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Abstract

In a large-scale genetic association study, the number of phenotyped individuals available for 

sequencing may, in some cases, be greater than the study’s sequencing budget will allow. In that 

case, it can be important to prioritize individuals for sequencing in a way that optimizes power for 

association with the trait. Suppose a cohort of phenotyped individuals is available, with some 

subset of them possibly already sequenced, and one wants to choose an additional fixed-size 

subset of individuals to sequence in such a way that the power to detect association is maximized. 

When the phenotyped sample includes related individuals, power for association can be gained by 

including partial information, such as phenotype data of ungenotyped relatives, in the analysis, and 

this should be taken into account when assessing whom to sequence. We propose G-STRATEGY, 

which uses simulated annealing to choose a subset of individuals for sequencing that maximizes 

the expected power for association. In simulations, G-STRATEGY performs extremely well for a 

range of complex disease models and outperforms other strategies with, in many cases, relative 

power increases of 20–40% over the next best strategy, while maintaining correct type 1 error. G-

STRATEGY is computationally feasible even for large datasets and complex pedigrees. We apply 

G-STRATEGY to data on HDL and LDL from the AGES-Reykjavik and REFINE-Reykjavik 

studies, in which G-STRATEGY is able to closely-approximate the power of sequencing the full 

sample by selecting for sequencing a only small subset of the individuals.
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Introduction

Genetic association mapping has been widely used to identify genetic variants associated 

with a particular trait. For best results, association studies usually require large numbers of 
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individuals to be both genotyped and phenotyped for the trait of interest. In practice, 

however, sequencing or genotyping all individuals can be a costly endeavor, and in some 

cases, the sequencing budget might be limited. When phenotyping is considered less 

expensive than sequencing or genotyping (which is the case in many studies), selective 

genotyping [Emond et al., 2012; Wheeler et al., 2013; Lee et al., 2014], in which a subset of 

individuals are selected for sequencing or genotyping based on their phenotypes, can be a 

cost-saving strategy.

When the sample consists of related individuals, determining an optimal subset of 

individuals to genotype poses a challenge because of the dependence among individuals’ 

genotypes and among their phenotypes. For example, selection based only on each 

individual’s own phenotype will generally not be optimal, because phenotypes of the 

individual’s relatives also provide information on whether or not the individual is likely to 

carry alleles predisposing to, e.g., higher values of the trait (the “enrichment principle” 

[Thornton and McPeek, 2007; Sham and Purcell, 2014]). Selection of an optimal subset of 

individuals to genotype is also complicated by the fact that genotyped individuals provide 

varying levels of information on the genotypes of their ungenotyped relatives, which can 

increase the power of the analysis, depending on how they are chosen. These considerations 

suggest the need to develop statistically sound and computationally feasible methods for 

selection of individuals to genotype for subsequent association analysis.

Existing tools that implement selection of individuals for sequencing or genotyping, taking 

into account relatedness, are limited. One possibility is to choose an unrelated set of 

individuals, e.g., founders, based on the pedigree information. Although this approach has 

simplicity, when the study sample is composed of moderate to large pedigrees, there may not 

be enough unrelated individuals to choose from. A variation on this approach[Housen et al., 

1994; Ott et al., 2015] is to select a set of distantly related individuals whose estimated 

pairwise identity-by-descent (IBD) probabilities do not exceed a pre-specified threshold of 

relatedness. PRIMUS [Staples et al., 2013] is a method implementing this using network 

theory. Another well-known selection strategy is extreme phenotype selection [Emond et al., 

2012; Lee et al., 2014; Sham and Purcell, 2014], in which the individuals with the highest 

and lowest phenotype values are preferentially selected for genotyping or sequencing. For a 

sample of unrelated individuals, it has been shown [Darvasi and Soller, 1992] that by 

genotyping approximately the most extreme one-quarter of individuals from each end of the 

phenotype distribution (for a total of half the full sample size), most of the power of 

association in the full sample is retained. However, when the sample consists of relatives, it 

is unclear how to prioritize individuals based on available phenotype information. GIGI-Pick 

[Cheung et al., 2014] is a recently proposed method to prioritize individuals for sequencing 

in pedigrees. It aims to select the subset of individuals that optimizes the subsequent 

sequence imputation at either a specific locus or a random locus in the genome. However, 

there is no guarantee that such a selection strategy will maximize the power in subsequent 

association studies. Furthermore, the computational burden makes GIGI-Pick infeasible as a 

tool for selecting a subset of individuals to genotype in, for example, the Icelandic Heart 

Association (IHA) cohorts.
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We propose a novel method, G-STRATEGY, to optimally select individuals for sequencing 

or genotyping, based on available phenotype, covariate and pedigree information. G-

STRATEGY uses simulated annealing to maximize the noncentrality parameter of the MQLS 

test [Thornton and McPeek, 2007] (in the case of a binary trait without covariates) or the 

MASTOR test [Jakobsdottir and McPeek, 2013] (in the case of a binary trait with covariates 

or a quantitative trait). This approach allows G-STRATEGY to optimize power while taking 

into account not only phenotype information and dependence among relatives, but also the 

fact that the individuals selected for sequencing or genotyping can provide partial genotype 

information on ungenotyped relatives, where this contributes power for association. G-

STRATEGY allows the user to specify (1) an initial subset of individuals who are already 

sequenced or genotyped and (2) a subset of ungenotyped individuals available to be selected 

for sequencing or genotyping, and it optimizes the selection of additional individuals for 

genotyping within these constraints. To show the power and wide applicability of G-

STRATEGY, we perform simulations in a range of scenarios in which the simple modeling 

assumptions of G-STRATEGY do not hold, and we compare G-STRATEGY with other 

methods. Finally, we apply G-STRATEGY to data on high-density lipoprotein (HDL) and 

low-density lipoprotein (LDL) from the IHA cohorts.

Methods

We consider a situation in which genetic association analysis of a trait is to be performed in 

a sample of individuals among whom only a subset (or perhaps none at all) are currently 

sequenced or genotyped. The genetic association analysis is permitted to include covariates 

in addition to genotypes and phenotypes. We assume that budget constraints limit the 

amount of additional sequencing or genotyping that can be performed. The goal is to select 

from the sample an additional fixed-size subset of individuals to sequence or genotype in 

order to maximize power for the subsequent association test.

More specifically, consider a set, D, of sampled individuals, some of whom may be related, 

with relationships specified by known pedigrees. Let d = |D| be the number of individuals in 

set D. Assume that data on phenotype and any relevant covariates are available for at least 

some of the sampled individuals, where missing data are allowed. Let P, “the phenotyped 

set,” denote the subset of individuals in D who have non-missing values for both the 

phenotype and the covariates, if any, that will be included in a genetic association analysis of 

the trait.

We assume that some subset, N0, of the individuals in D have previously been sequenced or 

genotyped, where we allow for the possibility that N0 = ∅, i.e., that no one in D has yet been 

genotyped. We call N0 “the initially genotyped set,” and it could include, for example, 

individuals taken from a generic control panel or individuals who were already sequenced or 

genotyped for the current or a previous study. Let n0 = |N0| ≥ 0 be the number of individuals 

in the set N0. Let S be the subset of individuals in D who are not yet genotyped but are 

available to be selected for additional sequencing or genotyping, for example, those still 

living. We assume that budget constraints limit us to sequencing or genotyping na additional 

individuals from among those in S. Then we will employ some selection strategy to choose 

Na, a subset of S, consisting of na additional individuals selected for genotyping. Let N = N0 
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∪ Na, which we call “the extended genotyped set,” with n = |N| = na + n0. Note that the 

phenotyped set, P, and the extended genotyped set, N, would usually differ. Therefore, even 

after the additional genotyping, there are likely to be some individuals with partial 

information, e.g., phenotyped individuals who are not genotyped, and/or genotyped 

individuals who are not phenotyped. In this context, power for association can typically be 

gained by making use of the dependence of genotypes among related individuals and the 

dependence of phenotypes among related individuals in order to incorporate the partial 

information. We will take this into account in assessing which individuals to genotype.

We consider an analysis in which the genetic variants are tested, one at a time, for 

association with the trait. For simplicity, we assume that the variant being tested is an 

autosomal binary variant (e.g., a SNP) with alleles labeled “0” and “1”. For a given variant 

and a given choice of extended genotyped set, N, let G = (G1, G2, . . . , Gn)T denote the 

length-n genotype vector, where Gi takes values in {0,.5,1}, according to whether the ith 

individual in N has 0, 1, or 2 copies of allele 1 at the variant. Let Y = (Y1, Y2, . . ., Yp)T 

denote the length-p phenotype vector, where p = |P|, and, for a binary trait, Yi = 1 if the ith 

individual in P is affected and Yi = 0 if the ith individual in P is unaffected. For a 

quantitative trait, we let Yi be the trait measurement, possibly after suitable transformation. 

Furthermore, let W be the p × (w + 1) matrix of covariates with (i, j)th entry, Wij, equal to 

the value of the jth covariate for the ith individual in set P. We assume that W always 

includes an intercept (i.e., column of 1’s) and therefore has w + 1 columns, where w ≥ 0 is 

the number of covariates to be included in the analysis in addition to the intercept.

We allow the study sample, D, to include arbitrarily related individuals. For example, study 

individuals can be sampled from a single complex inbred pedigree or several small outbred 

families, and unrelated individuals can be included as well. We define the kinship matrix, Φ, 

for the individuals in set D, to be

(1)

where ϕij is the kinship coefficient between individuals i and j, and hi is the inbreeding 

coefficient of individual i. For a given choice of the extended genotyped set, N, we let ΦN be 

the n × n sub-matrix of Φ obtained by considering only the individuals in N, we let ΦN P be 

the n × p sub-matrix obtained by extracting the rows and columns of Φ corresponding to 

individuals in N and P, respectively, and we set . Note: the main notation used in 

the paper is summarized in Table 1.

We propose a selection method, called G-STRATEGY, to optimally choose the extended 

genotyped set, N, conditional on the phenotype, covariate and pedigree information and 

conditional on which individuals are in the initially genotyped set, N0, but not conditional on 

their actual genotype values. The idea of G-STRATEGY is to maximize the noncentrality 

parameter of the MQLS test [Thornton and McPeek, 2007] or the MASTOR test 
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[Jakobsdottir and McPeek, 2013], using a simulated annealing algorithm. Both MQLS and 

MASTOR are association tests that allow samples with related individuals and incomplete 

data. Both tests increase power by incorporating partial information such as phenotype 

information on ungenotyped relatives. Before we elaborate on how G-STRATEGY selects 

the individuals, we first give a brief review of the MQLS and MASTOR tests. More details 

can be found elsewhere [Thornton and McPeek, 2007; Jakobsdottir and McPeek, 2013].

A Brief Review of MQLS and MASTOR

Both the MQLS and MASTOR methods are χ2 tests of the null hypothesis of no association 

and no linkage. Both methods are based on a retrospective approach, i.e., we condition on 

phenotype, Y, (and on covariates, W, in the case of MASTOR), while treating genotype, G, 

as random.

MQLS was proposed in the context of association testing of a binary trait when some 

sampled individuals are related, with known relationship. It does not use covariates. MQLS 

can be constructed as a quasi-likelihood score test of the null hypothesis H0 : γ = 0 vs. HA : 

γ ≠ 0 based on the following modeling assumptions:

(2)

(3)

where 0 < f < 1 is an unknown parameter representing the frequency of allele 1 in the 

population from which the sample is drawn, k is a fixed, known estimate of the population 

prevalence of the binary trait, γ is an unknown association parameter, 1n denotes a vector of 

length n with every element equal to 1, and 1p is similar but of length p. Equation (3) models 

the conditional variance of the genotype vector under the null hypothesis, γ = 0, where  is 

an unknown parameter representing the null genotypic variance of an outbred individual. For 

example, if the pedigree founders were drawn from a population in Hardy-Weinberg 

equilibrium (HWE) for the given genetic variant, this null variance would be given by 

. To make the approach more robust to deviation from HWE, we typically use 

an estimator [Thornton and McPeek, 2010] for  that does not assume HWE, namely,

(4)

The resulting MQLS test statistic is given by

(5)
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Under the null hypothesis of no linkage and no association between the tested variant and 

trait, the MQLS statistic is asymptotically . In the special case of complete 

data and independence (i.e., ΦN = I), and when Equation (4) is used for , then the MQLS 

statistic is equivalent to the Armitage trend test statistic (except for a factor of 1 − 1/n, which 

is negligible in large samples).

MASTOR can be viewed as an extension, to quantitative traits, of the MQLS method for 

binary traits. MASTOR differs from MQLS in that it includes covariates and random additive 

polygenic effects in the trait model. MASTOR can be applied to binary traits as well as to 

quantitative traits. In analogy to the model in equations (2) and (3), MASTOR can be 

derived as the quasi-likelihood score test for the null hypothesis H0 : γ = 0 vs. HA : γ ≠ 0 in 

the following retrospective model,

(6)

(7)

where (βˆ, Σˆ) is the MLE of (β, Σ) in the following prospective, polygenic, null model

(8)

where  and  are the additive polygenic and environmental variance components, 

respectively, and Ip is the p × p identity matrix. The resulting formula for MASTOR is

(9)

where  is chosen to be a consistent estimator of . A previous work [Jakobsdottir and 

McPeek, 2013] suggests using either , where  is given in equation (4), or

(10)

with

(11)
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where Q is defined to be the set of individuals with both genotype and covariate information, 

who may or may not have known phenotype (N ∩ P ⊆ Q ⊆ N), with q = |Q|; GQ is the sub-

vector of length q of G that is obtained by extracting the elements of G that correspond to 

individuals in Q; ΦQ is the q × q kinship matrix for individuals in Q; and WQ is the q × (w 
+ 1) sub-matrix of W that is obtained by extracting the q rows of W that correspond to 

individuals in Q. The use of the estimator, , in equation (10) can increase the power of 

MASTOR by accounting for possible dependence between genotype and covariates. The 

MASTOR test statistic of equation (9) has a  asymptotic null distribution, under 

assumptions that are somewhat more general [Jakobsdottir and McPeek, 2013] than those 

given in equations (6) and (7). In the special case of complete data and independence (i.e., 

when ξ is set to 0), and when Equation (10) is used for , MASTOR is the same as the 

classical score test for the prospective normal linear regression trait model.

Both MQLS and MASTOR are based on a retrospective approach, rather than a prospective 

approach. One advantage of the retrospective approach is that it provides a natural way to 

incorporate individuals with missing genotype, by using the known dependence among 

relatives’ genotypes under the null hypothesis. A less obvious advantage is that the statistical 

validity (i.e., correct type 1 error) of the retrospective approach is insensitive to phenotype-

based ascertainment and is robust to misspecified trait distribution.

We note that the MQLS and MASTOR χ2 test statistics can be thought of as having the 

common form

(12)

where  is taken to be some consistent estimator of , which will not be needed for G-

STRATEGY, and where V is a function of Y (and of W, in the case of MASTOR), but not of 

G, so that, in the retrospective analysis, V is fixed, not random. Specifically,

(13)

We call R the “transformed phenotypic residual.”

G-STRATEGY: Selection of Extended Genotyped Set

Our proposed method, G-STRATEGY, works as follows. It selects the additional na 

individuals to genotype by maximizing the noncentrality parameter, λ, of the MASTOR or 

MQLS test, where
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(14)

and where we have used E(VT G|W, Y) = VT E(G|W, Y), with equation (2) or equation (6) 

used to obtain E(G|W, Y) for the case of MQLS or MASTOR, respectively. If we define the 

vector of “enrichment values,” E, by E = ΦN P R, then the optimal N chosen by G-

STRATEGY is the argmax of the objective function, h(N), where

(15)

which is equal to λ up to a scale factor, and where N is a candidate extended genotyped set 

satisfying

(16)

Then the set of additional individuals to be genotyped would correspond to Na = N\N0.

There are several technical points worth mentioning. First, G-STRATEGY selects Na, the set 

of additional individuals to be genotyped, based on the phenotype, covariate and pedigree 

information, and based on the set, N0, of individuals already genotyped, but not based on 

any observed genotype data. Therefore, one would expect the type 1 error to be correct for 

any subsequent genetic association analysis on the extended genotyped set. This is 

particularly obvious if the follow-up association test to be performed is MQLS or MASTOR, 

because both methods are retrospective. (Though the justification may be less obvious, the 

type 1 error would also be expected to be correct for typical prospective association analyses 

as well.) Correct type 1 error of G-STRATEGY is confirmed in the Simulation Studies 
subsection of Results.

Second, in equation (15), the objective function for G-STRATEGY is a function of the 

enrichment vector, E, and the kinship matrix, ΦN. In particular, h(N) is numerically equal to 

the residual sum of squares from the generalized least squares regression of E on the 

intercept vector, 1n, with Cov(E) ∝ ΦN. One can think of the enrichment value, Ei, of 

individual i, as being a weighted sum of the transformed phenotypic residuals of i and i’s 

relatives, with weight 2ϕij given to Rj. Thus, for example, in a case-control study, an 

individual with multiple affected (unaffected) relatives would have a higher (lower) 

enrichment value than an individual without affected (unaffected) relatives. In binary trait 

mapping, the idea of the enrichment principle [Thornton and McPeek, 2007] is that in a wide 

range of genetic models, individuals with extremely high (extremely low) enrichment values 

are more likely to be carrying predisposing (protective) genetic variants for the trait. The 

idea for quantitative traits is similar. Thus, intuitively, it would seem to make sense as a 

selection strategy to prioritize individuals with extreme enrichment values. This strategy, 
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which we call the “Enrichment” strategy, is defined in the next subsection. We compare the 

performance of the Enrichment strategy to that of G-STRATEGY in simulations in which 

the underlying true model is not the same as the one assumed by G-STRATEGY.

Third, when G-STRATEGY is implemented using the MASTOR noncentrality parameter, 

G-STRATEGY requires estimation of the null MLE, (Σ̂, β̂), from the prospective model in 

equation (8). In G-STRATEGY, we calculate the null MLE, (Σ̂, β̂), based on data from all 

individuals in P. In contrast, in MASTOR, when some individuals in P are not genotyped, 

then (Σ̂, β̂) is calculated based on a subset of P, where, for example, phenotyped individuals 

who are not in the same pedigree with any genotyped individuals are excluded. Our strategy 

of including data on all individuals in P in the calculation of (Σ̂, β̂) allows us to avoid re-

estimating the null MLE of (Σ̂, β̂) for each choice of N.

We conclude this section by giving a computationally useful form for the G-STRATEGY 

objective function in the case when the sampled individuals belong to F independent 

families. We make use of the block diagonal structure of the kinship matrix to define three 

family-specific components:

(17)

for 1 ≤ i ≤ F, where mi is the number of extended genotyped individuals in family i, Mi is the 

set of extended genotyped individuals in family i, EMi is the sub-vector of enrichment values 

for the individuals in Mi, and ΦMi is the kinship sub-matrix for the individuals in Mi. The 

selection of the extended genotyped set  can then be expressed as finding the 

argmax of h(N), where

(18)

This formulation is computationally convenient for use in the simulated annealing algorithm 

described in the next subsection.

G-STRATEGY: Search via Simulated Annealing

G-STRATEGY is formulated as an optimization problem in which the domain is a large 

discrete space with a natural neighborhood structure (described below). In this context, a 

simulated annealing approach [Kirkpatrick et al., 1983], [Černỳ, 1985], [Press et al., 1992] 

to optimization has the potential to work much better than, for example, a forward stepwise 

approach as in GIGI-Pick [Cheung et al., 2014], because simulated annealing typically does 

a better job of exploring the full search space at a still relatively low computational cost. In 
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what follows, we present the simulated annealing algorithm used by G-STRATEGY when 

searching for an optimal or nearly optimal subset of additional individuals to genotype.

The search space consists of all possible extended genotyped sets in the collection

Each element of  is a candidate for the extended genotyped set. We create a neighborhood 

structure on  by defining candidate sets N1, N2 ∈  to be neighbors if they differ by 

exactly one element, i.e., if |N1\N2| = 1 = |N2\N1|. In that case, N2 can be obtained from N1 

by taking out one individual from N1\N0 and replacing him or her by another individual in S
\N1, and N1 can be obtained from N2 similarly.

The simulated annealing algorithm moves through a sequence of steps. At step i, the 

algorithm proposes a move from the current set Ni to a set Ni+1 chosen uniformly at random 

from among the neighbors of Ni. The proposal is then accepted with probability

which depends on the change in objective function between Ni and Ni+1, and on a time-

varying parameter T called temperature. If the proposal is accepted, we call it a successful 

move. The temperature schedule describes the change in the value of T over successive steps 

of the algorithm. At the first step of the algorithm, T is set to a high value, t1, and it is 

decreased by a multiplicative factor α after every s steps of the algorithm, where 0 < α < 1 

and s is some positive integer. Thus, the temperature takes value αct1 for steps cs + 1, . . . , (c 
+ 1)s of the algorithm, for c = 0, 1, . . . until the algorithm is stopped. This temperature 

schedule requires specification of tuning constants t1, α, and s. To set t1, we draw 500 pairs 

of neighboring candidate sets, (N1, N2), independently and uniformly from the set of all 

possibilities, and we set t1 to be the maximum observed value of |h(N1) − h(N2)| in this 

sample. We use α = 0.95 and s = 5000. We terminate the algorithm when either (1) the 

temperature decreases below a given threshold, which we set to 1.0e − 5, or (2) no 

successful moves are found after s steps at any given temperature stage, whichever occurs 

first.

After obtaining a “best-so-far” candidate, which has the highest value of the objective 

function found during the simulated annealing, we perform a post-processing procedure, in 

which we run a small, locally hill-climbing algorithm based on that candidate until no better 

neighboring candidates are found. The resulting set is the one output by G-STRATEGY.

The probabilistic acceptance and temperature schedule of the simulated annealing algorithm 

allow it to escape local maxima by not only accepting every new candidate that increases the 

objective function, but also accepting some new candidates that decrease the objective 

function. The high initial temperature allows the algorithm to better explore the entire search 

space. As the temperature decreases so does the chance of accepting worse candidates, so 

the search will be in a more focused region in which, one hopes, a close-to-global maximum 
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can be found. Furthermore, the algorithm keeps computation and memory costs low by 

focusing only on candidate sets that are neighbors of the current set. From equations (17) 

and (18), it is clear that one need only recalculate a few family-specific components at each 

step, because at each step, the proposed set will differ from the current set in at most two 

families.

When the number of additional individuals to be genotyped, na, is reasonably large, there 

will typically be many close-to-optimal choices of N, with negligible differences between 

their values of the objective function. In that case, it is of little interest to identify a true 

global maximizer, N, because many other choices will be almost equally good. This is 

especially true considering that the true trait model is unknown, so the noncentrality 

parameter used by G-STRATEGY serves as only an approximate guide to power. Therefore, 

in G-STRATEGY, we use simulated annealing to try to obtain a close-to-optimal choice of N 
without trying to establish that it is a true global maximizer. Furthermore, because of the 

probabilistic nature of the algorithm, running G-STRATEGY multiple times on a large data 

set will typically produce multiple different choices of N that are expected to be 

approximately equal in power. This can be useful if there are other considerations (such as 

cost or convenience) that can arise in the choice of whom to genotype, because one can then 

take into account these other considerations in choosing from among multiple roughly 

equivalent options for N.

Simulation Studies

We perform simulation studies for both binary and quantitative traits to (1) assess the impact 

of G-STRATEGY on the type 1 error for various association tests; (2) evaluate the 

robustness of G-STRATEGY to model misspecification; and (3) compare the empirical 

power of association tests when G-STRATEGY is applied vs. when other competing 

strategies are applied to select individuals for genotyping. To do this, we simulate data that 

include related individuals, under a variety of trait models, as we now describe.

Trait Models

The trait models we simulate are complex and do not satisfy the simple assumptions used in 

the derivation of G-STRATEGY. This aspect of the simulation is intended to reflect the 

reality that we do not know the true underlying model, and it allows us to assess the 

robustness of G-STRATEGY to model misspecification.

For a binary trait, we consider three different classes of multigene trait model which have 

been described previously [Sun et al., 2002]. Model 1 has two unlinked causal SNPs, with 

epistasis between them and both of them acting dominantly. In model 1, the frequencies of 

allele 1 at SNPs 1 and 2 are p1 and p2, respectively. Individuals with at least one copy of 

allele 1 at SNP 1 and at least one copy of allele 1 at SNP 2 have a penetrance of f1. All other 

individuals have a penetrance of f2 < f1. We consider two different parameter settings for 

model 1, which are listed as models 1a and 1b in Supplementary Table S1.

Model 2 also consists of two unlinked causal SNPs with epistasis between them, with SNP 1 

acting recessively and SNP 2 following a general two-allele model. There are four 

penetrance parameters for this model, with f1 > f2 > f3 > f4. Individuals with two copies of 
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allele 1 at SNP 1 and two copies of allele 1 at SNP 2 have a penetrance of f1. Individuals 

with two copies of allele 1 at SNP 1 and one copy of allele 1 at SNP 2 have a penetrance of 

f2. Individuals with two copies of allele 1 at SNP1 and no copies of allele 1 at SNP 2 have a 

penetrance of f3. All other individuals have a penetrance of f4. We consider two parameter 

settings for this class of model, which are listed as models 2a and 2b in Supplementary Table 

S1.

Model 3 has three unlinked causal SNPs with epistasis between them and with each SNP 

acting dominantly. Individuals with both at least one copy of allele 1 at SNP 1 and at least 

one copy of allele 1 at either SNP 2 or SNP 3 have a penetrance of f1. All other individuals 

have a penetrance of f2 < f1. We consider two different parameter settings for this class of 

model, which are listed as models 3a and 3b in Supplementary Table S1.

Supplementary Table S1 contains the allele frequencies and penetrance parameters for each 

model, as well as the resulting population prevalence, Kp, the prevalence conditional on 

having an affected sibling, Ks, and the sibling risk ratio, λs = Ks/Kp, where Kp, Ks and λs 

are calculated in outbred individuals.

For a quantitative trait, we consider three different classes of multigene trait model, which 

we call models 4, 5 and 6. All three of these model classes have 4 unlinked causal SNPs, 

three of which interact, with an additional additive polygenic effect, and they all have sex as 

a covariate. In addition, Model 5 has heavy-tailed noise, and Model 6 has a dominance 

polygenic effect. Model 4 is given by

(19)

where 1female is a vector whose ith element = 1 if individual i is female and = 0 if individual 

i is male; 1 is a vector all of whose entries = 1;  and  are 

specified scalars; f (X1, X2, X3) is a vector with ith element equal to f (X1i, X2i, X3i) and 

g(X4) is a vector with ith element equal to g(X4i), where X1i, X2i, X3i and X4i are the 

genotype values of individual i at unlinked, causal SNPs 1, 2, 3, and 4, respectively; f(x1, x2, 

x3), (x1, x2, x3) ∈ {0, .5, 1}3, is a specified function representing the joint effects (including 

interaction) of SNPs 1, 2, and 3; and g(x4), x4 ∈ {0, .5, 1}, is a specified function 

representing the effect of SNP 4. We consider two different parameter settings for model 4, 

which we call models 4a and 4b. Supplementary Table S2 specifies the allele frequencies, 

covariate effects (β0, β1), variance component parameters ( ), and function g(x4) for 

models 4a and 4b, while Supplementary Table S3 specifies the function f(x1, x2, x3) used in 

those models.

Model 5 is a heavy-tailed polygenic model that satisfies a version of equation (19) in which 

we redefine ε = e + η, where e and η are independent,  and the ηi’s are 

i.i.d. draws from a Laplace distribution with location parameter 0 and scale parameter 2. We 

consider one parameter setting for model 5, for which the function f (x1, x2, x3) is specified 

in Supplementary Table S3 and all other model parameters are specified in Supplementary 

Table S2.
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Model 6 is a polygenic model with both additive and dominance components of variance. 

The model is given by equation (19) where we redefine , with 

 and , and where Δ7 is the matrix with (i, j)th entry equal to Δ7[i, j], the 

seventh condensed identity coefficient between individuals i and j, which is the probability 

that, at any given locus, i and j share two alleles IBD, with neither one homozygous by 

descent. If the individuals are outbred, then Δ7[i, i] = 1 and, for i ≠ j, Δ7[i, j] is the 

probability that i and j share two alleles IBD. We consider one parameter setting for model 

6, for which the function f(x1, x2, x3) is specified in Supplementary Table S3 and all other 

model parameters are specified in Supplementary Table S2.

Study Design for Simulations

We consider a study sample with 60 ascertained families each consisting of 16 outbred 

individuals in a three-generation pedigree, related as in Figure S1. The simulated phenotypes 

for the individuals in each family vary randomly according to one of the trait models 

described in the previous subsection. In each sampled pedigree, phenotypes of all 

individuals are observed. When a binary trait is simulated, pedigrees are sampled conditional 

on obtaining exactly 20 pedigrees with 4 affected individuals, 20 pedigrees with 5 affected 

individuals, and 20 pedigrees with 6 affected individuals. When a quantitative trait is 

simulated, pedigrees are randomly sampled from the population, without additional 

ascertainment conditions.

The problem addressed in the simulations is to select n = 300 individuals to genotype from 

among the 960 individuals in the study sample. No individuals are initially genotyped, and 

all individuals are assumed to be available to be selected. Selection of individuals to be 

genotyped is based only on the phenotype, covariate and kinship information.

Comparison with Other Selection Strategies

In addition to G-STRATEGY we consider five other selection strategies. The first is the 

“Maximally-Unrelated” strategy[Staples et al., 2013], in which the largest possible subset of 

individuals whose estimated pairwise IBD sharing is below a specified threshold is selected. 

Note that in the simulations, the number of founder individuals in the study sample is 300, 

which is equal to the number of individuals to be selected for genotyping. Thus, in the 

context of the simulations, the Maximally-Unrelated strategy can be implemented, with an 

IBD threshold of 0, by selecting the set of pedigree founders as the subset of individuals to 

be genotyped.

In the case of a binary trait, we also consider a modified version of the Maximally-Unrelated 

strategy, which we call the “Rebalanced Founder” strategy, in which we replace some 

founders by randomly-chosen non-founders in order to obtain equal numbers of cases and 

controls in the genotyped subset. For example, if there were 200 controls and 100 cases 

among the founders, then in the Rebalanced Founder strategy, we would randomly select 50 

founder controls to be excluded from the set N of individuals to be genotyped and replace 

them by 50 randomly-chosen non-founder cases, to obtain a final sample of 150 founder 

controls, 100 founder cases, and 50 non-founder cases.
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The third strategy is a novel one we propose called the “Enrichment” strategy, in which 

individuals are selected based on their enrichment values, where E = ΦN P R is the vector of 

enrichment values. This strategy is based on the enrichment principle, which is a 

consequence of biologically plausible assumptions on disease models [Thornton and 

McPeek, 2007]. In this case, we select the 150 individuals with the highest enrichment 

values and the 150 with the lowest enrichment values. More generally, the Enrichment 

strategy is defined as follows: for the case when N0 = ∅, i.e., when there are no individuals 

already genotyped, select the  individuals with the highest enrichment values, and the 

 individuals with the lowest enrichment values, from among the individuals in set S. 

(When N0 ≠ ∅, i.e., when some individuals are already genotyped, we modify the 

Enrichment strategy so that the result is that there is some partition of N0 into N0 = B ∪ C, 

with B ∩ C = ∅ and |B| = b, such that the set Na ∪ B consists of the  individuals 

with the highest enrichment values and the  individuals with the lowest enrichment 

values, from among the individuals in S ∪ N0.) The Enrichment strategy is similar in spirit 

to classical selective genotyping[Lebowitz et al., 1987; Lander and Botstein, 1989; Darvasi 

and Soller, 1992], except that individuals are selected based on their enrichment values 

rather than their original trait values or trait residuals.

The fourth strategy we consider is GIGI-Pick [Cheung et al., 2014], a previously proposed 

method designed for sequencing studies in pedigrees. GIGI-Pick defines a metric called 

(either local or genome-wide) “coverage” to relate pedigree-based genotype imputation to 

individual selection, and it uses inferred inheritance vectors to measure genotype-imputation 

ability. In our case, we use the “genome-wide” version of GIGI-Pick, which requires only 

pedigree structure as input and optimizes genotype imputation at a random locus in the 

genome. We set GIGI-Pick to select five individuals from each pedigree, and we set the two 

tuning parameters, referred to as λ and α in GIGI-Pick [Cheung et al., 2014], to be 10 and 

0.3, respectively.

Finally, in the data analysis, we also consider the “Random” strategy, in which individuals 

are chosen at random for genotyping.

Data from the AGES and REFINE Studies

We analyze data from two population-based studies conducted by the IHA: the Age, Gene/

Environment Susceptibility (AGES) study and the Risk Evaluation for Infarct Estimates 

(REFINE) study. The AGES study, which has been described previously [Harris et al., 

2007], was initiated in 2002 and consists of 5,764 individuals, from a population-based 

cohort, who were born between 1907 and 1935. The REFINE study was initiated in 2005 

and consists of 8,266 inhabitants of the greater Reykjavik area who were born between 1935 

and 1985. Information on relatedness of individuals both within and between the AGES and 

REFINE cohorts is currently in the process of being collected. We include in our analysis 

only individuals whose pedigree information is available. The resulting combined AGES-

REFINE dataset has 8,030 individuals, and it includes unrelated individuals as well as 
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individuals from multigeneration pedigrees. Of the 8,030 sampled individuals, 3,134 have 

previously been genotyped on the Illumina 370K whole-genome SNP array. The remaining 

4,896 individuals are not yet genotyped. All subjects in these cohorts provided informed 

consent for this research, and procedures followed were in accordance with ethical 

standards.

We consider two phenotypes: high-density lipoprotein cholesterol levels (HDL) and low-

density lipoprotein cholesterol levels (LDL). Both HDL and LDL are quantitative traits, and 

we adjust each for sex, age, age2 and statin use. In the AGES-REFINE sample, all 3,134 

genotyped individuals have complete phenotype and covariate data for HDL, while 2 of the 

3,134 individuals have missing LDL. Among the remaining 4,896 ungenotyped individuals, 

15 individuals are missing HDL or one or more of the covariates, and 36 individuals are 

missing LDL or one or more of the covariates.

We approach the problem of selecting a subset of individuals to be genotyped in the AGES-

REFINE data in two different ways. In the “masked genotype” analysis, the study sample, 

D, is taken to include all 8,030 individuals in the data set. The subset, N0, of previously 

genotyped individuals is taken to be ∅, i.e., we assume no one is previously genotyped. We 

mask the genotypes of the 3,134 genotyped individuals and treat them as the subset, S, of 

individuals available to be selected for genotyping. The remaining 4,896 individuals in D are 

assumed to be unavailable for genotyping, although they are included in the association 

analysis if they have phenotype and covariate information and at least one genotyped 

relative. Then, for each trait, using each of four selection methods (G-STRATEGY, 

Enrichment strategy, Maximally-Unrelated strategy, and Random strategy), we select a 

subset of size n = 250, 500, 1,000 or 2,000 individuals for genotyping from among the 3,134 

individuals in S. We then unmask the genotypes of the selected individuals, while unselected 

individuals are assumed to have missing genotypes. Then the resulting data are analyzed 

using MASTOR. We were not able to include GIGI-Pick in this comparison because we 

were not able to obtain results from GIGI-Pick for the AGES-REFINE data set in a 

reasonable amount of time.

In addition to the masked genotype analysis, we also perform an additional real-world 

analysis in which we again let D consist of all 8,030 individuals in the AGES-REFINE data 

set, with the n0 = 3, 134 previously genotyped individuals put into the set N0, and with the 

remaining 4,896 ungenotyped individuals assumed to be available for genotyping. For the 

HDL phenotype, we use G-STRATEGY to choose an additional subset of size na = 500 or 

1,000 individuals for genotyping from among the 4,896 ungenotyped individuals. For this 

real-world analysis, we do not yet have the genotypes on the selected individuals, so we 

cannot run association tests. However, we can estimate run times and memory usage for G-

STRATEGY, and we can examine the features of the subset that is selected.

Results

Impact of G-STRATEGY on Type 1 Error

In the Methods section, we argue on theoretical grounds that G-STRATEGY should 

maintain correct type 1 error in subsequent association analyses. Using simulations, we 
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provide further verification for both prospective and retrospective association tests. For 960 

individuals in 60 ascertained families, we simulate binary and quantitative phenotypes under 

models 1a and 4a, respectively, we randomly select n0 = 0 or 100 individuals who are 

assumed to be previously genotyped, and we run G-STRATEGY to select 300 − n0 

additional individuals to be genotyped in each scenario, so as to obtained a total of 300 

genotyped individuals in each scenario. We then test for association with an unlinked, 

unassociated SNP with minor allele frequency (MAF) .05, .2 or .4. Association is tested 

using either MQLS or MASTOR, depending on whether the phenotype is binary or 

quantitative. For both tests, the default setting is to include in the analysis not only the 300 

genotyped individuals, but also their phenotyped relatives who may or may not be 

genotyped. In the case of a quantitative phenotype, in addition to MASTOR, we also 

perform the prospective test GTAM [Abney et al., 2002] test, which includes only the 300 

genotyped individuals in the analysis. In Table 2, we compare the empirical type 1 error 

based on 5,000 simulated replicates to the nominal level of .01 or .05. As expected, the 

empirical type 1 error for all three association tests based on G-STRATEGY samples is well 

controlled. None of the empirical p-values is significantly different from the nominal level, 

based on a z-test with significance threshold .05.

Power Studies

To compare the power for association of different selection strategies, we perform 

simulations using the trait models described in the Trait Models subsection of Methods. In 

any given scenario, each of the selection strategies (Maximally-Unrelated, Enrichment, 

GIGI-Pick, G-STRATEGY and, in the case of a binary trait, Rebalanced Founder strategy) is 

implemented to select n = 300 individuals to be genotyped from among the 960 individuals. 

For the binary trait models 1a, 1b, 2a, 2b, 3a and 3b, we test for association at SNP 2 using 

MQLS. For the quantitative trait models 4a, 4b, 5 and 6, we test for association at SNP 3 

using MASTOR. Although only a subset of individuals are selected for genotyping, it is 

important to keep in mind that available phenotype and covariate information on their 

relatives also provides information on association and is included in the association analysis, 

regardless of whether or not these relatives are selected for genotyping. In each case, 

empirical power is assessed based on 1,000 simulated replicates, with significance level set 

to .01.

Figures 1 and 2 compare the power for association based on different selection strategies. In 

all simulation scenarios, G-STRATEGY outperforms the other strategies. In many cases, the 

increase in power using G-STRATEGY is substantial. In particular, the relative power 

increase using G-STRATEGY over the next best approach, which in every case is the 

Enrichment strategy, is over 30% for models 3a, 3b, and 5, and 20% for models 1a, 1b, 4b 

and 6. In contrast, neither the Maximally-Unrelated strategy nor GIGI-Pick performs well in 

terms of power. Presumably, this is due to the fact that neither of them takes into account 

phenotype information. We note that the GIGI-Pick algorithm provides some flexibility 

between selecting closely related individuals vs. selecting distantly related individuals via its 

tuning parameter, α ∈ [0, 0.5]. We have tried repeating GIGI-Pick using different α’s over a 

grid of 10 equally-spaced points in [0, 0.5]. The empirical power changes very little (results 

not shown). When α is set to 0, GIGI-Pick selects all 300 founder individuals, which is the 
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same as the Maximally-Unrelated strategy. Our simulations cover a reasonably broad range 

of disease models in which the modeling assumptions are not met. The results demonstrate 

that G-STRATEGY performs well across a range of settings and is robust to deviations from 

modeling assumptions. This makes G-STRATEGY appealing in practice because one 

usually does not know in advance the true underlying model.

Application of G-STRATEGY to the AGES-REFINE Data

To assess the performance of G-STRATEGY on real data, we conduct association studies of 

HDL and LDL using the AGES-REFINE data. For each trait, we first conduct a genome-

wide association study (GWAS) and then proceed to fine mapping on candidate loci. The 

GWAS is based on the Illumina 370K SNP array, and the fine mapping is based on a dense 

set of SNPs imputed from HapMap using MaCH/minimac [Li et al., 2010; Howie et al., 

2012]. We consider the following candidate loci that were previously reported by Teslovich 

et al. (2010) [Teslovich et al., 2010]: (1) HDL loci: LIPC, LIPG, APO1-APOA5, CETP, 
LPL, ABCA1, LCAT, APOB, PLTP, FADS1-FADS3, GALNT2, TRIB1, LRP4-NR1H3; (2) 

LDL loci: APOE, LDLR, ABCG8, PCSK9. Both GWAS and fine mapping are performed 

using “masked genotype” analysis, i.e., individuals who are not selected into the subset for 

genotyping will have their genotypes masked so that they are missing in the analysis. In the 

fine mapping, only SNPs with imputation quality Rsq > 0.6 and MAF > 0.5% (evaluated in 

the subset of individuals selected for genotyping) are used in the analysis.

Figure 3 shows the Q-Q plots and genomic control factors of GWAS for HDL, based on G-

STRATEGY subsets of size n = 250, 500, 1,000 and 2,000, selected from among the 3,134 

previously genotyped individuals using the “masked genotypes” approach. As a benchmark, 

we also consider the “full set” scenario, in which all 3,134 previously genotyped individuals 

are assumed to be selected for genotyping. All genomic control factors are close to 1 and 

similar to that from the benchmark scenario (λ = 1.043), reflecting the fact that use of G-

STRATEGY does not affect the type 1 error rate. The results confirm that G-STRATEGY 

retains the calibration of the association tests on a genome-wide scale.

Figures 4 and 5 show the Q-Q plots for fine mapping of candidate loci for HDL and LDL, 

respectively, based on different selection strategies. Because some selection strategies (such 

as the Maximally-Unrelated strategy, random strategy and G-STRATEGY) will typically 

output different subsets for genotyping in different runs, we repeat each of these selection 

strategies 20 times and report the geometric average of the corresponding p-values at each 

SNP over the 20 runs. We do not consider GIGI-Pick in the comparison, because GIGI-Pick 

is computationally infeasible to run on such a large dataset. (An attempt to apply GIGI-Pick 

to the HDL data set was stopped after 4 days of running.) As we would expect, all Q-Q plots 

show clear deviation from the null (because only candidate loci are included). In particular, 

both G-STRATEGY and the Enrichment strategy give a substantially larger excess of 

association signals, suggesting the power advantage both G-STRATEGY and the 

Enrichment strategy can provide over other methods.

Figures 6 and 7, for HDL and LDL, respectively, compare the regional Manhattan plots for 

fine mapping within candidate loci, based on different selection strategies. We find that both 

G-STRATEGY and the Enrichment strategy capture association signals well and yield much 
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higher association peaks than other methods. For association with the HDL gene, CETP, 

based on n = 1, 000 individuals selected for genotyping, minimum p-values of 2.4 × 10−19 

and 1.1 × 10−18 are obtained using G-STRATEGY and the Enrichment strategy, respectively, 

while the smallest p-value using the Maximally-Unrelated strategy is 4.1 × 10−8. With n = 2, 

000 individuals, the corresponding p-values are 2.8 × 10−25, 1.7 × 10−24, and 4.1 × 10−15 

using G-STRATEGY, the Enrichment strategy and the Maximally-Unrelated strategy, 

respectively. The regional Manhattan plots within other top genes, such as LIPC (for HDL), 

and APOE and ABCG8 (for LDL), reveal similar results.

In addition to the power evaluation, we perform a real-world example to assess the 

computational speed of G-STRATEGY. We run G-STRATEGY to select an additional subset 

of size na = 500 or 1,000 individuals from the AGES-REFINE sample to genotype for the 

association study with HDL. The HDL dataset consists of 8,030 individuals, among whom 

n0 = 3, 134 have been previously genotyped. The remaining 4,896 individuals are not yet 

genotyped, and we assume that they are all available to be selected for genotyping. The run 

times and memory usage are evaluated using a single processor on an iMac (Mac OS X Lion 

10.7.3) desktop with Intel Core i5 (64 bit) 2.5 GHz CPU and 16 GB RAM. Table 3 shows 

that the memory usage is modest (<700 Mb) and so are the run times (<10 minutes). As G-

STRATEGY uses a stochastic algorithm to search for the optimal subset, the actual 

computing time will be affected by the choice of starting point, the number of iterations, etc. 

We do not undertake a comprehensive evaluation of how to optimally set tuning parameters 

in the HDL data application. Instead, we assess the trajectory plot of the G-STRATEGY 

objective function that is output in the default setting. The trajectory plot in Figure S2 

exhibits a smooth transition to a plausible convergence value in reasonable number of steps. 

The results indicate that the implementation of G-STRATEGY in large-scale studies such as 

the AGES-REFINE study is computationally feasible.

To illustrate the features of the subset selected by G-STRATEGY, we give as examples two 

real pedigrees from the AGES-REFINE study. For the family depicted in Figures S3 and S4, 

we can see that the first individual from that family selected by G-STRATEGY has both the 

smallest phenotype value and the most extreme enrichment value of the available 

individuals. When two more individuals are selected (Figure S4), they are the ones with the 

second smallest and largest phenotype values, who also have the second and third most 

extreme enrichment values, respectively. This illustrates that G-STRATEGY can often 

behave similarly to the Enrichment and extreme phenotype selection strategies. However, for 

the family depicted in Figures S5 and S6, the available individual with the second-highest 

phenotype value and second most extreme enrichment value is selected by G-STRATEGY in 

preference to the available individual with the highest phenotype value and most extreme 

enrichment value, who is selected second. This difference results from the fact that G-

STRATEGY also takes into account the correlation among relatives selected for genotyping, 

which results in a preference for an individual who, in this case, is less closely related to 

another individual who is already genotyped.
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Discussion

When there is a limited sequencing budget, it is of practical importance to prioritize 

individuals for sequencing, with a view toward maximizing the power of the subsequent 

association test. We propose G-STRATEGY, a method to optimally choose a fixed-size 

subset of individuals to sequence or genotype from a sample that includes related 

individuals. We also propose the closely-related Enrichment strategy.

G-STRATEGY can be thought of as an extension of the classical “selective genotyping” 

strategy, in which a selected portion of the phenotyped individuals are genotyped. In the 

context of association testing in a sample that includes related individuals, one way to extend 

the selective genotyping strategy is to consider an “enrichment value” for each individual 

rather than a phenotype or phenotypic residual, where the enrichment value of an individual 

takes into account the phenotypes of the individual’s relatives and his or her kinship 

coefficient with those relatives. Intuitively, this can be justified by the “enrichment 

principle”[ Thornton and McPeek, 2007] that says, for example, that in a case-control study, 

affected (unaffected) individuals with multiple affected (unaffected) relatives tend to be 

more informative in the association analysis because they are more likely to carry risk 

(protective) alleles. We have proposed the Enrichment strategy which selects individuals 

based on extreme enrichment values. G-STRATEGY takes the Enrichment strategy one step 

further, and in prioritizing individuals for genotyping, it also accounts for the effects, on the 

association test, of the dependence among relatives’ data.

We have compared G-STRATEGY to other selection strategies, based on both simulations 

and analysis of HDL and LDL data from the AGES-REFINE study. Our results indicate that 

the strategies that make use of the enrichment principle (G-STRATEGY and the Enrichment 

strategy) consistently outperform other strategies that either do not take into account 

phenotype information on an individual’s relatives (e.g., Rebalanced Founder strategy) or do 

not take into account phenotype information at all (Maximally-Unrelated strategy and GIGI-

Pick). As expected, G-STRATEGY typically outperforms the Enrichment strategy, though 

the differences can be small, which suggests that most of the advantage of G-STRATEGY 

comes from the consideration of the individual’s and relatives’ phenotypes, rather than from 

further taking into account the effect of dependence among individuals on the association 

test. We implement both G-STRATEGY and the Enrichment strategy in the freely-available 

G-STRATEGY software. The methods should be helpful for investigators planning 

sequencing resource allocation and association studies.

G-STRATEGY is applicable to samples containing completely general combinations of 

related and unrelated individuals, including complex pedigrees with multiple inbreeding 

loops. The search algorithm is based on simulated annealing and is computationally feasible 

even for large, complex pedigrees. When the size of the problem is large, there will typically 

be many close-to-optimal solutions, with negligible differences between their values of the 

objective function. In that case, it is of little interest to identify the true global maximizer, 

because many other choices will be almost equally good, especially considering that the true 

trait model is unknown. The simulated annealing approach in G-STRATEGY lends itself 

well to this situation. The algorithm is stochastic in nature and can yield a good 
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approximation to the global maximizer. Multiple runs of G-STRATEGY can provide 

multiple choices of subset to be genotyped that are expected to provide approximately equal 

power. This can be useful if there are other considerations (such as cost or convenience) that 

can arise in the choice of whom to genotype, because one can then take into account these 

other considerations in choosing from among multiple rough equivalent choices of subset of 

individuals to genotype.

In G-STRATEGY, we condition on phenotypes, covariates, pedigree information, and the 

information of who is already genotyped, but not on their genotype values, in selecting an 

additional subset of individuals for genotyping. Another approach[Chen and Abecasis, 2007; 

Fingerlin et al., 2004; Li et al., 2006] conditions on both pedigree information and genotype 

information from a non-dense marker panel for all individuals, but not on phenotype 

information, in choosing a subset of individuals for high-density genotyping or sequencing. 

The G-STRATEGY approach would be particularly well-suited to situations in which power 

for an association test with a given phenotype is a priority. It would also be well-suited to the 

situation in which low-density genotype information is not necessarily available on all 

individuals. In contrast, the approaches that ignore phenotype information would be well-

suited to situations in which power for association with a particular phenotype is not the 

main goal and all individuals have low-density genotype information available. Note that if 

one had both phenotype information and non-dense genotype information on all individuals, 

then use of both pieces of information simultaneously, for choosing a subset of individuals 

for dense genotyping, could lead to incorrect type 1 error of the subsequent association test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Power Comparison for Selection Strategies in the Case of a Binary Trait
Panels (A), (B), (C), (D), (E), and (F) plot the power for association under binary trait 

models 1a, 1b, 2a, 2b, 3a, and 3b, respectively (described in the text and in supplementary 

Table S1). “Unrelated” denotes the Maximally-Unrelated strategy, “GIGI” denotes GIGI-

Pick, “Re-Bal” denotes the Rebalanced Founder strategy, “Enrich” denotes the Enrichment 

strategy, and “G-STGY” denotes G-STRATEGY. Each of the five selection methods is 

implemented to select n = 300 individuals to be genotyped from among the 960 individuals 

in the sample. Empirical power for each model is based on 1,000 replicates with analysis 

performed using MQLS. Standard errors are given in parentheses.
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Figure 2. Power Comparison for Selection Strategies in the Case of a Quantitative Trait
Panels (A), (B), (C), and (D) plot the power for association under quantitative trait models 

4a, 4b, 5, and 6, respectively (described in the text and in supplementary Tables S2 and S3). 

“Unrelated” denotes the Maximally-Unrelated strategy, “GIGI” denotes GIGI-Pick, “Enrich” 

denotes the Enrichment strategy, and “G-STGY” denotes G-STRATEGY. Each of the four 

selection methods is implemented to select n = 300 individuals to be genotyped from among 

the 960 individuals in the sample. Empirical power for each model is based on 1,000 

replicates with analysis performed using MASTOR. Standard errors are given in 

parentheses.
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Figure 3. Q-Q Plots with Genomic Control Coefficients from GWAS for HDL, Based on G-
STRATEGY Subsets of Different Sizes
G-STRATEGY is implemented to select a subset of size n = 250, 500, 1,000 or 2,000 

individuals to be genotyped from among the 3,134 individuals. The dashed line represents 

the values expected under the null hypothesis. The gray circles represent the benchmark in 

which all 3,134 genotyped individuals are selected. GWAS analysis is performed using 

MASTOR based on each resulting sample.
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Figure 4. Q-Q Plots of HDL p-values for SNPs in Candidate Genes, Based on Different Selection 
Methods
We test for association at ~3,700 SNPs that are located with within 13 candidate loci 

(comprising 19 candidate genes) for HDL. For each of the four selection methods, the 

reported p-value is the geometric mean of the corresponding p-values at each SNP over 20 

runs. The p-values in Panel (A) are based on selection of n = 1,000 individuals to be 

genotyped, and the p-values in Panel (B) are based on selection of n = 2,000 individuals to 

be genotyped. The dashed line represents the values expected under the null hypothesis. The 

gray dots represent the benchmark in which all 3,134 genotyped individuals are selected.
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Figure 5. Q-Q Plots of LDL p-values for SNPs in Candidate Genes, Based on Different Selection 
Methods
We test for association at ~740 SNPs that are located within 4 candidate genes for LDL. For 

each of the four selection methods, the reported p-value is the geometric mean of the 

corresponding p-values at each SNP over 20 runs. The p-values in Panel (A) are based on 

selection of n = 1,000 individuals to be genotyped, and the p-values in Panel (B) are based 

on selection of n = 2,000 individuals to be genotyped. The dashed line represents the values 

expected under the null hypothesis. The gray dots represent the benchmark in which all 

3,134 genotyped individuals are selected.
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Figure 6. Manhattan Plots for HDL for Regions within CETP and LIPC, Based on Different 
Selection Methods
For each of the four selection methods, the reported p-value is the geometric mean of the 

corresponding p-values at each SNP over 20 runs. The p-values in Panels (A) and (B) are 

based on selection of n = 1,000 individuals to be genotyped; the p-values in Panels (C) and 

(D) are based on selection of n = 2,000 individuals to be genotyped. Panels (A) and (C) 

represent a chromosomal region within CETP; Panels (B) and (D) represent a chromosomal 

region within LIPC. The gray dots represent the benchmark in which all 3,134 genotyped 

individuals are selected.
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Figure 7. Manhattan Plots for LDL for Regions within APOE and ABCG8, Based on Different 
Selection Methods
For each of the four selection methods, the reported p-value is the geometric mean of the 

corresponding p-values at each SNP over 20 runs. The p-values in Panels (A) and (B) are 

based on selection of n = 1,000 individuals to be genotyped; the p-values in Panels (C) and 

(D) are based on selection of n = 2,000 individuals to be genotyped. Panels (A) and (C) 

represent a chromosomal region within APOE; Panels (B) and (D) represent a chromosomal 
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region within ABCG8. The gray dots represent the benchmark in which all 3,134 genotyped 

individuals are selected.
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Table 1

Main Notation

D Set of sampled individuals

P Phenotyped set

N0 Initially genotyped set

n0 Number of individuals in the set N0

S Subset of individuals in D who are available to be selected for genotyping

Na Set of additional individuals selected for genotyping (subset of S)

na Number of individuals in the set Na

N = N0 ∪ Na Extended genotyped set

G = (G1, G2, …, Gn)T Genotype vector, where n = |N| = n0 + na

Y = (Y1, Y2, …, Yp)T Phenotype vector, where p = |P|

w ≥ 0 Number of covariates included in the analysis, in addition to the intercept

W [p × (w + 1)] matrix of covariates for the individuals in P

Φ [d × d] kinship matrix for the individuals in D, where d = |D|

ΦN [n × n] kinship matrix for the individuals in N

ΦN P [n × p] cross-kinship matrix between the individuals in N and P
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Table 3

Run Times and Memory Usage of G-STRATEGY when Applied to the AGES-REFINE HDL Data

# Individuals to Select
for Additional Genotyping (na)

Memory
(Mb)

Run times
(min)

500 593 7.4

1,000 634 9.5

Note: The AGES-REFINE sample consists of 8,030 individuals, among whom n0 = 3,134 have been previously genotyped. The remaining 4,896 

individuals are not yet genotyped, but are all assumed to be available for genotyping.
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