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Abstract

Mosquito-borne diseases cause significant public health burden and are widely re-emerging or 

emerging. Understanding, predicting, and mitigating the spread of mosquito-borne disease in 

diverse populations and geographies are ongoing modelling challenges. We propose a hybrid 

network-patch model for the spread of mosquito-borne pathogens that accounts for individual 

movement through mosquito habitats, extending the capabilities of existing agent-based models 

(ABMs) to include vector-borne diseases. The ABM are coupled with differential equations 

representing ‘clouds’ of mosquitoes in patches accounting for mosquito ecology. We adapted an 

ABM for humans using this method and investigated the importance of heterogeneity in pathogen 

spread, motivating the utility of models of individual behaviour. We observed that the final 

epidemic size is greater in patch models with a high risk patch frequently visited than in a 

homogeneous model. Our hybrid model quantifies the importance of the heterogeneity in the 

spread of mosquito-borne pathogens, guiding mitigation strategies.
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1. Introduction

Predicting the spread of mosquito-borne pathogens, such as dengue virus, chikungunya 

virus, Rift Valley fever, and West Nile virus is complicated by complexity of the systems, 

lack of appropriately granular data, and computational expense of realistic models. The 

existing models for the spatial spread of mosquito-borne pathogens, while providing 

important insight into disease dynamics, often ignore either detailed host movement and/or 

explicit mosquito population dynamics to reduce complexity and computational expense 

[1,4,33,39]. These and other studies have shown that capturing host behaviour and 

movement through the mosquito environment is important and perhaps even crucial to 

understanding risk and informing mitigation efforts [1,32,34,36]. We bridge this gap by 

combining an agent-based spatial model (ABM) for host movement on a network with a 

patch-based ordinary differential equation (ODE) model that captures environmental and 

mosquito dynamics in geographic habitat patches that cover the region modelled by the 

ABM. In particular, we introduce a relatively simple methodology for extending already 

existing large-scale ABMs for hosts to include mosquito-borne disease. This ‘network-

patch’ model will help quantify the importance of heterogeneity in these components and aid 

in predicting the spread of mosquito-borne pathogens, particularly in forecasting the initial 

spread following introduction into a new location. The hybrid model described here focuses 

on the transmission dynamics of mosquito-borne pathogens, but extensions are possible to 

other arthropod vectors and zoonotic or animal vector-borne pathogens.

The network-patch methodology can be used to adapt existing ABMs for person-to-person 

transmitted diseases, such as influenza (e.g. EpiSimS [17,30], Framework for 

Reconstructing Epidemiological Dynamics (FRED) [19], DISimS [8]), to mosquito-borne 

pathogens. Similarly, ABMs for animal movement could be adapted to include mosquito-

borne pathogen spread in addition to directly transmitted pathogens. The method accounts 

for explicit spatial arrangement of mosquito habitat, the social aspects of host behaviour, and 

variations in environment and weather. Adams and Kapan [1] modelled spatial mosquito-

borne disease on a network where each network node corresponded to exactly one patch and 

where the mosquito populations did not explicitly depend on weather or landscape. We 

expand and extend their model for mosquito patches that incorporate variation in mosquito 

density, determined by biotic (e.g. vegetation, predators) and abiotic factors (e.g. 

temperature, humidity, and breeding sites) [4,39]. Perkins et al. [32] explored the idea of 

different habitat patches for various mosquito life cycle stages (blood seeking, resting, and 

oviposition) with aggregated movement of humans between patches based on proportion of 

time spent in each of the patches. We extend this idea by coupling mosquito habitat patches 

with ABMs that have already been tuned to model human behaviour and movement in a city 

or region.

There are several ABMs for mosquito-borne disease where mosquitoes are treated as 

independent agents [3,9,14,16,31]. The results of such models highlight the role of 

heterogeneity in host movement, mosquito distribution and density, and the environment in 

mosquito-borne disease spread. However, they are restricted in spatial scale by the 

computational cost of modelling each individual mosquito and host. Since relatively little 

data are available for individual mosquito host-seeking behaviour across larger scales, there 
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is significant parametric uncertainty associated with models for individual mosquitoes, 

particularly on a large scale. Our approach can easily incorporate larger host populations and 

a wider geographical area. We account for heterogeneity in disease spread on the spatial 

scale of patches, rather than the exact spatial location of the individual mosquitoes, as in the 

related research described in [5,22,25,28,41]. Our model presents a unified framework 

useful for simulating emerging epidemics, and understanding the roles of spatial, ecological, 

environmental, social, and behavioural heterogeneities in mosquito-borne diseases.

To create the network-patch model, we overlay geographic patches based on the 

environmental properties correlated with the mosquito's life cycle on a connected host 

network. The location and size of the mosquito patches is determined by landscape, 

vegetation, weather, human socioeconomic factors, land use, and availability of mosquito 

breeding sites. The level of detail used in modelling the mosquito patches will depend on 

available data and expert opinion. Many of the existing ABMs have the agents located at 

nodes based on location (e.g. office building, school, and home). For the network-patch 

model, these location nodes are assigned to a specific patch, and the activity of the 

individual is then mapped to the appropriate activity category in the patch. Each activity 

category within a patch is assigned a relative risk of being bitten by a mosquito. Figure 1 

illustrates how each patch can encompass several network nodes and edges so that any 

individual at or between nodes is exposed to the hazards in the patch.

The mosquito dynamics in each patch are simulated using systems of ODEs, as opposed to 

using an individual-based model representation for each mosquito. The ODE population 

level model is an upscaling, or homogenization, of the computationally more expensive 

models that track many individual mosquitoes. In effect, the model is a summary 

representation of the finer scale mosquito population dynamics, for which we often lack 

appropriately scaled demographic data necessary to model individual mosquitoes. The 

mosquito population in a patch depends upon the local environment, weather, and mitigation 

strategies, thus, the ODEs are based on the assumption that the mosquito dynamics take 

place on a much smaller scale than the individual dynamics of the host agents. The risk of 

being bitten by a mosquito depends upon the local mosquito density, host density, and type 

of host activities. The probability of disease transmission depends on the disease prevalence 

in the patch, the biting rate of the mosquitoes, and the susceptibility of the individuals 

(Figure 2).

We used this method to adapt an ABM for host movement on a network to vector-borne 

diseases. Simulations illustrate scenarios for which the heterogeneity of an ABM is 

important to understanding the risk of an outbreak, disease dynamics, and effective 

mitigation strategies. We show that with spatial heterogeneity in host and mosquito density, 

varying host movement rates between patches can produce different results than a standard 

ODE model or ODE multi-patch model. We are using this method to adapt a complex ABM, 

EpiSimS [30], to model mosquito-borne disease in the USA. It will also be important to 

develop techniques for analysis of this hybrid model framework, including uncertainty 

quantification, sensitivity analysis, and determining the basic and effective reproduction 

numbers. Once implemented, this method will expand the capabilities of ABMs for complex 

host movement and decision-making to include an important class of diseases.
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After developing the overall structure of the network-patch model, we describe how the 

force of infection is computed and give an approximate formulation for the basic 

reproduction number for each patch. We then present a detailed example of the methodology 

and results from simulations that illustrate the importance of accounting for host movement 

and heterogeneity in mosquito habitat for understanding and controlling mosquito-borne 

disease.

2. The model

The patch and ABMs are propagated simultaneously and coupled through the mosquito 

biting rate and disease transmission. After describing the overall framework of the ABM 

host network and ODE mosquito models, we provide a detailed description of how the 

infection spreads between the two populations. In the next section, we present a simple 

ABM to illustrate the governing principles of the network-patch model.

2.1. The agent-based host model

We follow the general idea of the ODD protocol outlined in [20] to describe the agent-based 

(or individual-based) portion of the model. Host movement is defined by an ABM on a 

network of locations and the activity of each agent is tracked during their daily activities. 

The exact implementation of host movement will depend upon the ABM being used and on 

the questions asked. In general, however, the location of each host agent is updated at chosen 

discrete time intervals based on set movement and activity rules [8,17,19,30]. At any specific 

time, each agent or individual exhibits characteristics, such as their current activity, 

susceptibility to infection, infection status, and patch location, k. The agents move between 

connected location or activity nodes as determined by an underlying movement model. The 

activity patterns might come from a complex agent-based simulation, such as EpiSimS, or a 

simple random walk algorithm where the individuals randomly change their location/activity 

at the end of each time step. This method is designed to be flexible enough to use for 

different ABMs.

2.1.1. Purpose, entities, state variables and scales of ABM—We use an ABM 

developed for host movement on a network where each node is a location. The purpose of 

the original ABM was to simulate human movement on a network in order to model directly 

transmitted infectious diseases such as influenza across various network connectivity and 

host movement regimes. The model depicts a certain number of agents representative of 

humans moving between a network of locations while spreading an infectious disease.

Each agent is assigned an initial node location. At each time step, individuals can either 

move or not move depending on the user-defined probability of movement. If the individual 

does decide to move, a node to move to is chosen. The model assumes that agents can only 

move directly to nodes with an edge connecting to the currently occupied node. The rate the 

mosquitoes become infected in a patch depends on the number of infected people at node 

locations in the patch. This in turn creates increased risk of infection for individuals based at 

nodes within the same mosquito patch. Once infected, an individual will progress to an 

exposed/incubating stage where they are infected but not yet infectious. Next, the exposed/

incubating agent will move to the infectious (and usually symptomatic) stage and, finally, to 
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a recovered/immune stage. The distribution of time spent in each of these stages is user 

defined.

2.1.2. Process overview and scheduling—The model is initialized by randomly 

connecting the chosen number of locations/nodes with probability p using an Erdös-Rényi 

graph algorithm from NetworkX [21]. Initially, the agents are randomly assigned a 

movement rate (the average rate at which a person moves to a neighbouring location), a 

current disease state (set equal to susceptible for all but a few randomly selected infected 

individuals), and a randomly chosen initial location all chosen from user-defined 

distribution. Here, the movement, incubation (time in the exposed state), and recovery (time 

in the infectious state) rates are assumed to have a lognormal distribution (Table 2).

The agents are advanced in fixed increments, Δt, in time. During a time step, the infection 

status of each individual is updated. Human movement within the model takes place at the 

end of the time step after the disease states have been updated. The movement rate ρ is 

chosen from a probability distribution M that determines the likelihood that an agent will 

change location at each time step. That is, an agent will moved to another node with 

probability Pr = 1 − e −Δtρ, where ρ is a random sample from the probability distribution 

given in Table 2. Thus, a higher movement rate indicates that an agent is more likely to 

move to another node. If an agent does move, then the node to which it moves is selected 

with uniform probability from its neighbours. The model can be tuned to any desired time 

scale. For this paper, we have chosen a time scale of days with the model updating every 6 

hours (0.25 days).

2.2. The mosquito model

The location and size of mosquito patches overlayed on the ABM can be different for 

different mosquito species. Although this can be implemented at any scale, we anticipate 

patches on the order of a building or a group of buildings (e.g. city block) when modelling a 

city or local habitat patches for animals. As hosts enter and spend time in a patch, their 

infection risk depends on the probability of being bitten by an infectious mosquito and their 

individual susceptibility to infection. The number of times an individual is bitten depends 

upon the activity they are engaged in, the number of mosquitoes and other hosts in the patch, 

and other environmental factors, such as the temperature or time of day. Activities (or 

locations) are mapped to a relative mosquito exposure parameter, α ∈ [0, 1], that defines the 

relative risk of an agent being bitten by a mosquito given an underlying risk for mosquito 

bites in the patch and the agent's activity. For example, for humans, outdoor activities might 

have a much higher biting rate than an indoor activity, especially if the building has screens 

and air conditioning. In general, risk will also depend on the mosquito species and habitat 

being considered.

We assume that the mosquito population dynamics depend on the mosquito species, 

temperature, photoperiod, and rainfall. Rainfall, or for some species, paradoxically, a lack of 

rainfall, can lead to mosquito population increases, which can lead to increased biting 

intensities experienced by humans. Mosquitoes successfully feeding on blood can lead to 

more eggs being oviposited and an increase in immature stages of mosquitoes [18,35]. 
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Temperature affects the mosquito maturation rate (egg, larva, pupae), the extrinsic 

incubation period (EIP) [6,38], and the mosquito life span [15,23]. Vegetation, sanitation, 

land use, and building density also influence the mosquito life cycle. Some mosquito 

species, including Aedes aegypti, can complete most or all of their life cycle inside a human 

dwelling, resulting in less dependence on weather and more dependence on human 

behaviour. Field studies, detailed ABMs for Aedes aegypti population dynamics (e.g. 

Skeeter Buster [24]), and differential equation mosquito-borne disease models help define 

the relevant ODE model parameters.

The adult female mosquito population is divided into three epidemiological classes, 

susceptible (S), exposed (E), and infectious (I). The female mosquitoes emerge into the 

susceptible class, Sv (where the subscript v stands for vector), and are exposed to infection 

after biting an infected human. Mosquitoes infected with the pathogen but not yet able to 

infect a susceptible human host by biting are in the exposed/incubating class. This period is 

referred to as the EIP. Once infected, a mosquito moves from incubating to infectious at the 

rate νv with average time spent in the incubating, Ev, class being 1/νv. The EIP can depend 

on temperature, strain of the pathogen, or mosquito species [38]. After the incubation period, 

the mosquito moves from the exposed class to the infectious class, Iv. The mosquito remains 

infectious for life, with an average lifespan depending on species and environmental 

conditions.

Adult female mosquitoes die at a per capita rate μv, where 1/μv is the average lifespan of an 

adult female mosquito in the given patch. This death rate can depend on exogenous factors 

such temperature, food availability, and humidity. Mitigation strategies focusing on 

increasing adult death (adulticides) can be included here via reduction of the adult female 

mosquito lifespan or chosen mosquito carrying capacity. The total adult female mosquito 

population is represented by Nv = Sv + Ev + Rv.

Each mosquito patch is characterized by the scalar parameters (Table 1) specific to that 

patch. Patches are chosen so that the mosquito dynamics can be approximated as being 

homogeneously mixed and uniformly spatially distributed within a patch. Each model 

parameter, and thus the mosquito dynamics output, can depend upon the associated habitat 

patch, denoted by a patch index k. For the full model, every variable and parameter will have 

a superscript k to denote the particular patch location. However, for simplicity of notation, 

we suppress the superscript here. Our mosquito dynamics model for a patch is described as a 

system of ODEs as follows:

(1a)

(1b)
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(1c)

The total number of adult female mosquitoes, Nv = Sv + Ev + Iv, includes all mosquitoes in 

the patch. The average force of infection to mosquitoes, λv(t) (rate of infection for each 

mosquito per unit time), in the patch is defined as the product of the average number of bites 

per mosquito, the probability that a bite is on an infectious host, and the probability of 

transmission per bite. The details of defining λv(t) will be given in the next sections.

The adult female mosquito per capita emergence function, hv(Nv, t), can be constant or vary 

with time as a function of the weather, host availability, density dependence in larvae, and 

other factors. We define emergence as hv(Nv, t) = (ψv − rvNv/Kv)Nv, where ψv is the natural 

per capita emergence rate of female mosquitoes in the absence of density dependence. This 

term depends on egg-laying rates, probability of hatching, surviving larvae and pupae stages, 

and successful emergence as adult females. Kv is the carrying capacity of the mosquitoes in 

the patch and rv = ψv − μv is the intrinsic growth rate of mosquitoes in the absence of 

density dependence. We include density dependence in the emergence function hv, rather 

than the adult mosquito death rate, because density dependence has been shown to occur in 

the aquatic larvae stage. However, the emergence rate can be simplified to be density 

independent, if desired, or adapted to a particular mosquito species or situation as needed. 

The complexity and structure of the mosquito model chosen depends upon the system 

considered and questions being asked.

Summing Equations (1), and using the definition of hv(Nv, t), the total mosquito population 

in each patch is modelled by

(2)

In addition to varying between patches, all parameters can depend on time, weather, 

mosquito species, or other factors. For example, the mosquito lifespan can depend on 

temperature, so that the mosquito per capita death rate μv = μv(T) depends on temperature T. 

This model can be adapted to include additional classes such as separate egg and larvae 

classes or several infectious classes for the mosquitoes. For some pathogens, vertical 

transmission in mosquitoes can be important. This model can also be adapted to include 

vertical transmission (see, e.g. [12] for Rift Valley fever). Vector control measures can be 

incorporated explicitly to the different life stages of the mosquito via the emergence rate, 

death rate, changing the number of mosquitoes, or patch carrying capacity. We find that the 

important time-dependent parameter variations are seasonal mosquito recruitment rate, 

seasonal biting rate, seasonal mortality rate, and a temperature-dependent seasonal EIP.

Our current model is deterministic, but stochastic variations in the environmental variables, 

mosquito populations, and infectious status can all be important, especially in the early 

stages of an emerging epidemic when there are few infected mosquitoes in a patch. In these 
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situations, the model can be modified to include these effects using approaches such as the 

one described in [2] for stochastic disease models.

2.3. Biting and infection rates

The ABM and mosquito ODE models communicate with each other through the force of 

infection parameters. In each patch k, the force of infection from mosquitoes to hosts, 

(where the subscript h refers to hosts and the subscript j refers to activity), is communicated 

to the ABM. This is used to determine the actual probability of being bitten by an infectious 

mosquito, based on each agent's activity and associated relative mosquito exposure modifier, 

αj. In the same way, the probability of a susceptible mosquito biting an infectious host in the 

patch is used to compute the mosquito force of infection, , and is communicated back 

to the ODE equations (1) via the total number of agents, , and the number of infectious 

agents, , in each patch as well as the relative mosquito exposure of each agent, αj.

2.3.1. Biting rate—The force of infection for the spread of the epidemic depends on the 

mosquito-host contact rate, or biting rate. Each location and activity in a patch will have an 

associated level of relative potential exposure to mosquitoes, αj with 0 ≤ αj ≤ 1. For 

example, if a location is outside, the potential for exposure to biting mosquitoes is high so 

we assume α = 1.0. For humans, a more moderate risk location could be a building with no 

screens, faulty screens, or no AC for which we may assume 0.5 ≤ α ≤ 1.0. Buildings with 

screens and/or AC are considered low risk so 0.0 ≤ α ≤ 0.5 is assumed. The assumptions will 

depend upon host species, mosquito species, and habitat. For example, mosquito populations 

which are ovipositing and hatching indoors may require different methods to calculate risk 

of exposure.

We define σv as the total number of (successful) bites a single mosquito would have (per 

unit time) if hosts are plentiful. This can depend upon the gonotrophic cycle length (i.e. 

process of feeding on blood, resting, and egg laying), the weather, and mosquito species. 

The number of bites a host can sustain over a given time, σh, depends on exposed skin area, 

attempts to deter biting (such as swatting and repellent), location (outside, inside with 

screens, inside with AC), and other mitigation strategies.

In a patch k,  is the total number of bites that all the mosquitoes in a patch would like 

to make per unit time and  is the maximum number of bites available to the 

mosquitoes. The variable  represents the total number of hosts in patch k, scaled by their 

availability to be bitten. If all the hosts are at full risk of being bitten (α = 1), then , 

the total number of hosts in patch k. If there are people engaged in multiple activities in a 

patch with different risks of being bitten, then . Here,  is the number of 

people in patch k engaged in activity j.

We model the total number of contacts (successful bites) between hosts and mosquitoes in 

patch k with the function [10–12,26] as
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(3)

This formula has the correct limiting behaviour as the number of mosquitoes or hosts 

approaches zero or infinity and has meaningful contact rates for any vector-to-host ratio. 

Other commonly used contact rates, such as frequency-dependent contact or density-

dependent contact, do not have the correct limiting behaviour as populations vary greatly in 

time. However, if the vector-to-host ratios are known to stay within a certain range, then any 

of these contact formulations can be tuned to give approximately the same biting rates and 

bk can be changed to the desired contact formulation.

We define  as the number of bites per mosquito per unit time in 

patch k. As the mosquito population gets low or the host population gets very large (i.e. the 

vector-to-host ratio is small), the number of bites is limited primarily by mosquito density. In 

this situation, the number of bites per mosquito is close to  and the number of bites per 

host is close to . When the mosquito population is very large or the host 

population is low (i.e. the vector-to-host ratio is high), as can occur with pronounced 

seasonality, then the number of bites on hosts can be limited by the density of hosts. In this 

case, the number of bites on a host per mosquito is close to  and the number of 

bites per host is close to  [10,11].

Similarly,  is the average number of bites per host per unit time 

and, although we assume that, on average, all the mosquitoes have the same biting rate, not 

all of the hosts are being bitten at the same rate. The average number of bites per host per 

unit time in patch k engaged in activity j per unit time is , so that 

 and the total number of bites in the patch are 

preserved.

2.3.2. Infection rates—Susceptible mosquitoes are infected at a rate  defined as the 

product of the number of bites one mosquito has per unit time, ; the probability of disease 

transmission (per bite) from an infectious host to the mosquito, βvh; and the average 

probability that the bitten host is infectious. The probability, βvh, of contracting the pathogen 

after biting an infectious host depends upon the infectiousness of the host and the 

susceptibility of the mosquito. If the bites in the patch are uniformly distributed among all 

the hosts in the patch, then the probability that the bitten host is infectious is Ih/Nh. However, 

if the probability of being bitten depends upon the activity the individual is engaged in, then 

the biting rate is not homogeneously distributed and the average probability that the bitten 

host is infectious is proportional to , where the scaled infected population in the patch 
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is defined as . Multiplying these three factors together, we have the infection 

rate for mosquitoes is

(4)

This rate is used directly in model (1), thereby coupling the ABM and the mosquito ODE 

model.

The rate at which hosts are infected from infectious mosquitoes is the product of the number 

of bites a typical host engaged in activity j gets per unit time, the probability that a bite is 

from an infectious mosquito, and the probability of successful infection given a bite from an 

infectious mosquito. This rate can be expressed as

(5)

This is approximately the risk, per unit-time, that a susceptible person engaged in activity j 
in patch k will be infected.

We advance the ABM using discrete time steps Δt, and update the disease status and location 

of people using Markov Chain techniques. The infection rate  must be converted into 

a probability, , that a susceptible person in patch k engaged in activity j becomes infected 

in a time step. We assume the time to infection is exponentially distributed, so the 

probability of infection at the end of the time interval, Δt, given that the individual was 

uninfected at the beginning of the time interval, is 1 minus the probability that the person is 

not infected, or

(6)

This probability is used by the ABM to determine whether a susceptible agent becomes 

infected in a given time step. The transition equations, and probability of transition, for the 

state of an agent are

(7a)

(7b)
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(7c)

If there are  susceptible hosts in activity j in patch k, then on each time step we generate a 

random number r ∈ [0, 1] for each susceptible host and declare the host infected if . 

This is a simple, albeit computationally inefficient, approach for infecting agents. In future 

work, we will describe more computationally efficient methods for updating an agent's 

infection status.

2.4. Reproduction number and analysis

Although we do not have an explicit formula for the coupled hybrid-patch network model, 

we can calculate the effective reproductive number for each patch. For the fully 

homogenized model, the basic reproduction number can be computed exactly via two 

quantities [12,27]. The first is the average number of hosts infected by one infectious 

mosquito introduced into a fully susceptible population, Rhv, and the second is the average 

number of mosquitoes a single infectious host would infect if introduced into a full 

susceptible population, Rvh. These quantities can then be multiplied together to form the 

type reproduction number, , which is the average number of hosts that would 

be infected (via mosquitoes) from one infected host introduced into a fully susceptible 

population. The basic reproduction number, or number of new cases in the next generation 

from one infected individual introduced in a fully susceptible population is . 

For mosquito-borne disease, the next generation for an infected host is infected mosquitoes 

and vice versa. The type reproduction number can be written for this model formulation as 

.

The effective reproduction number measures the average number of secondary cases 

resulting from an infected individual introduced into the population at any time point during 

an epidemic. It accounts for reduced susceptibility of a population over time as individuals 

become immune or are vaccinated. When a disease has reached its endemic equilibrium, the 

effective reproduction number is equal to one. The effective reproduction number can be 

approximated by multiplying the basic reproduction number by the proportion of the 

population that is currently susceptible (i.e. not infected or immune). We can then get a 

rough estimate for the effective reproduction number from host to vector, , and the 

effective reproduction number from vector to host, , for the network-patch model at 

time t in patch k as

(8)
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(9)

where the patch k superscript for the variables and parameters is suppressed. The terms , 

, , and  vary with time. However, the mosquito and disease parameters may vary with 

time as well. A full explanation for each of the non-dimensional terms in  and 

can be found in [27]. Over short periods of time, the product 

will give us an estimate for the effective type reproduction number at time t in patch k 
forRthe network patch model.

Methods for analysing and quantifying the results of ABMs for disease spread are still a 

relatively new area and there is much to be done in standardizing analysis of hybrid models 

combining ABMs with differential equations. The effective reproduction number heuristic 

shown here gives an estimate for the potential of disease spread given pathogen introduction, 

while the risk curve, pk(t), shows actual risk of acquiring disease in patch k at that specific 

time in a particular run.

3. Network-patch example

We adapt an ABM for host movement and directly transmitted disease to a mosquito-borne 

disease in order to compare the effects of host movement and environmental heterogeneity 

on mosquito-borne disease spread. We describe the model coupling method and evaluate the 

model in the context of disease modelling by comparing output for a well-mixed baseline 

scenario to the corresponding standard ODE model for both humans and mosquitoes. We 

then illustrate how the network-patch model differs from the associated homogeneous 

mixing model, even when all the hosts have the same activity or exposure parameter.

Each location/node is assigned to patch of homogeneously distributed mosquitoes. We 

define the patch node density as the fraction of total nodes that are in a particular patch. We 

assume that all of the nodes have the same relative risk of mosquito exposure, meaning there 

is only one ‘activity’, j = 1, the associated exposure risk is αj = 1, and this risk depends only 

upon the mosquito population in the patch associated with each node. Therefore, the risk of 

a person being infected, or infecting mosquitoes, depends upon the average force of 

infection,  and , for the kth patch.

The network agent-based and mosquito differential equation patch models share information 

to calculate the force of infection as functions of the biting rate, the fraction of mosquitoes 

infected, and the scaled fraction of hosts infected in each patch. This minimal 

communication between the network and patch models allows the flexibility to easily adapt 

the approach to complex ABMs, such as EpiSimS [30]. The time step used in the ABM is 

also the amount of time that the mosquito patch model is progressed between 

communications. Thus, we feed the total number of agents, total number of infected agents, 
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their associated exposure risks, and the time step being used to the mosquito patch model 

each time it is updated. The baseline risk of being bitten by an infectious mosquito is scaled 

in the patch by each agent or location's exposure risk. See Figure A5 for a flowchart of the 

ABM-patch model coupling method.

We tracked the proportion of agents infected in each patch for every time step and measured 

the contribution to overall infection burden of each patch. Finally, we tracked the risk, or 

, in each patch as well as the effective and basic reproduction number. Note that the 

risk, , depends on the time step chosen, mosquito habitat patch, relative density of 

mosquitoes and humans, and the proportion of mosquitoes in the patch that are currently 

infected.

3.1. Simulations

We consider a three-patch network as illustrated in Figure 1 for disease progression and 

mosquito parameters appropriate for dengue where the mosquito habitat and dynamics are 

determined by landscape, weather, available hosts, and breeding sites. We neglect mosquito 

movement between patches which is a reasonable assumption for Aedes aegypti mosquitoes, 

common vectors of dengue. We first establish a baseline case in order to compare different 

modelling assumptions as we incorporate heterogeneity. The model parameters (Table 1) for 

this baseline case are the same in each patch, and are constant in time. In the baseline case, 

each patch has the same density of mosquitoes and humans with the same resulting vector-

to-host ratio. A high human movement rate was used for the baseline case to approximate a 

well-mixed human population. We simulated the baseline scenario 100 times to approximate 

the distribution of possible solutions created by the inherent stochasticity of the ABM. We 

solved the approximate mean-field ODE equations for the network-patch model using the 

mean values for human disease progression parameters from the ABM. The resulting ODE 

model for both humans and mosquitoes is the Manore et al. model [27] for dengue and 

chikungunya.

Figure A1 compares an ensemble of simulations for the baseline network-patch model with 

the ODE mean-field model. Although the distribution of solutions to the stochastic ABM are 

the same in each patch, we observe some differences in the samples. The mean-field ODE 

model for humans and mosquitoes is a good approximation of the stochastic network-patch 

model in this highly-mobile, well-mixed population with identical mosquito habitat patches. 

As we expected, our network-patch model matches the standard differential equation models 

well with some variation around the mean-field approximation. This allows for meaningful 

comparison of the hybrid model with the standard non-spatial ODE models that do not 

account for individual movement.

3.2. The impact of heterogeneity

Next, we included heterogeneity in patch parameters and in vector-to-host ratios as 

described in Figure 1. Patch 1 (green) is assumed to have locations including mostly 

buildings with AC and screens and not to have many mosquito breeding sites. Mosquitoes 

here have relatively low egg-laying and survival rates on average, so there is lower risk in 

this patch. Patch 2 (blue) has more human-made and/or natural breeding sites and fewer 
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buildings with AC and screens. Thus, patch 2 has more humans at risk for mosquito bites. 

Mosquito populations in patch 2 are more robust than in patch 1 with medium density and an 

associated medium risk level. Patch 3 (red) is assumed to be prime mosquito habitat, having, 

on average, high mosquito density. Mosquito contact with humans in patch 3 is high, with 

locations consisting mostly of open air dwellings, buildings without screens, and outdoor 

locations. We assumed that patch 1 has the highest number of humans, patch 2 medium 

number of humans, and patch 3 the fewest humans.

The baseline version of the model for high human movement closely resembles results from 

a fully homogenized model with ODEs for both humans and mosquitoes (Figure A1). In this 

situation, justification for using the network-patch model rather than an ODE or stochastic 

differential equation model may be limited. However, this does provide a good baseline for 

comparison with other models and with the following scenarios that incorporate 

heterogeneity in patch parameters and host density and movement.

We considered three different host movement scenarios for heterogeneous habitat patches. 

Scenario 1 was high host movement between nodes, scenario 2 medium movement, scenario 

3 low movement, and scenario 4 very low host movement (results not shown). Mosquito 

parameter values, human density, and mosquito density varied between the three patches. 

The highest human density and lowest mosquito density is in Patch 1 (green), medium 

human density and medium mosquito density in Patch 2 (blue) and lowest human density 

and highest mosquito density in Patch 3 (red). Thus, Patch 3 has the highest vector-to-host 

ratio and Patch 1 has the lowest vector-to-host ratio. We ran each of the scenarios 100 times 

to capture inherent stochasticity in the ABM. Stochasticity in placement of initial infectious 

humans and agent movement between patches is much more visible for the heterogeneous 

scenarios. Parameter values used for the runs can be found in Tables 2 and 3.

In the high host movement rate scenario, risk varies dramatically between patches. Since 

Patch 3 (red) had a high relative density of mosquitoes, it also had the highest patch risk 

after the epidemic became established (Figure A4, bottom row). Furthermore, more hosts 

became infected in Patch 3 than in any other patch (Figure A4, middle row). However, 

because of the high movement rates, if the population in each patch was sampled at a time 

point, one would not see higher prevalence in the highest risk patch. Therefore, it would be 

difficult to determine that the high risk patch should be targeted for mitigation in the 

presence of limited public health or mosquito control resources based on human prevalence 

data alone.

For the medium host movement rate scenario, agents are less likely to visit every patch 

often, so stochasticity in the initial location of infected agents and their subsequent 

movement has a greater effect on the overall dynamics (Figure A3). Also, once an agent is in 

a patch, it is more likely to stay there since the probability of moving is lower. Prevalence in 

the high risk patch is higher than in any other patch once the epidemic takes off. In this 

scenario, unlike the high movement scenario, the location of the high risk patch could 

generally be determined by prevalence data.
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In the low (Figure A2) and very low (results not shown) host movement rate scenarios, we 

see much more heterogeneity between epidemics in the habitat patches. For example, the 

epidemic rarely peaks at the same time in the patches. This can be good from a control point 

of view, because once an epidemic is noticed in one patch, measures can be taken to reduce 

risk of spreading to the other patches. Prevalence is always higher in the high risk patch for 

the low movement scenario. Still, in the low movement case, the epidemic usually moves to 

every patch over the 200 days simulation time. For very low movement rates, the patches 

behave like separate villages with only sporadic connection between them. In the very low 

movement case, an ODE patch model with low stochastic movement rates between patches 

could probably capture the dynamics as well as the network-patch hybrid model. The 

network-patch model shows increasing sensitivity to the initially infected individual and 

their subsequent movement as patch heterogeneity increases and host movement rates are 

lower and more sporadic.

The number of people infected is higher for the heterogeneous, high and medium human 

movement scenarios than for the baseline scenario (Figure 3) because of the presence of a 

high risk patch that is visited often by most agents due to the higher movement rates. We see 

that for the baseline scenario, each patch is responsible for initially infecting about the same 

number of hosts (Figure 4). However, for the heterogeneous scenario, the high risk patch is 

responsible for a relatively high number of initial infections, suggesting again that a targeted 

response may be effective. This is despite the fact that the distribution of the estimated basic 

reproduction number in each patch is the same for all movement scenarios (Figure 5). There 

is also more variation in timing of the epidemic peak across the runs for the heterogeneous 

scenarios (Figure 6). For the high movement scenario, there is enough host movement that 

the peak of the epidemic is at approximately the same time in all patches. However, for the 

low and medium movement scenarios, the epidemic tends to peak in the high risk patch first. 

The peak number of infectious people residing in each patch at the peak of the epidemic is 

shown in Figure 7 again highlighting the tradeoff between the risk of a patch from high 

vector density and the number of hosts in the patch and/or accessibility of the patch to hosts 

moving in and out. The figures illustrate that the network-patch model will capture 

heterogeneity that would not be captured by a differential equation model for humans and 

mosquitoes.

These simulation results show that heterogeneity in host movement and spatial heterogeneity 

in mosquito density can play an important role in the spread, timing and size of mosquito-

borne pathogen epidemics. The network-patch model can capture this heterogeneity using 

the power of ABMs already tuned to particular host behaviour and landscapes. The 

importance of spatial and behavioural heterogeneity has also been observed for directly 

transmitted pathogens and in some current studies on mosquito-borne viruses such as 

dengue [7,13]. Capturing this inherent heterogeneity can be important for biosurveillance, 

mitigation, and treatment during outbreaks. This motivates the need for adapting ABMs with 

detailed host activity, behaviour, social, demographic, and geographical data to mosquito-

borne diseases as a step towards creating real time and spatially explicit risk maps and 

mitigation strategies.
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3.3. Mosquito heterogeneity across time and species

The illustrative example given above is for dengue spread in humans by one mosquito 

species, A. aegypti. We assumed constant density of mosquitoes in each patch across time. 

However, data about seasonal variation mosquito density such as in Figure 8 can be 

incorporated into the mosquito patch model by varying mosquito carrying capacities, , 

emergence rates, , and/or death rates,  with time. Methods such as parameter 

fitting or data assimilation can be used to determine how the parameters change with time, 

temperature, policy, etc. Although we used humans movement to illustrate the method, an 

ABM for cattle movement between farms and/or wild animal movement between habitat 

could be adapted to consider Rift Valley fever infection. Bird movement in urban habitat 

could couple with the mosquito patch model to model West Nile virus risk.

The network-patch framework can also incorporate multiple mosquito species in the model. 

In a mixed mosquito species scenario, one patch can have A. aegypti mosquitoes while 

another has A. albopictus or some patches could contain both species. Including two 

mosquito species will be necessary to model emergence of chikungunya, which is more 

efficiently transmitted by A. albopictus than dengue is, thus necessitating inclusion of both 

A. albopictus and A. aegypti. The two species of mosquitoes differ in traits including human 

biting rates and vector competence which can be captured by adapting the parameter values 

for the mosquito model to each species. The network-patch model can incorporate overlap 

between the species by adding equations to the patch model for an additional mosquito 

species so that areas in the city can contain both species simultaneously. For Rift Valley 

fever or West Nile virus, both Aedes and Culex mosquitoes may be important and have very 

different dynamics and responses to climate and land use. This illustrates the ability of the 

model to incorporate multiple layers of mosquito habitat and populations to include different 

mosquito species and behaviour.

4. Discussion

We describe a method for coupling an ABM for directly transmitted diseases in hosts with a 

mosquito patch model in order to model mosquito-borne diseases while capturing important 

spatial, temporal, and behavioural heterogeneity. This approach makes use of the 

considerable infrastructure already available in large ABMs and expands the scenarios under 

which these models can be used. We used the model to explore mosquito-borne virus spread 

in heterogeneous environments illustrating the utility of the network-patch approach.

The examples show that heterogeneity in mosquito habitat and host movement can change 

the dynamics of the initial spread and spatial patterns of a mosquito-borne disease. We 

investigated the importance of heterogeneity in mosquito population dynamics and host 

movement on pathogen transmission, motivating the utility of detailed models of individual 

behaviour and observed that the random mixing model only captured the dynamics of the 

high movement rate scenario. Our hybrid agent-based/differential equation model can 

quantify the importance of the heterogeneity in predicting the spread and invasion of 

mosquito-borne pathogens. We observed that the total number of infected people is greater 

in heterogeneous patch models with one high risk patch and high or medium human 
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movement than it would be in a random mixing homogeneous model. However, when there 

is low movement between patches, the scenario with one high risk patch resulted in lower 

total consequence than the baseline. Mitigation strategies can be more effective when guided 

by realistic models such as models outlined here that extend the capabilities of existing 

ABMs to include vector-borne diseases. Mitigation and prevention strategies can be 

optimized with better understanding of interactions between space, climate, and host 

movement resulting in observed heterogeneities. Future work will adapt ABMs such as the 

Epidemic Simulation System (EpiSimS) [17,29,37] and FRED [19] to model mosquito-

borne diseases such as dengue and chikungunya in areas that are at risk.

The patch approach for creating dynamic risk maps by coupling host social network and 

movement models with the environment can be adapted for other scenarios such as 

environmental contaminants or other spatially and temporally varying hazards. Feasibility of 

using this approach for the specific phenomenon being modelled is determined by the 

temporal and spatial scales at which the host agents move and progress through the disease 

as well as the spatio-temporal scales that the environmental hazards change over, whether 

the environmental hazard is mosquitoes, livestock, birds, other wildlife, etc.

In applying this framework one should keep in mind that the ODE model of risk represents a 

homogenization of a large number of random events. This is applicable in mosquito-

transmitted diseases where the vectors can be approximated as risk ‘clouds’ at some scale, 

but may be less applicable in other situations. The underlying patch model for the hazard 

being modelled could be of many different forms, including discrete, statistical, or Markov 

chain models, provided it can communicate an appropriate risk to the ABM. The mosquito 

population dynamics and disease ODE model can be adapted to multiple pathogens. 

However, the network-patch approach for coupling a mosquito model to an ABM described 

in this paper would work well for most standard homogeneous mosquito-borne disease 

models.

The hybrid network-patch model can be adapted to other mosquito-borne pathogens such as 

dengue and chikungunya, as well as pathogens spread by other arthropod vectors, such as 

lyme disease, with an appropriate underlying model for ticks. This method could also be 

adapted to zoonotic mosquito-borne diseases such as Rift Valley fever or West Nile virus and 

could be coupled with a spatial model for livestock and/or wildlife. If movement and 

heterogeneity among individual animals is important, the additional animal hosts could be 

incorporated as agents that would couple to the mosquito model or, alternatively, 

incorporated as another layer of patch ODEs. For example, a model for West Nile virus 

could be implemented by layering patches of bird habitat over a city and modelling bird 

dynamics and transmission by systems of differential equations that are coupled with the 

mosquito patches. Movement of birds (or mosquitoes) between patches could be added if 

needed. Parameters of a patch could change with time as weather or other factors affecting 

patch dynamics change, allowing for exploration of scenarios such as climate change. Patch-

specific mitigation strategies as well as social strategies when agents avoid a patch with high 

hazard rates can also be implemented.
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In conclusion, coupling ABMs for hosts with the environment extends the capability of 

existing tools to explore the role that spatial heterogeneity and host movement play in the 

emergence and spread of infectious disease, particularly mosquito-borne pathogens. We have 

presented a prototype for creating a dynamic risk map that changes with time as mosquito 

dynamics and host behaviour and movement change. In future work we will use methods 

arising in sensitivity analysis and uncertainty quantification to determine the most important 

factors in disease spread as indicated by these models. This approach can provide valuable 

insight into methods for disease control and lend important validation for simulation 

techniques.
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Figure 1. 
The network-patch model combines the detailed host movement captured by an agent-based 

spatial network model with a habitat patch model for mosquitoes. The agents in the network 

model move between locations and activities (network nodes) determined by population, 

demographics, and host behaviour. We give examples of human activities here. Animal 

activities could include foraging, drinking, and sleeping locations. Each node is associated 

with an environmental patch where the local population of infected and uninfected 

mosquitoes determine the risk of an individual becoming infected while in the patch.

Manore et al. Page 21

J Biol Dyn. Author manuscript; available in PMC 2017 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
In the female mosquito model, susceptible adults are infected at a rate λv and pass through 

the exposed compartment, Ev, to the infectious compartment, Iv. All compartments 

contribute to reproduction, and we assume the death rate is independent of the infection 

status.
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Figure 3. 
Distribution of the total number of people infected over the course of the simulation (200 

days) for each scenario. Each scenario was run 100 times to capture intrinsic uncertainty due 

to stochasticity. The pathogen is introduced into a fully susceptible population of 1500 hosts 

with no mitigations implemented. In the heterogeneous scenarios with one high risk patch 

and high or medium human movement, the total consequence is higher than for the baseline 

homogeneous scenario. However, with low movement between patches, the scenario with 

one high risk patch results in lower total consequence than the baseline.
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Figure 4. 
Distributions of the total number of hosts initially infected in each patch for the different 

scenarios. For the baseline case, all patches have the same density of mosquitoes and each 

patch is responsible for approximately the same number of initial infections. For the 

heterogeneous scenarios, red dashed is the high risk patch, green dotted the medium risk and 

blue solid the low risk patch. For high and medium host movement, the highest risk patch is 

responsible for the most infections. For the low movement scenario, the medium risk patch 

is responsible for the most infections and the low risk patch is responsible for the fewest. 

This difference from the high/medium movement scenarios can be explained by the fewer 

number of resident hosts in the high risk patch. Since movement between patches is low in 

the low movement scenario, the high risk patch runs out of susceptible hosts faster.
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Figure 5. 
Distributions for the estimated basic reproduction number for each patch. For the baseline 

case, R0 ≈ 1.7 while in the heterogeneous cases, in the low risk patch R0 is just above 1, in 

the medium risk R0 is approximately 2 and in the high risk patch, R0 is just under 4. Notice 

that the basic reproduction number distribution (estimated as the effective reproduction 

number computed at the first time step for each run) is very similar among the 

heterogeneous scenarios. However, heterogeneity in movement patterns between patches 

results in different total consequence for each scenario as seen in Figure 4.
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Figure 6. 
Distributions for the timing of the peak of the epidemic in each patch. For the low and 

medium movement scenarios, the high risk patch peaks before the other patches in general. 

For the high movement case and the baseline case, the patches reach the epidemic peak at 

approximately the same time. The low movement scenario has the most variation is 

epidemic timing.
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Figure 7. 
Distributions for the number of people who are infectious at the time of the epidemic peak in 

each patch. This is highly dependent on both patch risk and the movement patterns between 

the patches. The baseline and medium movement scenarios are the most similar for this 

metric, while the low and high movement rates have opposite patterns. This is again a 

reflection of the tradeoff between the risk of a patch from high vector density and the 

number of hosts in the patch and/or accessibility of the patch to hosts moving in and out.
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Figure 8. 
Example of seasonality in mosquito populations from New Orleans mosquito trap data [40]. 

Mosquito carrying capacities, emergence and/or death rates can be adjusted to follow 

seasonal patterns.
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Table 1

Parameters for the mosquito patch model and their dimensions. The range of parameter values and references 

are given in a table with the numerical simulations.

ψv: Per capita emergence rate of adult female mosquitoes (Time–1).

μv: Per capita death rate of adult female mosquitoes (Time–1).

Kv: Maximum number ofmosquitoes in the patch (Mosquitoes).

σv: Number of times one mosquito would want to bite a host per unit time, if hosts were freely available. This is a function of the mosquito's 
gonotrophic cycle (the amount of time a mosquito requires to produce eggs) (Time–1 ).

σh: The maximum number of mosquito bites an average host can sustain per unit time. This is a function of the host's exposed surface area, 
the efforts it takes to prevent mosquito bites, and any vector control interventions in place to kill mosquitoes or prevent bites (Time–1).

βhv: Probability of transmission of infection from an infectious mosquito to a susceptible host given that a contact between the two occurs 
(Dimensionless).

βvh: Probability of transmission of infection from an infectious host to a susceptible mosquito given that a contact between the two occurs 
(Dimensionless).

νv: Per capita rate of progression of mosquitoes from the exposed state to the infectious state. 1/νv is the average duration of the latent 
period (Time–1).
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Table 2

Patch parameters: the parameter values for the simulations experiments in Figures 3-7.

Parameter Value (P1, P2, P3) Explanation

Baseline

σh (19, 19, 19) Maximum bites on a human per day

Kv (1000, 1000, 1000) Mosquito carrying capacity

Patch density 1
3 , 1

3 , 1
3

Fraction of locations per patch

Movement rate ln 𝒩 μ, σ2
, mean = 1, var. = 0.001 Average number oflocation changes per day

Heterogeneous patch, high movement

σh (5, 19, 30) Maximum bites on a human per day

Kv (750, 1500, 3750) Mosquito carrying capacity

Patch density 1
2 , 1

3 , 1
6

Fraction of locations per patch

Movement rate ln 𝒩 μ, σ2
, mean = 1, var. = 0.001 Average number of location changes per day

Heterogeneous patch, medium movement

σh (5, 19, 30) Maximum bites on a human per day

Kv (750, 1500, 3750) Mosquito carrying capacity

Patch density 1
2 , 1

3 , 1
6

Fraction of locations per patch

Movement rate ln 𝒩 μ, σ2
, mean = 0.1, var. = 0.001 Average number of location changes per day

Heterogeneous patch, low movement

σh (5, 19, 30) Maximum bites on a human per day

Kv (750, 1500, 3750) Mosquito carrying capacity

Patch density 1
2 , 1

3 , 1
6

Fraction of locations per patch

Movement rate ln 𝒩 μ, σ2
, mean = 0.01, var. = 0.001 Average number of location changes per day

Heterogeneous patch, very low movement

σh (5, 19, 30) Maximum bites on a human per day

Kv (750, 1500, 3750) Mosquito carrying capacity

Patch density 1
2 , 1

3 , 1
6

Fraction of locations per patch

Movement rate ln 𝒩 μ, σ2
, mean = 0.001, var. = 0.001 Average number of location changes per day

Notice, for the simulations in the heterogeneous scenarios only the movement rate changes.
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Table 3

Patch parameters: the parameter values used for all numerical experiments.

All Experiments

Parameter Value (P1, P2, P3) Explanation

ψv (0.3, 0.3, 0.3) Emergence rate of female mosquitoes

σv (0.5, 0.5, 0.5) Max mosquito bite demand per day

βhv (0.33, 0.33, 0.33) Probability of M-to-H transmission

βvh (0.33, 0.33, 0.33) Probability of H-to-M transmission

νv (0.1, 0.1, 0.1) Mosquito E-to-I rate

μv 1
14 , 1

14 , 1
14

Mosquito death rate

rv ψv – μv all patches Intrinsic growth rate

Patch-independent parameters

Total number oflocations 300 Distributed among patches by density

Edge probability 0.03 Prob. two locations connect

Total human pop. 1500 Distributed equally among locations

Initial infected % 0.5% % initially infected per patch

Recovery rate ln 𝒩 μ, σ2
, mean = 1

6 , var. = 0.001
Avg. human recovery of 6 days

Incubation rate ln 𝒩 μ, σ2
, mean = 1

5 , var. = 0.001
Avg. human E-to-I of 5 days

Total simulation time 200 days

ABM time step 0.25 days

Mosquito r-k time step 0.005 days
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