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Abstract

Several approaches are available for estimating the relationship of latent class membership to 

distal outcomes in latent profile analysis (LPA). A three-step approach is commonly used, but has 

problems with estimation bias and confidence interval coverage. Proposed improvements include 

the correction method of Bolck, Croon, and Hagenaars (BCH; 2004), Vermunt’s (2010) maximum 

likelihood (ML) approach, and the inclusive three-step approach of Bray, Lanza, & Tan (2015). 

These methods have been studied in the related case of latent class analysis (LCA) with 

categorical indicators, but not as well studied for LPA with continuous indicators. We investigated 

the performance of these approaches in LPA with normally distributed indicators, under different 

conditions of distal outcome distribution, class measurement quality, relative latent class size, and 

strength of association between latent class and the distal outcome. The modified BCH 

implemented in Latent GOLD had excellent performance. The maximum likelihood and inclusive 

approaches were not robust to violations of distributional assumptions. These findings broadly 

agree with and extend the results presented by Bakk and Vermunt (2016) in the context of LCA 

with categorical indicators.
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Introduction

Latent profile analysis (LPA; Gibson, 1959; Lazarsfeld & Henry, 1968) and latent class 

analysis (LCA; Clogg & Goodman, 1984) are model-based tools for identifying qualitatively 

distinct subgroups in a population, on the basis of multiple observed indicator variables. 

LPA and LCA are similar in that they assume a categorical latent variable (called a latent 

class variable). However, LPA uses normally distributed observed indicator variables to 

measure the latent variable, whereas LCA uses discrete observed indicator variables. 

Because LPA uses continuous indicators, it can be used with sums, indices, or factor scores. 

LPA has been used in many studies in the behavioral sciences, classifying people by, for 

example, personality traits (Merz & Roesch, 2011; Zhang, Bray, Zhang & Lanza, 2015), 

psychopathology symptoms (Herman, Bi, Borden & Reinke, 2012), drinking behaviors 

(Chung, Anthony, & Schafer, 2011), or eating disorder symptoms (Krug et al., 2011). The 

latent categories in LPA are sometimes called profiles, but we call them classes for 

comparability with LCA.

The predictive relationship of latent class membership with a distal (i.e., future) outcome is 

often of interest. For example, Ayer and colleagues (2011) showed that classes found in an 

LPA of personality variables among adolescents differed in later quantity of alcohol use. The 

latent class variable is sometimes intended to parsimoniously summarize many predictor 

variables (Lanza & Rhoades, 2013; Merz & Roesch, 2011). In other cases, the latent classes 

themselves (i.e., the structure of the relationships among the indicators) are of primary 

theoretical interest, and questions about their associations with distal outcomes are 

investigated later (Vermunt, 2010), perhaps to assess the latent class variable’s predictive 

validity (Collins, 2001). Finally, a latent class variable can be used in a more complex 

multivariate analysis, such as determining whether class membership moderates the link 

between treatment condition and outcomes (Herman, Ostrander, Walkup, Silva, & March, 

2007). Regardless, methods to estimate accurately the relationship between a latent class 

variable and observed distal outcome are critical. Such methods have been extensively 

studied in the context of LCA (Asparouhov & Muthén, 2014; Bakk, Oberski & Vermunt, 

2016; Bray, Lanza & Tan, 2015; Lanza, Tan & Bray, 2013). However, they have not been 

studied in the context of LPA (except for Gudicha & Vermunt, 2013, who studied the related 

case of LPA with covariates but not distal outcomes specifically). Therefore, this paper will 

compare methods for linking latent class membership to an observed distal outcome in LPA.

Three-Step vs. One-Step Approaches

Several methods for analysis of distal outcomes in LCA or LPA are available. Classify-
analyze, also known as the standard three-step approach, is straightforward: (1) fit the LCA; 

(2) assign each individual to the latent class with the modal posterior probability for that 

individual; and (3) estimate the relationship between assigned class membership and the 

distal outcome. Assigned class membership is treated as if observed and certain. This 

approach ignores classification error, produces an attenuated estimate (biased towards zero) 

of the association (Bakk, Tekle, & Vermunt, 2013; Bray et al., 2015; Gudicha & Vermunt, 

2013; Vermunt, 2010), and may produce invalid confidence intervals and tests. Because of 

these concerns, several alternatives have been proposed.

Dziak et al. Page 2

Methodology (Gott). Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The one-step approach (in the terminology of Bandeen-Roche, Miglioretti, Zeger & 

Rathouz, 1997) combines the LPA or LCA and the distal outcome in a single model. In this 

“inclusive” model, the distal outcome is essentially treated as if it were a covariate or 

additional indicator. This may seem counterintuitive because something later in time (the 

distal outcome) is used to predict something earlier in time (the latent class membership). 

However, this distinction is not vital because the goal is to understand an association, not to 

claim causal precedence. A larger concern is that the inclusion of the distal outcome can 

influence the LPA measurement model, potentially changing the substantive meaning of the 

latent classes. In contrast, a three-step approach may seem more natural because it first 

defines the classes and then compares outcomes across classes (Bakk & Vermunt, 2016; 

Vermunt, 2010). If the form of the relationship between latent class membership and distal 

outcome is misspecified in the inclusive model, the estimated distribution of the distal 

outcome within each class may be affected. This often occurs when a numerical distal 

outcome is heteroskedastic across classes (Bakk & Vermunt, 2016; Bakk, Oberski, & 

Vermunt, 2014, 2016). Thus, the one-step approach is not a fully satisfactory replacement 

for three-step. New methods have been proposed to improve the three-step approach by 

removing some bias while maintaining its basic structure.

Improved posterior probability estimates—The inclusive classify-analyze approach 

proposed by Bray, Lanza, and Tan (2015) includes the distal outcome as a covariate in Step 

1. Bray et al. (2015) showed that the inclusive classify-analyze approach was less biased 

than the standard, non-inclusive three-step approach, when model assumptions were met. 

However, when model assumptions are violated, this method may have the same non-

robustness as the one-step method (Bakk & Vermunt, 2016).

In this paper we do not directly address the Lanza, Tan, and Bray (2013) or LTB method, a 

slightly different approach based on Bayes’ theorem and not directly supported in Latent 

GOLD. The LTB method is closely related to the inclusive classify-analyze approach with 

proportional assignment (see Bakk & Vermunt, 2016, p. 22). The LTB method is further 

discussed by Bakk, Oberski, and Vermunt (2014, 2016).

Improved methods of classification—Both the standard three-step approach and that 

of Bray, Lanza and Tan (2015) use modal assignment (in the terminology of Vermunt, 2010): 

when estimating the relation between latent class membership and distal outcome, each 

individual is considered to belong to her most likely class, ignoring other possibilities. 

Alternatively, one can perform multiple assignments of class membership using the posterior 

probabilities; this is referred to as pseudo-class draws. In this method, individuals are 

randomly assigned to classes according to their posterior probabilities, and then the 

association between assigned class and distal outcome is estimated. This procedure for class 

assignment and the subsequent estimation is repeated multiple (e.g., 20) times, and results 

are combined across draws. However, Peterson, Bandeen-Roche, Budtz-Jørgensen and 

Jarsen (2012) and Bray, Lanza and Tan (2015) found that using multiple pseudo-class draws 

in the three-step method produced estimates which were as biased as using modal 

assignment, or more biased.
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A related method, proportional assignment, is a simpler alternative to multiple pseudo-class 

draws. Proportional assignment treats each individual as belonging partly to each latent 

class, with weights given by posterior probabilities. Instead of doing multiple imputations 

for the membership of each individual, with probabilities given by the posterior probabilities 

(e.g., participant 1 might have a 50% chance of being in Class 1, 30% in Class 2, and 20% in 

Class 3), a single weighted imputation is constructed (e.g., participant 1 would contribute to 

the distal mean estimates for Class 1, Class 2, and Class 3, but with weights of .50, .30 and .

20). Bray, Lanza, and Tan (2015) conjectured that the bias found in both these methods is 

due to a mismatch between the imputation model in Steps 1-2 (which omits the distal 

outcome) and the analysis model in Step 3 (which includes it), and suggested that an 

inclusive model be used throughout.

Classification error correction—The BCH approach (Bolck, Croon & Hagenaars, 

2004) corrects the standard three-step approach by accounting for classification error. It uses 

the idea that the joint probability distribution of the distal outcome Y and the assigned class 

variable W is a linear combination of the joint probability distribution of Y and the true 

latent class variable C, weighted by classification error probabilities. Specifically,

where nc is the number of latent classes. Therefore, given the estimated classification 

probabilities P(W=w|C=c), the probabilities P(Y=y,W=w) can be found by matrix algebra 

(Bakk et al., 2013; Bolck et al., 2004; Vermunt, 2010). This provides an improved estimate 

of the association between Y and C, relative to the standard approach which ignores the 

possibility that W ≠ C.

The BCH approach originally could only be used with categorical distal outcomes, but was 

later adapted for continuous outcomes (see Bakk, Tekle & Vermunt, 2013; Gudicha & 

Vermunt, 2013; Vermunt 2010). Previous implementations of BCH sometimes gave 

uninterpretable negative probability estimates (Bakk, Tekle & Vermunt 2013), but these 

seem to be avoided in recent versions of Latent GOLD (Vermunt & Magidson, 2015) 

software; we did not observe any in our simulations. In this paper we consider the improved, 

not the original, BCH approach. It is possible that if we had considered very small sample 

sizes, or very poor measurement, these problems might have had a larger chance of 

occurring (Bakk, Tekle & Vermunt, 2013; Bakk & Vermunt, 2016).

Vermunt (2010) also suggested an alternative correction approach, using maximum 

likelihood (ML) estimation. In this approach, one builds a new latent class model in Step 3, 

with the assigned class variable and distal outcome as indicators, and with fixed 

classification error probabilities calculated from the conditional probabilities of assigned 

class given true class as estimated in Step 1.

Inclusive classify-analyze, the BCH correction, and the ML correction are each intended to 

offer better accuracy than the standard three-step approach. However, the conditions under 

which they succeed or fail require further study. These methods were studied by Asparouhov 
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and Muthén (2014), Bakk and Vermunt (2016), and Bray, Lanza and Tan (2015) for distal 

outcomes in LCA, but they have not yet been studied for distal outcomes in LPA. In the 

LCA context, uncorrected approaches were found to be somewhat biased. Inclusive and ML 

approaches were less biased, except when their assumptions were not met, as in the case of 

heteroskedasticity; in this case they became much more biased. The BCH approach usually 

performed well.

It would be reasonable to hypothesize that these findings might also hold in LPA, because 

LCA and LPA differ only in the nature of their indicator variables and not in the relation of 

the latent class variable to an external variable. However, to our knowledge, the only 

currently published investigation of the use of these methods with external variables in LPA 

was by Gudicha and Vermunt (2013), but they treated the external variables as covariates 

(predictors of class membership) rather than distal outcomes (predicted by class 

membership). They found that BCH and ML methods worked well, although they did not 

investigate situations in which assumptions were violated. In light of these remaining gaps, it 

is interesting to investigate LPA further with distal outcomes specifically.

Therefore, we conducted a simulation study in Latent GOLD 5.1 to investigate the 

performance in LPA of the standard three-step approach, the inclusive classify-analyze 

approach, and the two corrected three-step approaches. We attempted to determine what 

factors influence the relative performance of these approaches in this context. Also, because 

distal outcomes in previous simulation investigations were generally either binary or 

normally distributed, we consider not only binary and normally distributed but also skewed 

distal outcomes.

Method

A factorial simulation experiment was performed to quantify the effects of distribution 

shape, measurement quality, relative class size, and effect size on the bias, square root mean 

squared error (RMSE), and confidence interval (CI) coverage of the methods described 

above, for estimating within-class means of a distal outcome variable for a three-class LPA. 

Each method was implemented with modal assignment and with proportional assignment.

Design of the Simulation Experiment

Latent class model—The data-generating model assumes three classes, designated high, 

medium, and low. The high class has mean +1 on each of five locally (within-class) 

independent, normally distributed items. The medium and low classes have means of 0 and 

−1 on each variable, respectively. The within-class error variance of each item is 0.50 for 

high measurement quality, or 0.75 for low measurement quality. The population proportions 

of the three classes are set to be equal (proportions 1/3, 1/3, and 1/3), or unequal 

(proportions .1, .3, .6 for high, medium, and low classes). For poor measurement quality, the 

scaled entropy (Ramaswamy, DeSarbo, Reibstein, & Robinson, 1993) was approximately .7 

to .75. For good measurement quality, Ramaswamy entropy was approximately .8 to .85.

Distal outcome distributions—The data-generating model specifies that people in the 

high, medium, and low classes (as defined by the indicator variables) also tended to have 
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high, medium, and low distal outcomes. The distribution of the outcome was binary, 

homoskedastic normal, heteroskedastic normal, or skewed. Table 1 shows the parameters 

used for each. Bakk and Vermunt (2016) simulated binary and normal but not skewed 

outcomes.

For the binary distribution, the response proportions were chosen so that, had class 

membership been observable, the contingency table of class membership and distal outcome 

would have Cohen’s w effect size of approximately .5 (large), .3 (medium) or .1 (small) for 

the χ2 test of independence (Cohen, 1988) under the equal class sizes scenario. Similarly, 

for the homoskedastic normal distribution, the response means were chosen for Cohen’s f of 

approximately .4 (large), .3 (medium), or.1 (small). The differences in means were doubled 

in the heteroskedastic condition because the pooled variance was ((32+1+1)/3)1/2≈1.9 rather 

than ((1+1+1)/3)1/2=1.

The skewed distribution chosen was the single-parameter exponential distribution, used in 

simple models of survival times; it has density f(y|μ)=μ−1ey/μ, mean μ, and variance μ2. It is 

inherently right-skewed. The mean values were chosen to give small, medium and large f.

Analysis Procedure for Simulated Data

For each scenario, we generated 1000 replicate datasets with a sample size of 1000 

simulated participants each. The data were simulated in R 3.2.1 (R Core Team, 2015), and 

the LPA (including ML or BCH corrections) was performed in Latent GOLD 5.1 (Vermunt 

& Magidson, 2015). To save space, results for “medium” effect sizes are available, along 

with simulation and analysis code, in an online appendix at https://github.com/dziakj1/
LpaSims.

LPA parameter estimation—Three alternative LPA models were fit to each dataset. 

Equal standard deviations for indicators across classes were assumed. The first LPA model 

was a non-inclusive model (ignoring the outcome variable). The second LPA model included 

the distal outcome as a covariate, for use with the inclusive approach. In the continuous 

outcome conditions, a third LPA model included both the distal outcome and its square. This 

quadratic model is more robust than the usual inclusive model to heteroskedasticity of the 

outcome across classes (Bakk, Oberki & Vermunt, 2016).

Estimation of class-specific outcome probabilities (binary case) or means 
(continuous case)—The class-specific response distribution was estimated using the 

following methods.

1. Standard (unadjusted) three-step, based on the non-inclusive model

2. ML-adjusted three-step, based on the non-inclusive model

3. BCH-adjusted three-step, based on the non-inclusive model

4. Unadjusted three-step, based on the inclusive model

5. Unadjusted three-step, based on the quadratic model

Dziak et al. Page 6

Methodology (Gott). Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/dziakj1/LpaSims
https://github.com/dziakj1/LpaSims


Each of the methods above was performed with modal and with proportional assignment. 

The quadratic model was omitted for binary data, because 0 and 1 equal their squares. 

Finally, we defined an “oracle” method (a term from Fan & Li, 2001), by directly computing 

the average of the simulated participants belonging to each true class. An oracle method is 

impossible with real data (latent class membership is unobserved by definition) but useful 

for comparison.

Assessment of accuracy for each method—The accuracy of the estimated class-

specific mean of the distal outcome was assessed in terms of bias and RMSE averaged 

across the three classes in each dataset. Coverage of nominal 95% confidence intervals was 

also assessed. Label switching was handled by finding the permutation of estimated classes 

for each dataset that provides a set of item response means as close as possible to the data-

generating model. This generally meant labeling the class with the highest average item 

mean as Class 1, the second highest as Class 2, the lowest as Class 3. After reordering the 

parameters to have consistent class labels, the bias, RMSE, and coverage were calculated.

Results

The procedures practically always converged. The only failures were for proportional ML in 

misspecified cases (heteroskedastic or exponential skewed), which still converged more than 

99% of the time. Results for selected scenarios are discussed below. For example, results are 

only shown for the poor measurement (low class separation) scenarios, which provide a 

more challenging test of performance and robustness. More complete results are available in 

the online appendix.

Binary Outcome

Bias—The bias in estimating the class-specific response probabilities was generally small. 

The ML-corrected and BCH-corrected estimates were essentially unbiased. The inclusive 

three-step estimate had tiny bias (less than. 01, for a parameter on the order of 1). The 

unadjusted estimate had noticeable but small bias. Bias was greater when measurement 

quality was low and when effect size was large. Unadjusted proportional assignment had 

slightly higher bias than unadjusted modal assignment.

The differences in bias by class among the unadjusted and adjusted methods are shown in 

Table 2. The bias for the standard method is conservative: it attenuates differences between 

classes. The bias for the inclusive method, although extremely small, is anticonservative: it 

slightly exaggerates differences between classes. The inclusive bias may come from the 

distal outcome acting as part of the measurement model, perhaps without the user’s intent. 

This additional model flexibility can sometimes cause overfitting.

Estimation error—Table 3 shows the RMSE for the outcome probability within each 

class, averaged across classes. In general, it is small and similar for all of the methods. When 

the true effect size is small, the unadjusted methods sometimes outperform the corrected 

methods. The unadjusted methods are so simple that they have relatively little sampling 

variance, and if the effect size is small, the attenuation is also small in an absolute sense, so 

there is not much bias either.
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Coverage—Figure 1 shows the simulated CI coverage obtained for nominal 95% 

confidence intervals for class-specific outcome probabilities. The unadjusted methods 

perform poorly, but ML and BCH perform well. The inclusive approaches have rather poor 

coverage, perhaps because the standard errors are underestimated due to slight overfitting. 

Among unadjusted methods, proportional assignment has poorer coverage than modal 

assignment.

Continuous Outcomes

For brevity, we describe the homoskedastic normal, heteroskedastic normal, and exponential 

skewed results together. In these scenarios, the inclusive methods implicitly assumed 

homoskedastic normality of the distal outcome; the latter two scenarios therefore served to 

assess robustness.

Bias—Table 4 shows the absolute bias, averaged across conditions, under the various 

methods. In the homoskedastic scenario, no method had large bias, although the unadjusted 

methods had slight bias. However, in the heteroskedastic scenario, the ML and non-quadratic 

inclusive methods had extremely high bias. The BCH and quadratic methods had little or no 

bias.

In the skewed scenario, the ML approach sometimes failed due to misspecification, but the 

other methods did not fail; in particular, the BCH method had practically no bias. One might 

ask why the inclusive method performed adequately despite non-normality. Possibly, 

because a single parameter controls both mean and variance in the exponential distribution, 

only one regression parameter per class was needed. Thus, a quadratic term was unnecessary 

for this distribution, but might be needed for others.

Table 5 shows the direction of biases for each class, analogous to Table 2. In the 

heteroskedastic scenario, the ML method cannot distinguish between classes on the distal 

outcome, whereas the inclusive method actually reversed the order of Classes 1 and 2. The 

unadjusted method is biased in a conservative direction, whereas the quadratic inclusive 

method is slightly anticonservative.

Estimation Error—Table 6 shows the RMSE under the different methods, again averaging 

across classes. Under the homoskedastic condition, all methods had low error. Under 

heteroskedasticity, the ML and non-quadratic inclusive approaches had extremely high error, 

but the BCH and quadratic inclusive approaches had fairly little error. Under the skewed 

condition, the ML approach (which had assumed normality) had high error, but the other 

approaches did fairly well. These results for RMSE largely agree with those for absolute 

bias in Table 4. One surprise was that, in terms of RMSE, the unadjusted methods often 

outperformed the adjusted methods and sometimes even performed comparably to the 

oracle. This is explainable as a bias-variance tradeoff, similar to that of ridge regression 

versus ordinary least squares regression (see Hastie, Tibshirani & Friedman, 2013). Their 

slight attenuation bias helped control unusual estimates that sometimes occurred for the 

other methods due to random noise.
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Confidence interval coverage—Figure 2 shows the simulated CI coverage for nominal 

95% confidence intervals. In the homoskedastic scenario, the methods that have bias 

(unadjusted, inclusive and quadratic) have poorer coverage. Confidence intervals typically 

account for random variability but not for systematic bias; bias will cause them to overstate 

confidence (to mistake precision for accuracy).

In the heteroskedastic condition, the ML and non-quadratic inclusive methods did poorly 

because of large bias. The unadjusted methods did well for small effect sizes but poorly for 

large ones; this is because their bias increases with effect size. In the skewed condition, the 

ML method sometimes has very poor coverage, although the inclusive method does not do 

as badly.

Discussion

The inclusive approach (i.e., using the distal outcome as a covariate) was non-robust to 

violations of an implicit assumption pointed out by Bakk and Vermunt (2016) and Bakk, 

Oberski, and Vermunt (2016), that the distribution of a normally distributed distal outcome 

has the same variance in each class. This assumption is relatively implausible. It is not 

directly testable, because the estimated variances of the classes in an inclusive approach, 

which assumes homoskedasticity, will be biased towards homoskedasticity even if this alters 

the class definitions. Thus, inclusive methods for relating latent classes to distal outcomes 

should be used only when either the outcome is binary or at least a quadratic term is 

included.

Similarly, the ML correction, at least as currently implemented in Latent GOLD, fails in the 

presence of heteroskedasticity or unmodeled non-normality. This is apparently recognized 

by the Latent GOLD developers; the current graphical interface presents a warning if the 

ML correction is requested with a continuous outcome, and recommends BCH.

The BCH approach may be the best readily available solution for including a distal outcome 

in an LPA. This agrees with the findings of Bakk and Vermunt (2016) for LCA. Further 

research is warranted, however, because it is unknown whether there are situations that 

might cause the BCH approach to fail. Future study is also needed on the performance of 

inclusive approaches or BCH in more complex models with moderators or mediators (Bray 

et al., 2015).

Limitations of the Current Study

This study did not consider the least square class approach (Peterson et al., 2012), another 

recently proposed alternative. This method requires interpreting multidimensional latent 

scores, and does not seem to be as widely supported in current software.

Generally there was no advantage to proportional over modal assignment. It is possible that 

somewhat higher coverage could have been obtained by using random pseudo-class draws 

instead of proportional weights, if the uncertainty of the results in each draw had been 

combined as in multiple imputation (see Schafer, 1999), simply because this would have 

made the estimated standard errors larger. This method does not appear to be currently 
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available in Latent GOLD. However, making the estimated standard errors larger would only 

provide a possible improvement in coverage, not estimation performance, relative to 

proportional assignment. Importantly, Asparouhov and Muthen (2014) and Bray, Lanza and 

Tan (2015) found that pseudo-class draws could be noticeably more biased than modal 

assignment. Therefore, in general pseudo-class draws are not an ideal solution. It is also 

possible that for some methods and scenarios, confidence interval coverage could have been 

improved using bootstrapping as in Bakk, Oberski, and Vermunt (2016), but we have not 

explored this here.

Finally, although we have explored the consequences of violating distributional assumptions 

about the outcome variables (for example, the effects of heteroskedasticity or skew), we did 

not explore the consequences of breaking distributional assumptions about indicator 

variables. The latter issue is important but beyond the scope of this paper.

Conclusion

We investigated the relative performance of three recently proposed improvements to the 

standard three-step approach (inclusive model, BCH correction, and ML correction) in the 

context of LPA with a binary or continuous outcome variable. Various scenarios were 

considered, involving different levels of measurement quality, relative latent class size, and 

strength of association between latent class and distal outcome. Results agreed with Bakk 

and Vermunt (2016) that Latent GOLD’s modified implementation of the BCH approach has 

excellent and robust performance.

Acknowledgments

Author note

This research was supported by grant awards P50 DA010075 and P50 DA039838 from the National Institute on 
Drug Abuse (National Institutes of Health, United States), BHA130053 from the Chinese National Social Science 
Foundation, GZIT2013-ZB0465 from the Guangzhou Elementary Education Assessment Center, 09SXLQ001 from 
the Psychology Foundation of the Guangdong Philosophy and Social Science Foundation, and 12YJC190016 from 
the Young Scholar Foundation in Humanities and Social Sciences by the Chinese Education Ministry. The content 
is solely the responsibility of the authors and does not necessarily represent the official views of the funding 
institutions as mentioned above.

The research was based in part on the doctoral dissertation project of Jieting Zhang at South China Normal 
University. Correspondence concerning the dissertation should be addressed to Minqiang Zhang.

Analysis was done using R 3.2.1 (copyright 2015 by The R Foundation for Statistical Computing) and Latent 
GOLD 5.1 (copyright 2005, 2015 by Statistical Innovations, Inc.) We thank Amanda Applegate for editing 
assistance. We thank reviewers of a previous version for helpful feedback.

References

Asparouhov T, Muthén B. Auxiliary variables in mixture modeling: Three-step approaches using 
Mplus. Structural Equation Modeling. 2014; 21:329–341.

Ayer L, Rettew D, Althoff RR, Willemsen G, Ligthart L, Hudziak JJ, Boomsma DI. Adolescent 
personality profiles, neighborhood income, and young adult alcohol use: a longitudinal study. 
Addictive Behaviors. 2011; 36(12):1301–4. doi:10.1016/j.addbeh.2011.07.004. [PubMed: 
21820248] 

Bakk Z, Oberski DL, Vermunt JK. Relating latent class assignments to external variables: standard 
errors for corrected inference. Political Analysis. 2014; 22:520–540. doi:10.1093/pan/mpu003. 

Dziak et al. Page 10

Methodology (Gott). Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bakk Z, Tekle FB, Vermunt JK. Estimating the association between latent class membership and 
external variables using bias-adjusted three-step approaches. Sociological Methodology. 2013; 
43:272–311. doi:10.1177/0081175012470644. 

Bakk Z, Vermunt JK. Robustness of stepwise latent class modeling with continuous distal outcomes. 
Structural Equation Modeling. 2016; 23:20–31. doi:10.1080/10705511.2014.955104. 

Bakk Z, Oberski D, Vermunt JK. Relating latent class membership to continuous distal outcomes: 
improving the LTB approach and a modified three-step implementation. Structural Equation 
Modeling. 2016; 23:278–289. doi:10.1080/10705511.2015.1049698. 

Bandeen-Roche AK, Miglioretti DL, Zeger SL, Rathouz PJ. Latent Variable Regression for Multiple 
Discrete Outcomes. 1997; 92(440):1375–1386. doi:10.2307/2965407. 

Bolck A, Croon M, Hagenaars J. Estimating latent structure models with categorical variables: One-
step versus three-step estimators. Political Analysis. 2004; 12(1):3–27. doi:10.1093/pan/mph001. 

Bray BC, Lanza ST, Tan X. Eliminating bias in classify-analyze approaches for latent class analysis. 
Structural Equation Modeling: A Multidisciplinary Journal. 2015; 22(1):1–11. doi:
10.1080/10705511.2014.935265. [PubMed: 25614730] 

Chung H, Anthony JC, Schafer JL. Latent class profile analysis: an application to stage sequential 
processes in early onset drinking behaviours. Journal of the Royal Statistical Society: Series A 
(Statistics in Society). 2011; 174(3):689–712. doi:10.1111/j.1467-985X.2010.00674.x. 

Clogg CC, Goodman LA. Latent structure analysis of a set of multidimensional contingency tables. 
Journal of the American Statistical Association. 1984; 79:762–771. doi:
10.1080/01621459.1984.10477093. 

Collins, LM. Reliability for static and dynamic categorical latent variables: Developing measurement 
instruments based on a model of the growth process. In: Collins, LM., Sayer, AG., editors. New 
methods for the analysis of change. American Psychological Association; Washington, DC: 2001. 
p. 273-288.

Cohen, J. Statistical power analysis for the behavioral sciences. 2nd. Erlbaum; Hillsdale, NJ: 1988. 

Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of 
the American Statistical Association. 2001; 96:1348–60. doi:10.1198/016214501753382273. 

Gibson WA. Three multivariate models: Factor analysis, latent structure analysis, and latent profile 
analysis. Psychometrika. 1959; 24(3):229–252. doi:10.1007/BF02289845. 

Gudicha, D., Vermunt, JK. Mixture model clustering with covariates using adjusted three-step 
approaches. In: Lausen, B.van den Poel, D., Ultsch, A., editors. Algorithms from and for nature 
and life: Classification and data analysis. Springer; Heidelberg: 2013. p. 87-94.doi: 
10.1007/978-3-319-00035-0

Hastie, T., Tibshirani, R., Friedman, J. The elements of statistical learning (10th printing). Springer; 
New York: 2013. 

Herman KC, Bi Y, Borden LA, Reinke WM. Latent classes of psychiatric symptoms among Chinese 
children living in poverty. Journal of Child and Family Studies. 2012; 21(3):391–402. doi:10.1007/
s10826-011-9490-z. 

Herman KC, Ostrander R, Walkup JT, Silva SG, March JS. Empirically derived subtypes of adolescent 
depression: Latent profile analysis of co-occurring symptoms in the Treatment for Adolescents 
with Depression Study (TADS). Journal of Consulting and Clinical Psychology. 2007; 75:716–
728. doi:10.1037/0022-006X.75.5.716. [PubMed: 17907854] 

Krug I, Root T, Bulik C, Granero R, Penelo E, Jiménez-Murcia S, Fernández-Aranda F. Redefining 
phenotypes in eating disorders based on personality: a latent profile analysis. Psychiatry Research. 
2011; 188(3):439–45. doi:10.1016/j.psychres.2011.05.026. [PubMed: 21664698] 

Lanza ST, Rhoades BL. Latent class analysis: An alternative perspective on subgroup analysis in 
prevention and treatment. Prevention Science. 2013; 14(2):157–68. [PubMed: 21318625] 

Lanza ST, Tan X, Bray BC. Latent class analysis with distal outcomes: A flexible model-based 
approach. Structural Equation Modeling: A Multidisciplinary Journal. 2013; 20:1–26. doi:
10.1080/10705511.2013.742377. [PubMed: 25419096] 

Lazarsfeld, PF., Henry, NW. Latent structure analysis. Houghton Mifflin; Boston: 1968. 

Dziak et al. Page 11

Methodology (Gott). Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Merz EL, Roesch SC. A latent profile analysis of the Five Factor Model of personality: Modeling trait 
interactions. Personality and Individual Differences. 2011; 51(8):915–919. doi:10.1016/j.paid.
2011.07.022. [PubMed: 21984857] 

Peterson J, Bandeen-Roche K, Budtz-Jørgensen E, Larsen KG. Predicting latent class scores for 
subsequent analysis. Psychometrika. 2012; 77(2):244–262. doi: 10.1007/s11336-012-9248-6. 
[PubMed: 23653489] 

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical 
Computing; Vienna, Austria: 2015. Accessed at http://www.R-project.org/

Ramaswamy V, DeSarbo WS, Reibstein DJ, Robinson WT. An empirical pooling approach for 
estimating marketing mix elasticities with PIMS data. Marketing Science. 1993; 12:103–124. doi:
10.1287/mksc.12.1.103. 

Schafer JL. Multiple imputation: A primer. Statistical Methods in Medical Research. 1999; 8:3–15. 
doi:10.1177/096228029900800102. [PubMed: 10347857] 

Vermunt JK. Latent class modeling with covariates: Two improved three-step approaches. Political 
Analysis. 2010; 18:450–469. doi:10.1093/pan/mpq025. 

Vermunt, JK., Magidson, J. Upgrade manual for Latent GOLD 5.1. Statistical Innovations Inc.; 
Belmont, MA: 2015. 

Zhang J, Bray BC, Zhang M, Lanza ST. Personality profiles and frequent heavy drinking in young 
adulthood. Personality and Individual Differences. 2015; 80:18–21. doi:10.1016/j.paid.
2015.01.054. [PubMed: 25892836] 

Dziak et al. Page 12

Methodology (Gott). Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.R-project.org/


Figure 1. 
Simulated coverage for 95% confidence intervals of selected methods in low measurement 

quality scenarios with binary outcomes. The four bars for each method, in order from top 

(light) to bottom (dark), represent coverage for the following four conditions: small effect 

size, even class sizes; small, uneven; large, even, large, uneven. Results for high 

measurement quality were similar. Larger effect sizes and uneven class sizes resulted in 

poorer coverage for uncorrected techniques. The BCH and ML methods with proportional 

assignment are omitted here as their coverage was very close to that of the corresponding 

method with modal assignment.
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Figure 2. 
Simulated coverage for 95% confidence intervals of selected methods in low measurement 

quality, high effect size scenarios with continuous outcomes. The six bars for each method, 

in order from top (light) to bottom (dark), represent coverage for the following six 

conditions: homoskedastic distribution with even class sizes, homoskedastic with uneven 

class sizes, heteroskedastic with even, heteroskedastic with uneven, exponential skewed with 

even, and exponential skewed with uneven. Class proportions have relatively little effect on 

coverage, but distribution shape has a large effect on coverage, with the ML and inclusive 

methods having very poor coverage for the heteroskedastic distribution. The BCH 

proportional method was omitted as its coverage was identical with BCH modal.
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Table 1

Distal Outcome Distribution Scenarios Used in Simulations

True Response Probability P(Y=1|C) in
Binary Outcome Scenario

Effect Size High Class Medium Class Low Class

Large 0.800 0.500 0.200

Small 0.550 0.500 0.450

True Response Mean E(Y|C) and Standard Deviation in
Homoskedastic Normal Outcome Scenario

Effect Size High Class Medium Class Low Class

Large 0.30 (1.00) 0.00 (1.00) −0.30 (1.00)

Small 0.10 (1.00) 0.00 (1.00) −0.10 (1.00)

True Response Mean E(Y|C) and Standard Deviation in
Heteroskedastic Normal Outcome Scenario

Effect Size High Class Medium Class Low Class

Large 0.60 (3.00) 0.00 (1.00) −0.60 (1.00)

Small 0.20 (3.00) 0.00 (1.00) −0.20 (1.00)

True Response Mean E(Y|C) and Standard Deviation in
Exponential Skewed Outcome Scenario

Effect Size High Class Medium Class Low Class

Large 1.80 (1.80) 1.40 (1.40) 1.00 (1.00)

Small 1.20 (1.20) 1.10 (1.10) 1.00 (1.00)
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Table 2

Bias by Class for Binary Outcome Probabilities in Selected Conditions

Class 1 Class 2 Class 3

True P(Y|C)  0.800  0.500   0.200

Bias in Estimated P(Y|C) under Poor Measurement Quality

Unadjusted (Modal) −0.029 −0.002 0.030

 (Proportional) −0.043 −0.001 0.043

ML (Modal) −0.001 −0.002 0.002

 (Proportional) −0.001 −0.001 0.001

BCH (Modal) −0.001 −0.002 0.001

 (Proportional) 0.000 −0.001 0.001

Inclusive (Modal) 0.010 −0.002 −0.010

 (Proportional) 0.001 −0.002 0.000

Note. This table contains results only for scenarios with large effect size. For ML and BCH, only modal assignment is shown, because the modal 
and proportional assignment options provided very similar results.
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Table 3

Root Mean Squared Error Across Classes for Binary Outcome Probabilities

Root Mean Squared Error

Class Proportions: Even Uneven

Effect Size: Small Large Small Large

Unadjusted (Modal) 0.028 0.036 0.036 0.048

 (Proportional) 0.026 0.043 0.032 0.060

ML (Modal) 0.033 0.031 0.043 0.041

 (Proportional) 0.032 0.030 0.041 0.039

BCH (Modal) 0.033 0.031 0.043 0.041

 (Proportional) 0.032 0.030 0.041 0.039

Inclusive (Modal) 0.035 0.033 0.047 0.044

 (Proportional) 0.032 0.030 0.042 0.039

Oracle 0.027 0.024 0.036 0.030

Note. This table contains results only for scenarios with large effect size and poor measurement.
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Table 4

Mean Absolute Bias Across Classes for Outcome Means E(Y|C) of Continuous Distal Outcomes

Distribution: Homoskedastic Heteroskedastic Exponential

Classes: Even Uneven Even Uneven Even Uneven

Unadjusted (Modal) 0.020 0.029 0.040 0.059 0.028 0.040

 (Proportional) 0.029 0.047 0.057 0.093 0.039 0.063

ML (Modal) 0.001 0.003 0.367 0.338 0.044 0.329

 (Proportional) 0.001 0.003 0.307 0.724 0.077 0.767

BCH 0.001 0.003 0.001 0.008 0.003 0.008

Inclusive (Modal) 0.008 0.015 0.487 0.153 0.009 0.018

 (Proportional) 0.001 0.001 0.475 0.134 0.003 0.006

Quadratic (Modal) 0.008 0.015 0.015 0.027 0.008 0.019

 (Proportional) 0.001 0.001 0.002 0.002 0.002 0.006

Oracle 0.001 0.001 0.002 0.003 0.002 0.003

Note. This table contains results only for scenarios with large effect size and poor measurement. For BCH, only modal assignment is shown, 
because modal and proportional assignment were found to give identical results in LatentGOLD for continuous distal outcomes.
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Table 5

Bias by Class for Estimation of Outcome Means E(Y|C) in Selected Conditions

Homoskedastic Normal True
Distribution

Class
1

Class
2

Class
3

True E(Y|C) 0.300 0.000 −0.300

Unadjusted −0.031 −0.001 0.030

ML −0.002 −0.001 0.001

BCH −0.002 −0.001 0.001

Inclusive 0.011 −0.002 −0.011

Quadratic 0.011 −0.001 −0.011

Heteroskedastic Normal True
Distribution

Class
1

Class
2

Class
3

True E(Y|C) 0.600 0.000 −0.600

Unadjusted −0.059 0.000 0.060

ML −0.513 −0.039 0.550

BCH −0.002 0.000 0.003

Inclusive −0.969 0.370 0.122

Quadratic 0.014 0.012 −0.018

Exponential True Distribution

Class
1

Class
2

Class
3

True E(Y|C) 1.800 1.400 1.000

Unadjusted −0.039 −0.002 0.044

ML 0.032 −0.064 0.037

BCH 0.000 −0.004 0.006

Inclusive 0.016 −0.003 −0.009

Quadratic 0.014 −0.002 −0.008

Note. In order to conserve space, this table contains only results for high effect size scenario, poor measurement quality, even class size scenario, 
and modal assignment method.
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Table 6

Root Mean Squared Error Across Classes for Outcome Means E(Y|C) of Continuous Distal Outcomes

Homoskedastic Heteroskedastic Exponential

Even Uneven Even Uneven Even Uneven

Unadjusted (Modal) 0.060 0.081 0.120 0.190 0.088 0.127

 (Proportional) 0.061 0.082 0.123 0.184 0.087 0.123

ML (Modal) 0.064 0.088 0.519 0.595 0.105 0.841

 (Proportional) 0.062 0.085 0.392 1.118 0.121 1.413

BCH (Modal) 0.064 0.088 0.126 0.210 0.096 0.141

Inclusive (Modal) 0.068 0.097 1.600 1.041 0.098 0.154

 (Proportional) 0.062 0.086 1.524 0.970 0.091 0.136

Quadratic (Modal) 0.068 0.097 0.119 0.209 0.098 0.152

 (Proportional) 0.063 0.086 0.115 0.193 0.092 0.136

Oracle 0.054 0.071 0.109 0.183 0.077 0.117

Note: Only the results for low measurement quality and modal assignment are shown. For BCH, only modal assignment is shown, because modal 
and proportional assignment were found to give identical results in LatentGOLD for continuous distal outcomes.
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