) Comparison of predicted relative solvent accessibility values for residues in 

the N-terminal region of SMCHD1 altered in arhinia and FSHD2. Three predictive methods 

were used: NetsurfP50, I-TASSER51 and SPIDER2 (ref. 52). Residues altered in both 

disorders (136–137) were excluded from this analysis. P values were calculated with the 

Wilcoxon rank-sum test. Box boundaries indicate interquartile range; center line, median; 

whiskers, entire range of the distribution.
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