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A B S T R A C T

Autism is a common developmental condition with a wide, variable range of co-occurring neuropsychiatric
symptoms. Contrasting with most extant studies, we explored whole-brain functional organization at multiple
levels simultaneously in a large subject group reflecting autism's clinical diversity, and present the first network-
based analysis of transient brain states, or dynamic connectivity, in autism. Disruption to inter-network and inter-
system connectivity, rather than within individual networks, predominated. We identified coupling disruption in
the anterior-posterior default mode axis, and among specific control networks specialized for task start cues and
the maintenance of domain-independent task positive status, specifically between the right fronto-parietal and
cingulo-opercular networks and default mode network subsystems. These appear to propagate downstream in
autism, with significantly dampened subject oscillations between brain states, and dynamic connectivity con-
figuration differences. Our account proposes specific motifs that may provide candidates for neuroimaging
biomarkers within heterogeneous clinical populations in this diverse condition.

1. Introduction

Autism spectrum disorder (ASD) is a lifelong neuropsychiatric
condition affecting> 1% of the population with a lifetime cost of care
of $1.4–2.4 million (Buescher et al., 2014). Diagnostic criteria specify
social communication deficits and restricted/repetitive behavior pat-
terns. However, symptoms extend to most neurocognitive systems
(Silver and Rapin, 2012) including prominent visual, language and
sensorimotor differences. Co-morbid findings in individuals with autism
include intellectual disability (40–50%), seizures (8–30%), neuromotor
abnormalities (≤79%), sleep disruption (50–80%), and gastrointestinal
symptoms (9–70%) (Silver and Rapin, 2012; Lai et al., 2014). Psy-
chiatric comorbidities are strikingly common, most frequently anxiety
and attention deficit hyperactivity disorder (ADHD), each present in
~50% (Lai et al., 2014).

ASD may be considered a developmental disorder of distributed
neural systems, evidenced by alterations in microscale (Zoghbi and
Bear, 2012), mesoscale (Hutsler and Casanova, 2015) and macroscale
(Duerden et al., 2012) neural architecture. Current estimates of herit-
ability are 80%, albeit with substantial genetic heterogeneity

(Geschwind and State, 2015) and environmental contributions
(Herbert, 2010). While multiple neural elements appear implicated, no
consistent or unifying structural or functional motif has been identified
and validated. Consequently, ASD remains a taxonomic umbrella term
rather than a disease (Silver and Rapin, 2012). Identifying a convergent
mechanism capable of reconciling the characteristic infantile onset and
core behavioral phenotype with observable neurocognitive diversity
and biomolecular heterogeneity remains a fundamental unsolved pro-
blem.

ASD research has benefitted from the increasing conceptualization
of behavior and cognition as being emergent properties of brain net-
works. In this model, a network consists of multiple regions or nodes
(that may be spatially distant from each other) exhibiting stable, or-
ganized patterns of persistent co-activation or coherence when brain
function is measured. This patterned co-activation between nodes
within a network has been termed functional connectivity, and multiple
techniques may be used to search for and define networks, including
independent component analysis (ICA), seed-based, graph and clus-
tering techniques. There appear to be multiple, stable networks in the
human brain present across individuals that have been associated with
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specific behavioral or cognitive functions such as vision (Laird et al.,
2011). Interestingly, networks appear to be replicable across condi-
tions, and many have been identified during task performance that
correspond to those seen in the wakeful resting state (Smith et al.,
2009), anesthesia and sleep (Zhang and Raichle, 2010), suggesting
resting state neurocognitive templates are activated during tasks
(Spreng et al., 2013). Taken together, these observations also suggest
these large-scale networks may be inherent in human brain function,
giving rise to the appellation ‘intrinsic network’ (IN) (Seeley et al.,
2007). Spatio-temporally patterned, correlated activity also exists be-
tween networks, that may be termed functional network connectivity
(FNC, Fig.1a). Here, individual networks may be initially defined using
a variety of techniques such as ICA or seed-based methods, before de-
fining connectivity characteristics between two or more networks.
Commonly, FNC is analyzed by examining successive pairs of networks
to eventually compute all the possible relationships among a set of N
networks, or [(NxN)-N]/2. Identification of the total set of brain net-
works and the character of connections within and between them may
therefore provide a map of the human functional ‘connectome’, akin to
a whole-brain wiring diagram.

When observed using functional MRI (fMRI) in the resting state, co-
activation patterns characterizing functional connectivity and FNC are
often averaged across the timecourse of scans, producing measures of
steady-state connectivity. Analytic approaches capable of character-
izing the time-varying properties of network configurations in fMRI, or
dynamic connectivity, have recently garnered substantial interest
(Calhoun et al., 2014). When their temporal organization is thereby
additionally delineated, functional connectivity and FNC together form
what we have called the human ‘chronnectome’: a multi-level archi-
tecture housed in the same physical substrate but simultaneously al-
lowing functional specialization and the dynamic integration required
for complex cognition. Much work remains to be done to provide a
detailed description of the role that different individual networks play
in dynamic connectivity, and how this could relate to a model where
distinct brain ‘states’ may specify shifts in neurocognitive function and
behavior such as the redirection of attention. However, while networks
are known to specialize, two broad types exist. Domain networks per-
form specific data processing functions for tasks such as vision, while
control networks effect top-down/executive management of process
initiation, maintenance and transition via FNC configuration shifts. The
functional characterization of control networks and their inter-
relationships is therefore of interest in considering dynamic con-
nectivity. Patterns of resting state inter-network FNC can differentiate
affected from unaffected individuals in disorders of complex cognition
such as depression (Manoliu et al., 2013), obsessive-compulsive dis-
order (Anticevic et al., 2014), schizophrenia and bipolar disorder (Du
et al., 2015). Similarly, ASD is increasingly considered a connectivity
disorder (Zhang and Raichle, 2010). However, the specific connectivity
deficits have greatly varied given methodological and subject selection
differences. Early studies often focused on region-specific differences in
activation during tasks, with more recent inquiry using resting state
fMRI concentrated in seed-based techniques (Hull et al., 2016) and low-
order models. Many studies have focused on smaller groups of more
homogenous subjects (often males with higher cognitive function)
without psychiatric co-morbidities. However, it is not clear if these
more narrowly-defined groups may represent sub-populations within
ASD, and the use of restricted numbers of networks may obscure un-
derlying connectivity patterns. In contrast, we opted to perform an
exploratory, hypothesis-free study in a large group of subjects of varied
ages using resting state fMRI. We embraced – but controlled for - the
neurocognitive and psychiatric diversity found in clinical populations
with ASD. Using a high-order model to achieve fine spatial and tem-
poral scale, we applied ten advanced outcome measures to this large
dataset to maximize power. We were particularly interested in juxta-
posing measures at different hierarchical levels of functional brain or-
ganization that characterize connectivity within networks, between

networks and at the aggregated network system level and comparing
connectivity motifs across steady-state and dynamic FNC.

2. Materials and methods

2.1. Methods summary

After pre-processing with standard techniques in the DPARSF pi-
peline, resting-state scans from 884 subjects were pre-whitened and a
two-step principal components (PC) analysis was performed to reduce
to 75 PCs. A high-order 75 component group ICA (gICA) using the
Infomax algorithm was run 10 times with random initialization using
ICASSO, and subject specific spatial maps estimated using back re-
construction with the GICA algorithm. Measures of intra-network, inter-
network and inter-system connectivity in the averaged (steady-state)
fMRI timecourses were tested for group effects in autism vs controls,
controlling for IQ, age, sex, site, eye status, medication use, co-morbid
diagnosis and head motion. In voxelwise outcome measures, predictors
were submitted to a MANCOVA with an F-test at each iteration to
produce a final reduced model for each outcome measure and network,
before univariate testing of significant predictors was performed on the
original model. For the dynamic analysis, successive correlation ma-
trices for all networks were generated using a sliding window technique
and brain states formed using k-means clustering on the windowed
correlation matrices. Dynamic outcome measures including examina-
tion of variance in the temporal patterns of subject transition among
states were tested in autism vs controls after controlling for site and
head motion. A sensitivity analysis was performed using 9 permutations
of cluster number and window size. Directional test-retest analysis was
performed. A detailed account of Methods follows.

2.2. Data selection and preprocessing

The base data for this study is the collection of MRI scans assembled
by the Autism Brain Imaging Data Exchange (ABIDE) consortium from
16 different study sites (Di Martino et al., 2014). Resting state and
MPRAGE structural data for 1112 subjects (539 with ASD and 573
neurotypical controls) are made available. This data is deidentified in
compliance with U.S. Health Insurance Portability and Accountability
Act (HIPAA) guidelines and in the public domain. The research was
approved by local human subjects committees at all sites and partici-
pants signed written informed consents and assents. The present study
was given exempt status by the University of Washington Human
Subjects Committee. We included in this study only scans that were
rated as ‘good’ by two or more of three raters in the ABIDE QI process
(see http://preprocessed-connectomes-project.github.io/abide/quality_
assessment.html). We then discarded scans with< 110 timepoints in
the resting state scan since we wanted to preserve our ability to com-
pute a high order model, and further eliminated 59 subjects for whom
IQ data was not available. In total, 884 subjects ages 6.5 to 58 were
included, 423 with ASD and 461 controls. Certain subjects were taking
psychoactive medications at the time of the scan. Supplementary
Table 4 shows characteristics of the subjects in this study.

We utilized resting state scans with minimal processing using the
Data Processing Assistant for Resting State fMRI (DPARSF) without
band-pass signaling and without global signal regression. The first four
volumes were dropped from each scan to remove T1 equilibration ef-
fects. Scans then underwent slice time correction in order to correct for
different signal acquisition times, shifting the signal measured in each
slice relative to the acquisition of the slice, using the middle slice as the
reference frame. Subsequently, realignment was performed using a six-
parameter (rigid body) linear transformation with a two-pass proce-
dure, first registering to the first image and then to the mean of the
images. Structural images (T1-weighted MPRAGE) were segmented into
gray and white matter (GM and WM) and cerebrospinal fluid (CSF), co-
registered to the mean functional image and then transformed from
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individual native to Montreal Neurologic Institute 152 space using the
Diffeomorphic Anatomical Registration Through Exponentiated Lie al-
gebra (DARTEL) tool. Minimal, standard regressions were performed on
the resulting data to ensure the signal used in the analysis represented
coactivation responses from GM. Specifically, head motion effects were
regressed out using the Friston 24-parameter model and signal from
WM and CSF regressed out to remove respiratory and cardiac effects.
Finally, linear and quadratic trends were included to account for low
frequency drift in the blood oxygen level dependent signal. See http://
preprocessed-connectomes-project.github.io/abide/Pipelines.html and
http://preprocessed-connectomes-project.github.io/abide/dparsf.html
for additional details. We performed temporal filtering later in our
processing pipeline.

2.3. Analytic pipeline

The approaches we adopted in our general analytic pipeline to ex-
tract and identify INs and perform static and dynamic connectivity
analysis have been developed in our group at the Mind Research
Network and validated in large groups of control subjects. Further de-
tails of the computational underpinnings may be examined in recent
published studies (Allen et al., 2011; Allen et al., 2014). Accordingly, in
this section we set forth specific methodologic choices we made in the
current analysis to optimize our approach and results given the high
dimensionality of the data, large number of subjects and computa-
tionally resource-intensive nature of these techniques. Additional out-
come measures were developed specific to the present study (Intra- and
inter-system correlations, state change number and fraction of time
spent in state) and these are described in detail. Software tools used in
this analysis are made freely available at: http://mialab.mrn.org/
software.

2.4. Group independent component analysis

We identified large scale brain networks in the subject sample using
a spatial ICA algorithm instantiated in the Group ICA of fMRI Toolbox
(GIFT) developed in our group and widely used in ICA analysis of fMRI
(Calhoun and Adali, 2012). In this approach, spatial maps representing
temporally coherent individual networks are extracted or deconvolved
from the linearly mixed whole brain resting state signal by estimating
maximally independent spatial sources. The group ICA model assumes
that the set of independent source locations have weights specifying the
contribution of each source to each voxel, with these weights multiplied
by each source's timecourse. The total number of sources are then
added together, with each voxel containing a mixture of the sources,
each of which fluctuates according to its weighted timecourse with
every component making some contribution at each voxel. This may be
appreciated in Supplementary Fig. 1 by noting that spatial overlap
between networks is present even on visual inspection (for example INs
12/13, 18/19, 20/21, 2/8/9 or 24/26). In addition, we computed the
normalized mutual information between each pair of components
(Supplementary Fig. 2) to demonstrate the shared information between
every component pair in the decomposition.

Each independent component (IC) therefore represents a network
extracted en bloc from the pooled sample of 884 individuals to max-
imize component refinement and specificity (Smith et al., 2009; Allen
et al., 2011). This is a hypothesis-free, data-driven approach to identi-
fying brain networks that computes relationships between all voxels in
the resting state data rather than estimating pairwise correlations, and
may provide increased sensitivity to detect subtle intra-subject differ-
ences (Calhoun and Adali, 2012).

We performed a group independent component analysis (gICA)
using a relatively high order model of 75 components (Zhang and
Raichle, 2010; Allen et al., 2011). Before the gICA, we submitted the
data to reduction and pre-whitening (the latter to remove effects at-
tributable to serial autocorrelation) in a principal components (PC)

analysis. First, we performed a subject-specific data reduction PC ana-
lysis using a standard economy-size decomposition retaining 90 PCs
with the objective of stabilizing back reconstruction and retaining
maximum variance at the individual level. We next performed group
data reduction retaining 75 PCs in order to reduce dimensionality in the
data to the number of components used in the ICA. For the second,
group data reduction step, we used the expectation-maximization al-
gorithm included in GIFT to maximize performance, removed the mean
image per timepoint to improve conditioning of the covariance matrix,
and masked data with an ABIDE-specific template derived from a single
ABIDE MPRAGE scan selected at random. The data was fully stacked to
compute the covariance matrix with double point precision. Then we
performed the gICA analysis by repeating the Infomax ICA algorithm 10
times in ICASSO (Himberg et al., 2004). In the latter approach the ICA
algorithm is run multiple times starting with different, randomly se-
lected initial values to obtain clusters that are the most representative
and therefore most reliable estimate for each component. There is
currently no idealistic way to specify the number of ICs in an ICA de-
composition, but rather choices available to the researcher based on
study design preferences and the dimensionality of the data. Automated
approaches typically converge on a lower number of components (Li
et al., 2007) but over the past few years many studies have manually
opted for a higher model order. We selected an intermediate-high (75)
number of independent components because we wished to isolate in-
dependent right and left fronto-parietal control networks. In this we
followed Smith et al. (Smith et al., 2009) and Allen et al. (Allen et al.,
2011) who demonstrated using ICA that a high model order is necessary
to extract these specific networks. In terms of the number of PCs, we
have previously demonstrated (Erhardt et al., 2011) that the perfor-
mance of the ICA decomposition is insensitive to variations in this
parameter, as long as the number of PCs is greater than the number of
ICs.

Aggregate spatial maps were estimated as the centrotypes of com-
ponent clusters to reduce sensitivity to initial algorithm parameters (Ma
et al., 2011). Single-subject images were concatenated in time to per-
form the single group ICA estimation and subject specific spatial maps
estimated using back reconstruction with the GICA approach in GIFT.
The GICA algorithm estimates single-subject images and timecourses
from the single group ICA estimation, thereby allowing individual
variation in spatial maps and timecourses (Erhardt et al., 2011), and we
have previously demonstrated that inter-subject variance is well-cap-
tured in the group ICA model using this algorithm (Allen et al., 2012).
The resulting independent components (ICs) were scaled by converting
each subject component image and the time course to z-scores. We
performed an analysis of the reliability of the ICA source estimates
obtained in the ICA decomposition by calculating a stability metric (Ma
et al., 2011) for each of the ICASSO clusters (Reported in Supplemen-
tary Table 1). This demonstrated that the decomposition achieved
compactly clustered components, with> 95% of components
achieving> 0.75 average intra-cluster similarity where> 0.7 is con-
sidered acceptable. Components with< 0.75 average intra-cluster si-
milarity were discarded to be conservative.

2.5. Network selection and feature identification

ICA generates components from the mixed fMRI signal that re-
present a mix of ‘true’ brain networks and artefactual components from
various sources such as cerebrospinal fluid, white matter, blood vessels
and head motion. The separation of components into these two groups
currently remains a semi-manual process, informed by quantitative
metrics but reliant on the experience of the investigators, though the
automation of this process is an area of ongoing research by ourselves
and others. For each of the 75 ICs in this study, we separated INs from
artifact by examining spectral metrics and visually inspecting the spa-
tial maps. Spectra were characterized by two metrics: the fractional
amplitude of low frequency fluctuations (fALFF), and dynamic range.
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fALFF is the ratio of the integral of spectral power below 0.10 Hz to the
integral of power between 0.15 and 0.25 Hz. Dynamic range is the
difference between the peak power and minimum power at frequencies
to the right of the peak. Data are provided for each component in
Supplementary Table 2. Generally, ICs that represent brain networks
have higher values in spectral metrics, while noise components have
lower values. Two graders (NdL and VDC) used the metrics to rate the
ICs “good”, “fair” and “poor”. “Poor” components with low spectral
values were discarded, with the two components with< 0.75 intra-
cluster similarity in the ICASSO analysis also detected in this group.
Spatial maps rated “fair” and “good” based on metrics were visually
inspected and any considered marginal were also excluded to pursue a
conservative analysis. In particular, components with activation that
visually overlaps white matter, or has a strong ‘edge like’ appearance
were discarded. We retained 33 ICs that were the 33 INs collectively
forming the analytic substrate for the remainder of our study
(Supplementary Fig. 1).

Maxima of coordinates in MNI space associated with each of the INs
are detailed in Supplementary Table 3. An attribution was made of the
primary neurocognitive function of each IN using, where available,
prior studies defining networks on the basis of specific coordinates and/
or regions and also by examining the function of four or more of the
highest maxima using the Brodmann Interactive Atlas (http://www.
fmriconsulting.com/brodmann/Interact.html). Multiple literature-
based confirmatory sources with specific Talairach or MNI coordinates
were available for all members of the TPN and the DMN (the control
INs) and for the primary sensorimotor and visual networks (Laird et al.,
2011; Smith et al., 2009; Spreng et al., 2013; Seeley et al., 2007;
Dosenbach et al., 2006; Dosenbach et al., 2007; Power et al., 2011; Fox
et al., 2005; Vernet et al., 2014). Subsequently, we grouped INs into
primary neurocognitive systems, namely task positive (TPN), default
mode (DMN), visual (VIS), sensorimotor (SM), language (LANG) and
other control (OTH) networks.

2.6. Steady-state functional connectivity measures

We computed 5 outcome measures to characterize steady-state
connectivity, summarized in Table 1:

To compute power spectra, subject-specific timecourses were de-
trended using the multi-taper approach derived from Chronux (Bokil
et al., 2010), with the time-bandwidth product set to 3 and the number
of tapers set to 5. Spectra were then element-wise log-transformed to
normalize the skewed power distribution. We constructed spatial maps
by selecting voxels that represented the strongest and most consistent
coactivations for each IN on a voxelwise basis across all subjects, by
performing a voxelwise one-sample t-test on the individual subject
component imaging and thresholding individual voxels at (mean + 4
standard deviations). Thus, spatial maps represent the brain regions
most associated with the component's timecourses, instantiated in
thresholded t-maps. We constructed the steady-state FNC matrix by
computing the Pearson's correlation coefficient between every pair of
timecourses to generate a symmetric 33 × 33 matrix of correlations for
each subject. First, subject-specific timecourses were detrended and
despiked, and filtered using a fifth-order Butterworth low-pass filter
with a high frequency cutoff of 0.15 Hz. Correlations were then

transformed to z-scores using Fisher's transformation (z = atanh(k))
where k is the correlation between the timecourses of any two com-
ponents.

Using the Pearson's correlation coefficient between every pair of INs
for each subject, we constructed sets of correlations to form the intra-
system and inter-system measures. For the intra-system measure, cor-
relations pairs were grouped into the neurocognitive system of interest
corresponding to our core grouping of INs. For example, all correlations
between each of the possible pairwise combinations of the seven sen-
sorimotor networks comprised the sensorimotor system group. For the
inter-system measure, positive and negative correlation pairs were si-
milarly grouped but in this case to examine effects between the systems.
For example, the inter-system correlation between the TPN and DMN
would include all possible pairings among the six TPN and three DMN
INs.

2.7. Steady-state connectivity statistical analysis

Covariates (predictors) of interest (Extended Data Table 4) were age
in years, full scale IQ level, framewise displacement (coded as con-
tinuous variables), site, male or female sex, diagnosis of autism or
controls, whether subjects had their eyes open or closed during the
scan, if subjects were on any medication at the time of the scan, and the
presence of any co-morbid diagnoses (coded as discrete variables). Data
for each subject were obtained from the ABIDE phenotypic file. We
were not able to model handedness, since handedness is not available in
the ABIDE phenotypic file for many sites. Age and IQ were plotted as
histograms and compared with the Gaussian distribution, and skewness
and kurtosis calculated, and age was log transformed. Since the dataset
includes images acquired from 16 sites, we also included the site where
the study was performed as a covariate in order to examine whether site
was a significant predictor of response variation. Each site was modeled
as an individual regressor. While the variance from all sites was re-
tained, the first site alphabetically (CalTech) was selected to act as a
dummy variable (comparison group) within the multiple regression
model to avoid exact collinearity. Every possible pair of covariates was
submitted to modeling and all effects on outcome measures were ana-
lyzed on a voxelwise basis, a more conservative method than cluster-
based techniques (Eklund et al., 2016).

In order to optimize for the large dimensions of the voxelwise out-
come measures (Spectra, spatial maps and FNC pairwise correlations)
we used a multivariate model selection strategy to enable testing of
predictors on the response matrices (for voxelwise outcome measures)
as a whole and reduce the number of statistical tests performed. First,
we proceeded by backward selection, performing a multivariate ana-
lysis of covariance (MANCOVA) on each predictor in the model using
the MANCOVAN toolbox in GIFT (Allen et al., 2011). This proceeds in a
stepwise fashion, performing an F-test at each iteration to compare the
current full model with the reduced model and produce a final reduced
model in which all terms not associated with higher order interactions
are preserved at alpha = 0.01 to control false discovery rate (FDR).
Reduced models were independently selected for each voxelwise out-
come measure and every IN. In the MANCOVA, site and mean frame-
wise displacement were found to be significant predictors. Accordingly,
the variance associated with site and framewise displacement was re-
moved from the analysis by removing the variance associated with each
individual site regressor and the framewise displacement regressor from
the correlation values.

Subsequently, significant predictors were submitted to multiple
univariate regressions and covaried with age, sex, diagnostic group,
medication status, presence of psychiatric co-morbidities and IQ. We
tested for significance at α < 0.01 corrected for multiple comparisons
to control FDR to discover which outcome measures were associated
with age, sex, diagnostic group, medication status, presence of psy-
chiatric co-morbidities, and IQ. Univariate models were fit to the ori-
ginal data and not the reduced model. For the FNC correlation measures

Table 1
Steady-state outcome measures.

Measure Hierarchical level and type of characterization

Power spectra Within-network coherence
Spatial maps Strongest within-network regional activations
FNC Pairwise connectivity between individual networks
Intra-system Correlation strength within grouped networks
Inter-system Correlation strength between grouped networks
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we calculated the standard error of the mean (STDERR). We performed
a similar analysis using the same components including only subjects
with ASD to further determine if the presence of psychiatric co-mor-
bidities and current use of medication were significant predictors, and
found that they were not. In order to assess for residual motion effects,
the interaction of framewise displacement × group was also tested in
the univariate analysis to assess for residual motion effects in significant
predictors.

For the intra-system measure, we calculated the mean of correla-
tions for all possible pairwise combinations of INs within each system
(for example, all the sensorimotor INs). We then performed two sample
t-tests (2-tailed, assuming equal variance) to discover whether sig-
nificant (α < 0.05, corrected to control FDR) differences existed for
mean intra-system correlations between subjects with autism and con-
trols.

For the inter-system analysis, we calculated mean of correlations for
all possible pairwise combinations of INs between pairs system (for
example, all the sensorimotor INs with all DMNs). We then performed
two sample t-tests (2-tailed, assuming equal variance) to discover
whether significant (α < 0.05, corrected to control FDR) differences
existed for mean inter-system correlations between subjects with autism
and controls.

2.8. Dynamic connectivity

We computed dynamic FNC using a sliding window approach in-
stantiated in the dFNC toolbox in GIFT. First, the timecourses were
detrended and despiked using 3D despike in the AFNI software then
filtered using a fifth-order Butterworth low-pass filter with a high fre-
quency cutoff of 0.15 Hz. Then, FNC covariance matrices were calcu-
lated between all pairwise INs for each subject using the correlations
derived from our ICA analysis by moving a Gaussian window in 1 TR
increments across the subject TCs. Of note, since this is multisite data
the TR varies from site to site with a range of 1.5 to 3 s and our algo-
rithm incorporated this. In addition, the variance associated with site
was removed from the analysis by removing the variance associated
with each individual site regressor from the correlation values, prior to
performing clustering. Successive FNC matrices for each window were
then concatenated to form a [33 × 33 × (number of window units)]
array representing a state transition vector, or how the FNC state
changed through time for each subject.

Subsequently, we performed a clustering analysis to examine the
structure and frequency of FNC patterns that recurred in the state
transition vectors. The k-means clustering algorithm was applied to the
individual arrays of FNC covariance matrices using the City method and
the algorithm iterated a maximum of 200 times before convergence. We
iterated this method to discover the extent to which results were sen-
sitive to variations in the number of clusters selected and the size of the
Gaussian window. Based on our prior work (Allen et al., 2014) we chose
an initial parameter set of 6 states and a window size of 30TR, and
varied parameters around this for a sensitivity analysis including 5, 6
and 7 clusters, each with window sizes of 25, 30 and 35TR (and
therefore with 169, 164 and 159 window units respectively) for a total
of 9 permutations. In addition, we applied a threshold concept re-
quiring that a given FNC covariance matrix be present in a minimum
number of 10 windows for each subject included.

We note that there is an overall structure to the dFNC matrices that
appears constant among the clusters and somewhat resembles a ‘ske-
leton’ structure of pairwise correlations that recurs from cluster to
cluster. This is an expected effect that may also be seen in comparable
analyses in other disorders (Rashid et al., 2014) and may reflect the
high proportion of variance in brain activity that is thought to remain
similar regardless of the task being performed or individual brain state
(Cole et al., 2014). In addition, in every permutation there is a matrix in
which most networks appear to be correlated. These ‘red states’ do
appear in dynamic connectivity analysis of other, separate datasets and

appear to be clusters representative of the mean of all variance ex-
amined. We examined the individual subjects present in this state in the
current analysis and they were drawn from all sites, supporting that in
this current study this cluster or state may also be the mean. We note
that no significant group differences were found in this ‘red’ state in any
of the 9 permutations of the dynamic analysis and therefore it does not
influence the direction of our reported results.

2.9. Dynamic connectivity statistical analysis

We computed five measures of dynamic connectivity. Significant
group differences in FNC were computed for each state using two-
sample t-tests at α= 0.05, corrected to control FDR. We also calculated
the number of times each subject moved between states during their
individual timecourse, the average time (in windows) that each subject
spent in each of the states once entering that state (dwell time), and the
fraction of their total timecourse each subject spent in each state. Two
sample t-tests were performed in these timing measures to examine
significant (α= 0.05, corrected for dwell and fractional time to control
FDR) differences between subjects with autism and healthy controls.
Finally, we calculated the number of subjects within each group (con-
trols and subjects affected by autism) present in each state and used two
sample t-tests to examine significant (p < 0.05) differences between
groups in this measure.

2.10. Test-retest reliability analysis

We performed a test-retest analysis on two subsets of the data to
ascertain whether the basic directionality of our core results was reli-
able. Firstly, the dataset was split into group 1 and group 2 of equal size
to create two half-size datasets with similar characteristics to each other
and the larger group (Supplementary Data Table 4). Prior to statistical
testing, we performed a regression between the base FNC 33 × 33
matrix (Fig.1) and that of the subgroups to test their similarity. Sub-
sequently, we examined group differences in power spectra, spatial
maps, steady-state FNC and dynamic measures (for the median 6 state,
30TR window solution) in the subgroups using the same experimental
parameters as in the larger dataset. Since the sub-groups have less
power and half the degrees of freedom, we performed steady-state
voxelwise statistical t-tests at a significance level of 0.05, with correc-
tion for FDR.

3. Results

3.1. A high order model delineated the steady-state connectome at multiple
hierarchical levels

We assembled a 33 × 33 network matrix of interactions in a high
order model, representing steady-state FNC across the whole brain for
all subjects, including individuals with ASD and controls (Fig. 1a).
There were no residual motion effects in FNC with the exception of
reduced correlation in the three network pairs of INs 14 × 22, 12 × 29
and 32 × 33. In the test-retest analyses, FNC matrices for subgroups 1
and 2 displayed 99.7% and 99.9% correlation with the full group FNC
matrix respectively. Spatial maps were grouped according to their
neurocognitive function (Fig. 1b), with visual examples of the control
network groups displayed (Fig. 1c) here. Among task positive
networks, we extracted and positively identified the salience, ventral
attention, right and left fronto-parietal, cingulo-opercular, and dorsal
attention networks and three default mode networks: core, anterior
and posterior. We identified 7 visual, 7 sensorimotor, 4 other control
and 6 language networks (Supplementary Fig. 1 and Supplementary
Table 4).
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3.2. Bidirectional steady-state control network differences in ASD center on
inter-network connectivity

In subjects with ASD, we identified significant differences in inter-
network pairwise FNC after controlling for IQ, site, motion, medication
status, presence of comorbid diagnoses, eyes open or closed, age and
gender (correcting for multiple comparisons at alpha = 0.01 to control
FDR). In FNC, we found reduced connectivity strength (hypo-con-
nectivity) between the right fronto-parietal network and both the core
and anterior default mode networks, with these effects replicated in
both subgroups of the test-retest. Hypo-connectivity was also observed
between the ventral attention and left fronto-parietal networks, though
this effect was not reliably replicated in either test-retest subgroup. We
also detected hypo-connectivity in the anterior-posterior axis of the
default mode networks, replicating this effect in subgroup 1. By con-
trast, the cingulo-opercular network showed abnormally increased
correlation (hyper-connectivity) with the anterior DMN, replicated in
subgroup 2 in test-retest. This was the only instance of hyper-con-
nectivity we identified in steady-state FNC. There was no interaction of
residual motion with FNC group effects in any pair of control networks.
We did not find differences between subjects with autism and controls
in either measure associated with intra-network integrity (spatial maps
and power spectra) in this high order model, and replicated this ne-
gative finding in both subgroups in test-retest.

Of the 5 unique network pairings that were disrupted in control
networks, DMN sub-networks were involved in 4 of these, including
hypo-connectivity in the anterior-posterior DMN axis. Here, our find-
ings parallel much of the extant literature in autism. More specifically,
hypo-connectivity among the sub-networks or nodes of the DMN (Assaf
et al., 2010; Jung et al., 2014) and anterior-posterior hypo-connectivity
in the DMN, (Starck et al., 2013) have been highlighted as the best-
replicated findings in the (albeit heterogenous) autism connectivity
literature (See review by Hull et al (Hull et al., 2016)).

In task-positive networks, it is more challenging to compare our
results with others due to fewer studies, and methodologic and subject
selection differences. For example, in 40 children with ASD, Abbott
et al. identified hyper-connectivity between the DMN and executive
(fronto-parietal) control network, in contrast to our finding of hypo-
connectivity, though this study examined 4 networks in a lower model
order, treating the fronto-parietal network as a single entity (Abbott
et al., 2016). We identified a locus of hyper-connectivity involving the
cingulo-opercular network, where the insula is one of two core regions.
The insula and its connections have recently acquired more prominence
in the autism, but it is also a core constituent of the salience network.
These networks somewhat overlap (Power et al., 2011), as may be seen
in Fig. 1c, and ideally, both networks would be present in any one
model to allow effective inter-study comparisons: most extant studies
focus on one or the other network. Connectivity differences in the in-
sula and salience networks have been well-demonstrated in autism,
particularly in multiple interesting studies by the Uddin group (Uddin
et al., 2013; Uddin and Menon, 2009). With respect to the cingulo-
opercular network, Chen et al. (Chen et al., 2016) found disrupted
connectivity among the cingulo-opercular, fronto-parietal networks and
DMN and intriguingly, Nomi & Uddin detected a ‘weaker functional
relationship between the DMN and a [non-salience] subcortical/insula
component’ in adolescents with ASD (Nomi and Uddin, 2015). Our
finding of hyper-connectivity between cingulo-opercular and anterior
DMN differs from this general trend of identifying hypo-connectivity in
insula-related networks. In this regard, more studies in autism including
both salience and cingulo-opercular networks will be helpful to dis-
ambiguate effects. In terms of the canonical DMN-dorsal attention cir-
cuit, our finding that this had normal connectivity parallels work by
others (Nomi and Uddin, 2015; Kennedy and Courchesne, 2008).

Our negative results in measures of intra-network disruption in
control networks are in accordance with some studies (Abbott et al.,
2016; Bos et al., 2014), but other groups have detected differences in

Fig. 1. The steady-state functional connectome in a high order model.
a, Pearson pairwise correlations between networks averaged across the fMRI timecourses delineate a 33 × 33 network matrix of interactions in a high order model, representing steady-
state FNC across the whole brain for all subjects, including individuals with ASD and controls. We grouped networks by their primary neurocognitive function b, into systems. Members of
the task positive and default mode control system c, are shown in greater detail with slices corresponding to the peak intensity activation in each plane. Coordinates for each network
including right and left maxima for the top three regions are available in Supplementary Table 4.
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intra-network measures, and an important school of thought exists
conceptualizing ASD as a disorder where local hyper-connectivity
contrasts with long-range hypo-connectivity (Geschwind and Levitt,
2007). Fewer studies specifically focusing on TPN networks as distinct
from the DMN exist, and age stratification, may also be an important
influence in detecting these effects on a network basis. For example,
Farrant & Uddin (Farrant and Uddin, 2016) detected hyper-connectivity
within the dorsal and ventral attention networks in children with ASD,
but hypo-connectivity in adults. Model order is also worthy of con-
sideration, since intra-network disruption in a low model order might
appear as inter-network disruption among sub-networks in a higher
model order.

3.3. Domain networks showed pervasive reduced inter-network connectivity
in ASD

Control networks exert configurative influence over downstream
domain-specific networks. We also identified group effects in domain-
specific networks. Sensory abnormalities are common in ASD, encom-
passing visual, tactile, auditory and olfactory processing differences,
with a common theme of atypical perceptual integration. Motor fea-
tures - predominantly stereotypies, sometimes called ‘stimming’ - have
been of particular interest as possible diagnostic markers since they
precede communication deficits at ages 6–12 months. Paralleling our
findings in control networks, we identified widespread differences in
pairwise FNC in domain networks in ASD (Fig. 2), but not in spectra or
spatial maps, again suggesting that disruption is centered on the func-
tional relationships between networks rather than their intra-network
integrity. However, a contrasting finding was that in domain networks
the direction of these pairwise differences was uniformly of reduced
correlation strength. A total of 16 unique pairwise differences were
detected in domain-specific networks in autism. We observed reduced
correlation in three network pairs of INs 14 × 22, 12 × 29 and
32 × 33 where we had detected possible motion contamination ren-
dering these group effects potentially spurious, and we therefore dis-
counted them in reporting results. Of the remaining 13, every group
effect except IN17x19 (two sensorimotor networks) was present IN at
least one of the test-retest subgroups, with three pairs (12 × 21,
17 × 21 and 15 × 31) appearing in both.

Language impairment exhibits great inter-individual variability in
ASD. We found disruption to FNC in 4 language networks in 7 pairwise
network relationships. Interestingly, three of these were with a single
higher-level visual processing network (IN15). Three visual networks
displayed pairwise reduced connectivity strength in 8 pairings, in-
cluding both lower-level (IN 12 and 14) and higher-level (IN 15) visual
processing networks. Well-known visual perceptual differences in ASD
are characterized by deficits in global processing (whole object) but
superior low level processing (object details), and recent causative ex-
planations have focused on a lack of integration between low- and high-
level visual processes (Smith et al., 2015). In sensorimotor networks,

we identified FNC differences in 5 networks in 10 pairings, most
commonly with visual or other sensorimotor networks. IN21, the right
primary sensorimotor network, displayed the most frequent deficits,
with hypo-connectivity in four pairwise relationships. Two of these,
with IN12 (a visual network) and IN17 (a sensorimotor network) re-
plicated in both subgroups in test-retest. These prominent effects in the
primary right sensorimotor network are noteworthy given motor ste-
reotypies are a cardinal feature of ASD.

3.4. Group effects in FNC in control and domain-specific networks were
unaffected by IQ level

Intellectual disability is a significant co-morbidity with ASD. In
contrast to most published studies using large datasets, we included
subjects with co-morbid intellectual disability and low normal IQ
(< 80). IQs ranged from 41 to 148 (mean = 108) and were normally
distributed in our subject group, with 27% below the population mean
of 100. Importantly, no FNC effects were attributable to IQ or an IQ x
autism interaction (replicated in test-retest), indicating that ASD may
have an FNC phenotype that is independently detectable. While sig-
nificant FNC effects were attributable to age (though not an age x
autism interaction), this is consistent with results in unaffected in-
dividuals (Allen et al., 2011), reflecting a generalized maturation pro-
cess.

3.5. System-based measures demonstrated a mix of hyper- and hypo-
connectivity

To complement intra-network and inter-network measures we ex-
amined connectivity relationships in groups of networks, arranged by
their neurocognitive function (Supplementary Fig. 1). In autism
(Fig. 3), we identified significantly decreased within-system connection
strength in the default mode network group (comprising the three DMN
subnetworks) and the group of other control networks. Since this is a
high order model which decomposes the DMN into constituent sub-
networks, this finding may be conceptually related to findings by others
of disruption within the DMN in lower order models, as discussed
above. By contrast, we identified abnormally increased connectivity
within the visual network group. There was no difference between
autism and controls in the intra-system measure in the TPN, sensor-
imotor or language groups. When relationships between systems of
networks was considered, there was also a mix of hyper- and hypo-
connectivity, though as with individual FNC, hypo-connectivity pre-
dominated. Reduced inter-system connection strength most affected the
visual system, in its connections to language, sensorimotor and TPN
systems, and the TPN group relationship to other control networks.
However, we observed hyper-correlation between the language and
DMN systems.

Fig. 2. Steady-state FNC differences in ASD.
a, Significant differences (log scale) in functional
connectivity measures between b, pairs of net-
works after controlling for IQ, site, motion, age,
gender, eyes open/closed, medication and co-mor-
bidity status, corrected for multiple comparisons at
α = 0.01 to control false discovery rate (FDR).
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3.6. Dynamic connectivity analysis delineates a temporal structure of
dysconnectivity in ASD

Most fMRI connectivity analyses use steady-state measures, ag-
gregating averaged connections to create a summative, stationary pic-
ture of whole-brain network configuration. However, functional con-
nectivity and FNC are non-stationary, exhibiting dynamic shifts that
also display spatiotemporally patterned organization. Sustained tem-
poral synchrony among networks creates multiple separable, persistent
states observable in fMRI (Calhoun et al., 2014; Cole et al., 2013).
States likely instantiate the multi-scale spatio-temporal organization of
information processing, enabling transitions between processing modes

(e.g. attentional shifts) and the application of established templates to
novel tasks and consolidation of learning. As patterns of intra-network
regional coupling facilitate the formation of task-specific templates at a
lower hierarchical level, these dynamic configuration templates may
frame efficient inter-network brain state transitions and represent a
“latent functional architecture” enabling higher cognition (Spreng
et al., 2013). Newer dynamic FNC techniques using fMRI can delineate
variability in FNC over the resting state neuroimaging time-course and
have become a powerful new tool to elucidate the mechanisms of state
changes underlying behavior and cognition (Calhoun et al., 2014)
successfully discriminating patient groups in schizophrenia and bipolar
disorders (Rashid et al., 2014). To date, these concepts have only been
applied in ASD to data from a handful of brain regions in small samples
(Falahpour et al., 2016) and have not been performed on a whole brain,
network basis.

Unlike conventional FNC analysis that averages across the rsfMRI
timecourses, this dynamic approach can separate significant differences
in patterns of abnormal connectivity and locate these in individual
states, providing a more granular picture of the structure of functional
connectivity in ASD. Here, the 6 state, 30TR-size window solution is
displayed (Fig. 4), with the full set of state transition matrices for
control subjects in the sensitivity analysis available for comparing the
effects of parameter variation (Supplementary Fig. 3).

Analysis of group effects (‘Difference’) shows significant (corrected
for multiple comparisons at alpha = 0.05 to control FDR) pairwise
differences in multiple states. As in steady-state FNC, a mix of abnor-
mally decreased and increased correlation is evident in control network
pairings with decreased connectivity more common among domain-
specific networks. While research is still at too early a stage to attribute
specific behaviors or tasks that may be associated with individual brain
states identified in dynamic resting-state analysis, we note that dis-
ruption to the overall configuration of pairwise correlations is most
common in certain states. In these states there is more diffuse antic-
orrelation, particularly in the relationships among network systems vs
within systems, and between the control network vs sensorimotor and
visual groups. In particular, the right fronto-parietal control network is
anticorrelated with most other TPN members.

We compared results across the sensitivity analysis (Fig. 5) and were
particularly interested in group differences present regardless of the

Fig. 3. Intra-system and inter-system connectivity in ASD.
Group effects in correlations between networks within a neurocognitive system (bubbles),
and between systems (lines) corrected at α = 0.05 to control FDR.

Fig. 4. Dynamic functional connectivity across brain states in controls and subjects with ASD.
Distinct, stable brain states exist within the aggregated resting state timecourses each with a specific FNC pattern. Each 33 × 33 network matrix is composed of Pearson pairwise
correlations (color scale) between the 33 networks identified in the group independent component analysis for all subjects, decomposed into individual states using k-means clustering.
We computed 9 permutations of this analysis with the 6 state, 30TR-size window solution shown here. Dynamic connectivity in control subjects (‘Unaffected’) is compared to that in
individuals with ASD (‘Autism’) and significant group effects (‘Difference’) displayed for each individual state (log scale). Significant pairwise differences in FNC for each state are
displayed, corrected for multiple comparisons at alpha = 0.05 to control FDR.
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window size, and observable in ≥2 state number variants. Among
control networks, hypo-correlation between the right fronto-parietal
network and core DMN, in the anterior and posterior DMN axis, and
hyper-correlation between the cingulo-opercular network and anterior
DMN met these criteria. These were also robust in steady-state FNC and
replicated in 1+ sub-group in dFNC test-retest. Hypo-correlation of the
right fronto-parietal control network with the anterior DMN was the
single most robust finding in our entire pipeline, present in all 9 dFNC
permutations, sub-group 1 of the dFNC test-retest, the steady-state
analysis and both steady-state test-rest groups. However, hypocorrela-
tion between the ventral attention and left fronto-parietal networks
seen in steady-state did not meet these criteria or replicate in dFNC test-
retest. Two other connections that were not present in the steady-state
analysis were robust to parameter variation in the dFNC sensitivity,
namely hypoconnectivity between the posterior DMN and both the
right fronto-parietal network and core DMN, but were not replicated in
the dFNC test-retest analysis.

Domain network group effects in dFNC were less consistent between
steady-state and dynamic FNC, and within permutations of the dFNC
sensitivity analysis, showing particular paucity in the 7 state solution.
Despite the greater numbers of domain-specific networks, only three
group differences were as robust as the highlighted control networks
effects across the dFNC sensitivity analysis. Two of these observations
involved language networks, and were between INs 25 and 30 (present
in all 9 permutations, and in sub-group 2 in the test-retest) and INs 32

and 8 (present in two states and all windows, but not test-retest),
though these effects were not present in the steady-state FNC. However,
the third was a connectivity deficit (appearing in 2 states and all
window variants) between the right primary sensorimotor network and
a high-level visual network (IN21x17) that replicated strongly in the
steady-state FNC analysis, though not in the dFNC test-retest.

3.7. The tempo of brain state transitions may be jittered in ASD

The disruption we identified in the fronto-parietal networks implies
alteration to start-cues, while that in the cingulo-opercular network
suggests impaired state maintenance. Therefore, we predicted loss of
appropriate tempo in brain state transitions in ASD. Our results suggest
disrupted state transition tempo does exist in ASD in the form of a
significant decrease in the number of times subjects with autism change
brain state. This result varied somewhat across permutations of the
dFNC analysis, but oscillations were significantly dampened in autism
in 5/9 permutations, and narrowly missed significance in 4 more,
making it a fairly robust finding (Fig. 6) in the sensitivity analysis,
though it did not replicate in test-retest. We did not detect significant
group differences in subjects' dwell time or the fraction of time they
spent each state in nearly every permutation of the analysis, with
scattered exceptions. Differences in the number of subjects in each state
was never significant.

Fig. 5. Group Differences in Dynamic Connectivity
Sensitivity Analysis.
Group differences in autism vs controls for each permuta-
tion of the dFNC analysis. Significant pairwise differences
in FNC for each state are displayed, corrected for multiple
comparisons at alpha = 0.05 to control FDR.
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4. Discussion

During the first year of life the simple IN architecture present at
birth reorganizes in a sequenced trajectory supporting brain functional
maturation. The cingulo-opercular network differentiates out of the
fronto-parietal control networks, DMNs proliferate, sensorimotor, vi-
sual and attention networks reorganize and overall long-range con-
nectivity increases (Fair et al., 2007). Control networks operate at the
highest logical level of brain organization, exerting downstream con-
figurative effects.

The control system backbone comprises sets of specific task-positive
(TPN) and default mode networks (DMN, Fig.1) (Cole et al., 2013). The
Petersen-Posner attention model proposes that the dorsal attention
network selects sensory stimuli based on internal goals/expectations
(orienting) while the ventral attention network is activated by beha-
viorally important but unexpected stimuli (reorienting), and controls
recovery from attentional lapses. Reorienting enables the improvisation
of novel, task-relevant actions and adaptive function. Executive control
incorporates and extends this basic attentional scaffold (Petersen and
Posner, 2012). In the influential dual network view of executive con-
trol, the fronto-parietal control networks and certain ventral attention
regions (Dosenbach et al., 2006) provide transient start cue signals
before a task-specific spatio-temporal FNC configuration is instantiated
to perform a task. The cingulo-opercular network follows with a sus-
tained task-general maintenance signal (Dosenbach et al., 2007; Sestieri
et al., 2014) to keep the brain online. Core cingulo-opercular (dorsal
anterior cingulate, bilateral insula) and more anterior fronto-parietal
control network regions also perform error/performance feedback
(Dosenbach et al., 2006; Dosenbach et al., 2007) with a salience net-
work believed to maintain alertness and visual attention (Sadaghiani
et al., 2010). Early work in fMRI (Fox et al., 2009) identified a re-
ciprocal anticorrelated relationship between the dorsal attention net-
work and correlated regions named the default mode network that
became deactivated when the brain entered ‘task-positive’ mode and
vice versa. This default mode network was accordingly associated with
‘task-negative’ and interospective modes of brain function. Extending
this, three default mode subsystems have recently been identified:
Anterior (DMNA) involved in emotion inhibition, goal-directed and
social cognition, posterior (DMNP) in memory, self-reflection and au-
tobiographical conceptualization, and core (DMNC) that may facilitate
intra-DMN information transfer (Andrews-Hanna et al., 2014). The
combined TPN-DMN system is now understood to implement executive
control by shifting the spatio-temporal patterning of whole-brain FNC
states (Cole et al., 2013; Uddin et al., 2009) to implement specific or
integrative tasks. Downstream, domain networks respond by

reconfiguring their activation patterns (Dosenbach et al., 2007). Char-
acterizing a detailed model of whole brain FNC incorporating control
network relationships represents a substantial technical challenge in
fMRI data. Specifically, a high order model of> 20 networks is re-
quired, since low order models fail to divide the lateralized fronto-
parietal control networks (Smith et al., 2009), disambiguate the spa-
tially overlapping cingulo-opercular from salience networks (Power
et al., 2011) and separate the DMN subsystems (Andrews-Hanna et al.,
2014).

In subjects with ASD, our work demonstrates disruption in the
control networks that are vulnerable to altered differentiation during
the infant period, and traces the sequelae that propagate dynamically
through the chronnectomic hierarchy. The correspondence between our
findings, events in the normal developmental sequence of networks
during infancy, and the unique infantile age of onset of ASD suggests
that early disrupted network maturation from diverse causes may
manifest as a convergent macroscale functional phenotype in ASD. Our
results suggest substantial differences in the function of certain control
networks in autism, particularly those associated with task cues and
task maintenance, and the ‘task-negative’ default mode networks,
comporting with conceptualizations of autism as being in part a ‘dis-
order of control’ (Fair et al., 2007). These results in the resting-state
suggest alterations to the networks that support executive/top-down
processes operating in the brain to control the instantiation, main-
tenance and switching of the functional connectivity configurations
that subserve tasks. Thus, they led us to predict that there would be
alteration to dynamic states, where we identified disrupted dynamic
FNC configurations, and a dampening to subject oscillations among
brain states. Since these findings are in imaging obtained in the resting-
state, and connectivity configurations in this condition are hypothe-
sized to be templates that are active in task-performance, it raises the
important question of whether our findings could be demonstrated in
task conditions in autism.

Our model consistently confirmed the importance of abnormalities
in control network architecture in ASD, and of the central role of inter-
network connectivity, in both steady-state and dynamic measures. We
provide an integrated, detailed picture of whole-brain connectivity in
autism that proposes certain motifs may operate across this hetero-
genous disorder, notwithstanding the variability among individuals in
terms of neurocognitive findings, IQ level and psychiatric comorbid-
ities. This coherent framework may help reconcile disparate previous
observations (such as debates regarding short- versus long-range or
under- versus over-connectivity), elucidate connectivity patterns that
have hitherto been obscure, and demonstrate that not only the spatial
but also the temporal organization of brain function is disturbed in
ASD. We found that control networks as a group exhibit proportionally
more deficits that are consistent between steady-state and dynamic FNC
measures than domain-specific networks. This observation may be
autism-specific, or may be attributable to control networks having more
inherent variability in their correlations across brain states, and war-
rants further investigation.

Our aim in this study was to bring together many outcome measures
spanning steady-state and dynamic connectivity to compare findings
across these techniques in a high-order model and large, varied subject
group. When we consider results from this perspective, guided also by
our findings in sensitivity and test-retest analysis, several specific net-
work connections are prominent. Deficits in the right fronto-parietal-
DMNA, right fronto-parietal-DMNC, and cingulo-opercular-DMNA cir-
cuits, and in the DMNA-DMNP axis proved quite robust (Fig. 7), and
may link mechanistically to the disrupted state change tempo that we
identified in autism. Further investigation of these motifs, for example
by exploring their presence in sub-populations of ASD, other conditions
such as task-based fMRI, and comparisons to other developmental
neuropsychiatric disorders, would help confirm their specificity and
potential to elucidate mechanisms of ASD behaviors.

The collection of resting state fMRI data is not confounded by

Fig. 6. Difference in the number of times subjects changed states in ASD.
For each permutation of the dynamic connectivity analysis (horizontal axis), the sig-
nificance of the group difference is shown, where plog10 = 1.30 is equivalent to p= 0.05.
The number of times subjects changed states was significant or almost significant in every
permutation except the 6 state, 25TR solution.
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behavioral, motor or language performance requirements and is highly
efficient, with 6 min of data sufficient to reliably capture networks and
provide multiple outcome measures (Allen et al., 2011). Network con-
nectivity measures obtained from resting state fMRI hold great promise
to further inform our understanding of human brain development and
function and provide neuropsychiatric biomarkers and treatment tar-
gets for disorders such as ASD. Future studies comparing conditions
distinct from and overlapping with ASD will inform the specificity of
these findings.
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