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ABSTRACT Multi-parent Advanced Generation Intercross (MAGIC) populations are fast becoming main-
stream tools for research and breeding, along with the technology and tools for analysis. This paper
demonstrates the analysis of a rice MAGIC population from data filtering to imputation and processing of
genetic data to characterizing genomic structure, and finally quantitative trait loci (QTL) mapping. In this
study, 1316 S6:8 indica MAGIC (MI) lines and the eight founders were sequenced using Genotyping by
Sequencing (GBS). As the GBS approach often includes missing data, the first step was to impute the
missing SNPs. The observable number of recombinations in the population was then explored. Based on
this case study, a general outline of procedures for a MAGIC analysis workflow is provided, as well as for
QTL mapping of agronomic traits and biotic and abiotic stress, using the results from both association and
interval mapping approaches. QTL for agronomic traits (yield, flowering time, and plant height), physical
(grain length and grain width) and cooking properties (amylose content) of the rice grain, abiotic stress
(submergence tolerance), and biotic stress (brown spot disease) were mapped. Through presenting this
extensive analysis in the MI population in rice, we highlight important considerations when choosing
analytical approaches. The methods and results reported in this paper will provide a guide to future genetic
analysis methods applied to multi-parent populations.
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Traditionally, breeders and geneticists use biparental populations for
mapping and varietal development. However, biparental populations
have limited allelic variation as they only segregate for QTL that differ
between the two parents. An alternate approach is to create multi-
parental populations derived from elite parents, in which each line
represents a combination of alleles inherited from multiple parents.
Ideally, a diverse set of lines is generated simultaneously that can be
readily used by breeders and geneticists. To achieve this, the selected
parents must be (a) diverse in their traits, (b) good combiners, and (c)

have elite features, which will result in new and favorable allelic
combinations. Further, thesediversemulti-parent lines serve as a genetic
population to map QTL and to understand genetic interactions.

MAGICpopulations are now becomingmore common in a number
of crop species such as rice, bread wheat, durum wheat, barley, and
chickpea. Huang et al. (2015) provided a comprehensive review of the
development and use of MAGIC populations, including brief descrip-
tions of important populations under development. Breeders and
geneticists have actively used and benefited from MAGIC popula-
tions, and several groups within the rice community are now also
adopting this approach to develop trait-specific multi-parent popula-
tions (Bandillo et al. 2013; Leung et al. 2015).

Supported by the Generation Challenge program, the International
RiceResearch Institute (IRRI) initiated the developmentofmulti-parent
ricepopulations in 2008 tobeused for bothbreedingandgenetic studies.
The four initialpopulationsdevelopedwere: (i)MI (eight founders of the
indica subtype); (ii) MAGIC PLUS (same eight founders as the MI
population with two extra rounds of intercrossing); (iii) japonica
MAGIC (eight founders of the japonica subtype); and (iv) the Global
MAGIC (16 founders: the eight of the MI founders and the eight of the
japonicaMAGIC founders). The populations were generated from elite
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materials representing a diverse set of favorable traits. The MI popula-
tion is the most advanced and has been studied in detail. At an early
stage of population development (S4 equivalent to F5), Bandillo et al.
(2013) mapped several traits on a small subset of the population, con-
firming that the lines were a well-recombined representation of the
eight founders. Further, the populations were of interest to breeders
due to the combination of their traits and favorable agronomic features
leading to the selection of lines as prebreeding material. IRRI has since
conducted several multi-environmental trials with a small subset of the
MAGIC populations and continues to do so.

The variations in the design of MAGIC populations in terms of the
number of founders, the mixing combinations, and the recurrent
crossing designs followed by selfing, will all have an impact on the
structure of the final population. Theoretical and simulation studies in
rice have identified the potential benefits and levels of mapping reso-
lution in various designs, but these have not yet beenmeasured in a real
population (Yamamoto et al. 2014). For example, these simulations
suggest that a minimum of six cycles of crossing is required to signif-
icantly improve the mapping resolution in a population derived from
eight parents. As might be expected from theory, increases in the num-
ber of recurrent cycles will be accompanied by an increase in the
number of nonrecombined genome segments, as well as an initial de-
crease in segment length. For a population like the MI, which has not
undergone any recurrent crossing “postmixing” of the founder ge-
nomes, the expected number of nonrecombined segments in 800 lines
derived from an eight-way cross is�150 per line if markers are evenly
spaced at 0.1 cM (Yamamoto et al. 2014). For comparison, Huang et al.
(2009) estimated �33 recombinations per recombinant inbred line
(RIL) in 150 lines derived from a biparental cross.

The predictions for the MAGIC structure based on high-density
genotypes in simulation studies can now be verified using GBS data in
these populations. Such low-coveragegenotypingmethods (Elshire et al.
2011) are popular due to their low costs and high throughput. However,
they suffer from issues with missing data and genotyping error, the
impacts of which are not yet well-characterized (Beissinger et al. 2013).
In particular, it is unclear whether a powerful statistical methodology
can offset some of the issues by capitalizing on genomic structure and
observed data. Methods for genetic analysis (Huang and George 2011)
and imputation (Huang et al. 2014) based on haplotype probabilities,
calculated from founder information and the pedigree, have been de-
veloped specifically for multi-parent populations. These methods de-
pend on the high-accuracy estimation of which alleles are contributed
from each parent (founder allele inheritance), which is affected by pop-
ulation size, founder genetic similarity, marker density, and genotypic
data quality. However, how to balance trade-offs in marker density and
data quality resulting from a fixed budget remains to be determined.

Issueswith genotypingand imputationwill, in turn, have subsequent
effects on QTL mapping analysis, introducing uncertainty and poten-
tially identifying false positives.Hence, careful processing of GBS data is
critical to correct for potential quality issues while maintaining the high
density of desirable markers to identify regions of high LOD, define
haplotypes, and characterize favorable founder alleles. Association
mapping for several traits in the MI population have been performed
(Bandillo et al. 2013), from which several large-effect QTL were de-
tected. However, interval mapping using founder haplotypes with
dense data has not yet been investigated using the rice MAGIC pop-
ulations. Both mapping approaches have been applied in other popu-
lations such as barley (Sannemann et al. 2015), tomato (Pascual et al.
2016), durum wheat (Milner et al. 2015), and wheat (Mackay et al.
2014) and, in general, the combination allows the detection of QTL that
might have been unaccounted for using one method alone.

This article summarizes the efforts in examining the MI S6:8
population to support and explore how these complex populations
can be analyzed. A rice multi-parent population was used to address
common aspects of MAGIC populations in crops, e.g., low-coverage
GBS, imputation, mapping traits, and identifying favorable alleles or
founder haplotypes. The research assesses whether theoretical predic-
tions of recombination are confirmed in an experimental population. It
also discusses the criteria for filtering, paying careful attention to the
impacts of genotyping error andmissing data. Allowing aminimal level
of missing calls in founders and lines, haplotypes were defined based on
founder probabilities. The missing data were then imputed, and the
resulting dataset was used to determine the number of observable
recombinations and to map the QTL for eight traits of interest. QTL
for agronomic traits (yield, flowering time, and plant height), physical
(grain length and grain width) and cooking properties (amylose con-
tent) of the rice grain, abiotic stress (submergence tolerance), and biotic
stress (brown spot disease) were mapped using interval mapping
(R/mpMap) and association mapping approaches (R/GAPIT).

MATERIALS AND METHODS

MAGIC population
The MAGIC population used for the analysis was derived from eight
inbred elite founders of the indica subtype, which are widely adopted,
high yielding, and tolerant to abiotic and biotic stresses. Detailed descrip-
tions of the population can be found in Bandillo et al. (2013). In brief, the
eight founders were intermated to derive 35 funnels with balanced con-
tributions from each founder. The MI population was then derived by
advancing 60 lines from each of the 35 eight-way F1s, resulting in a
population consisting of 2100 lines. Approximately 2000 of these ad-
vanced intercross lines (AILs) are maintained, fixed at the S6 generation.

Data curation
When dealing with large experimental trials, collecting phenotype data
can be challenging in terms of replications and plot size, especially in
multi-environment trials for complex traits. At the same time, seed
increase and purity should be maintained to allow researchers to trace
thematerial of interest. Data curation is important as it enables breeders
to extractAILswith the desired combination of traits. Currently, all data
generated at IRRI on the MAGIC populations including pedigree in-
formation are stored in the IRRI database B4R (Breeding for Rice). We
havealsoprovideda largeamountofdata in the supplement,withaguide
to the supplement found in Supplemental Material, File S1. The data
pipelines move from generating barcode, field layout, and field data
collection on tablets. The data collected include information on field
operations. Raw genotype data is stored for the validation of QTL and
for future applications of improved analytical methods.

Phenotyping
The population was phenotyped for various traits such as yield, flower-
ing time, plant height, physical (grain length and grain width) and
cooking properties (amylose content) of the grain, submergence toler-
ance, and brown spot disease. The above eight cases of QTL mapping
results were selected to illustrate the mapping resolution. The trait
analysis was conducted using PBTools (http://bbi.irri.org/products)
and a broad-sense heritability, which is the proportion of the variation
among entry means that is due to the variation in genotypic effects
(File S2) for the traits, is reported.

Yield: Yield trials were conducted for two dry seasons (2014 DS and
2015 DS) at IRRI under fully irrigated conditions using an augmented
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randomized complete block design. In the trials, the eight founders and
four common checks [PSCBRC10 (IRRI 104), PSBRC 18 (IRRI 105),
NSICRC222 (IRRI 154), andNSICRc132H (Mestizo 6)]were replicated
three times. The number of hills harvested from each of the plots was
recorded. Yield per plot (plot size: 2014DS 96m2 and 2015DS 2.16m2)
was converted to tons/ha using the formula below:

Yield in tonnes=ha ¼ �
Actual  Plot  Yield

�
Effective  Plot  Size��

·   10  ·  Moisture  Factor��

�Effective  Plot  SizeðEPSÞ ¼ Number  of   hills

· distance  between  hillsðmÞ
· distance  between  rowsðmÞ

��Moisture  FactorðMFÞ ¼ ð1002%Moisture  ContentÞ=86
Aone-stage linearmodel for augmentedRCBDwasused for analysis in
PBTools (http://bbi.irri.org/products), treating genotypes as random
with no relationships among lines. The BLUPs derived from the anal-
ysis were used for mapping. Details of the models used in the analysis
are provided in File S2.

Flowering time and plant height: Flowering time and plant height
weremeasured in the2015DSyieldplots.Thefield trialwasconductedin
the 2015 DS at IRRI in fully irrigated conditions using an augmented
randomized design. The MAGIC lines, eight founders, and four checks
weregrownacross threeblocks,withchecksandparents repeated ineach
block. Each linewas transplanted in two rows of 27 hills and the number
of days from sowing to 50% flowering was recorded. Plant height was
measured at maturity in the same trial as the flowering time. A single
environment analysis was conducted using PBTools, treating genotypes
as a random factor to obtain BLUPs for both flowering time and plant
height. The linearmodel for augmentedRCBDwas used for plant height
and flowering time, with additional details given in File S2.

Grain physical and cooking properties (grain length, grain width,
and amylose content): Grain length, grain width, and amylose content
(percentage of amylose by weight) were chosen to represent physical and
chemical grain quality features. The grain length andwidthweremeasured
using the FOSS cervitec, and amylose content estimation was based on the
American Association of 643 Cereal Chemists Method 61–03 (AACC
1999). These grain traits were measured at IRRI’s Grain Quality and
Nutrition Center. The grains of 1316 AILs and eight founders, harvested
from lines grown in the field for seed increase in the 2012wet season (WS),
were used. Only a single sample from each plot was collected for quality
assessment due to the high cost involved. The average grain length, average
grain width, and percentage amylose content were used for mapping.

Submergence tolerance: Submergence tolerance of the MAGIC lines
was tested in the IRRI submergencepondsdesigned toholdwater up toa
depth of 1.5 m. The trial was conducted in a completely randomized
block design composed of two replications. Seedswere directly sown at a
high density (5 g/line) across six seedbeds per replicate. Checks with the
Sub1QTL on chromosome 9 (Swarna-Sub1 and IR64-Sub1) and with-
out (IR42, Swarna, and IR64) were used and represented in each of the
seedbeds. The trial was subjected to complete submergence for 16 d,
after which the water was drained. The survival of all lines was scored
7 d after drainage using a five-class visual score (IRRI 1996).

The nonparametric Friedman test, which is similar to the parametric
repeatedmeasuresANOVA,wasused toderive themeanranksusing the

Statistical Tool for Agricultural Research (STAR) software (http://bbi.
irri.org/products).

Brown spot (Philippine isolate sm2): Brown spot disease in rice is
caused by the fungal pathogen Bipolaris oryzae. The fungus affects the
plant at both seedling and adult stages, causing yield losses and negative
effects to grain quality (Sato et al. 2015). The experiment was conducted
in randomized complete block design with 36 blocks. All entries and
founders were replicated three times and five checks were present in
each block. Treatments and block were used as factors to derive BLUPs
for QTLmapping.We tested the disease reaction ofMAGIC lines, eight
founders, and five checks (repeated in each block), to strain sm2, a local
Philippine isolate of B. oryzae, at seedling stage. Fungal cultures were
grown on potato dextrose agar plates and incubated at 25� for 10 d
under alternating 12 hr in UV light and 12 hr in darkness to induce
sporulation. The spores were scraped off and a spore suspension of 5 ·
104 spores/ml was used to infect the seedlings. The inoculated seedlings
were placed in a humid chamber overnight and maintained for 7 d in a
cool room at 22�. In susceptible plants, this produced brown lesions on
young leaves. The phenotyping was conducted in the greenhouse at
IRRI. The most infected leaf was evaluated 7 d postinoculation. Images
of diseased leaves were taken under a fluorescent lamp light box using a
regular digital camera. The camera was at set distance from the object,
in this case the diseased leaf or lightbox. Images of infected leaves were
bulk analyzed using a customized protocol run on ImageJ software to
measure the diseased leaf area. The total leaf area and the area covered
by the lesion were measured using a color threshold based on which
percent of diseased leaf area was estimated. A single environment anal-
ysis was conducted using PBTools, generating BLUPs. Details of the
model used are provided in File S2.

Genotyping
A total of 1316 S6:8 lines and nine replicates of the founder lines were
genotyped using GBS (Elshire et al. 2011). Full details of the GBS
pipeline approach can be found in Glaubitz et al. (2014). Briefly, it
consists of wet lab processing of samples accompanied by an informat-
ics pipeline prior tomaking SNP calls. The 96-plexApeKIGBS protocol
was used, wherein sets of 96 samples per lane were sequenced on an
Illumina HiSeq. The GBS pipeline was run by the Philippine Genome
Center of the University of the Philippines using TASSEL software
version 3.0.169 (Glaubitz et al. 2014). The sequence reads were aligned
to the reference genome Nipponbare sequence MSUv7 to derive the
physical positions of markers. The raw GBS data files are extremely
large and require specialized bioinformatics pipelines. Indeed, important
considerations in running the GBS data pipeline include the transfer and
storage of such data. An Amazon Elastic Cloud (Amazon EC2) instance
was used in this study to enable uninterrupted analyses.

Marker filtering post-GBS pipeline
Postprocessing steps were applied to the genotype data, imposing
various criteria, to extract multiple SNP sets in order to compare the
effect of different numbers and quality of SNPs on detecting recombi-
nations (Figure 1). The SNPmarkers in founders and lines were filtered
separately and the filtered SNPs common to both lines and founders
were used for analysis. To filter the founders, replicates were first
merged by ensuring that at least two had observed calls, with up to a
quarter of the replicates allowed to have an alternate call. The alternate
call within replicates of founders reflects genotyping errors. The most
common allele was then taken as the founder call. Next, SNP markers
with a minor allele frequency (MAF) of $ 0.125 (i.e., one of the eight
founders) at three levels of missing call rates across the eight founders
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(nomissing calls, allowing up to two founders to havemissing calls, and
allowing up to six founders to have missing calls) were extracted. To
filter the lines, a similar criterion was applied at two levels of MAF
(0.125 and 0.05). The SNPs obtained at MAF = 0.125 were filtered,
allowing only those with, 30%missing data, while the SNPs obtained
at MAF = 0.05 were further filtered allowing two levels of missing data
(, 20 and, 30%). Finally, the filtered sets of SNPmarkers of founders
and lines were merged in three combinations to obtain the markers
present in both lines and founders. Marker data from the lines for the
three sets ofmarkers filtered in the founders only were also extracted. In
total, six sets of filtered SNP data were examined.

Imputation
Genotypes were imputed using the “mpimpute” function in R/mpMap
(Huang et al. 2014). This method first estimates the probability that
observed lines inherit alleles from each founder based on a pedigree-
informed hiddenMarkovmodel (HMM), then audits the observed line
genotypes for each founder to impute founder genotypes. Once the
founders have been imputed, individual genotypes are imputed based
on the updated HMM probabilities. Missing calls in the lines and
founders were first imputed using the R/mpimpute function, and then
the markers were filtered based on MAF. The imputed data were used
for estimating recombination levels and interval mapping of multiple
traits in the set of 1316 genotyped AILs.

Defining haplotypes and estimating founder probabilities
This studywas interested inestimatingtheprobability thatagivenregion
derives from each founder, as they can be used for defining haplotypes
and for QTL mapping. In estimating these probabilities, several sets of
SNP markers were used, with the attempt to saturate the genome with
markers spaced no closer than 0.1 cM. Larger sets of SNPs are based on
less stringent filtering criteria, hence, are of lower quality. In this study,
six sets of SNP markers, which were derived using different criteria
(Figure 1), were tested.

For interval mapping, the map distance had to be represented in
centimorgans, hence we used a linkage map derived from the
physical map based on the conversion factor of 1 cM = 250 kb.
The estimation of the equivalent centimorgan to bases was made
using information from published high-quality, high-density ge-
netic IRMI (accession ID irmi-2003, http://archive.gramene.org/db/
markers/marker_view?action=view_map_set&map_set_acc=irmi-2003)
and physical IRGSP map (available in Gramene as accession ID
wig2005b; http://archive.gramene.org/db/cmap/map_set_info?map_
set_acc=wig2005b) of SSRs in the Nipponbare rice genome. SSRs in
common between the genetic and physical maps (1224 in all) were
determined, the respective coordinates (in centimorgan and base pair
positions) tabulated, and the distances between SSRs (in centimorgan
and base pairs) were computed for the entire genome. The average
base distance–centimorgan ratio was computed between adjacent
markers, per chromosome, and for the entire genome (File S3), result-
ing in the genome-wide ratio (�250 kb/cM) as the kilobase–centimorgan
estimator.

Founder probabilities were estimated at all markers using the
“mpprob” function in R/mpMap (Huang and George 2011) with pro-
gram = qtl. The number of recombinations was then calculated at all
marker positions (spaced . 0.1 cM apart) using a forward–backward
dynamic programming algorithm with a penalty of five for switching
between founders (File S4). The penalty acts as a disincentive to call
recombination breakpoints; at its lowest values, we take the most prob-
able founder at each genomic location, while as the penalty becomes
large we expect the number of recombinations to decrease.

Mapping

Genome-wide association mapping (GWAS): GWAS mapping was
carried out using R/GAPIT (Lipka et al. 2012). The compressed mixed
linear model (MLM) method was applied for detecting QTL associated
with the trait (Zhang et al. 2010). A filtered set of 27,041 markers
(Figure 1) across the 1316 MI lines was used for analysis. A kinship
matrix based on themarker data was generated within the analysis. The
default criteria implemented in GAPIT was used, with a significance
threshold of 0.0001.

Interval mapping: Interval mappingwas conducted using the function
“mpIM” from R/mpMap. Simple interval mapping (SIM) was per-
formed using BLUPs as response for the majority of the traits. The
significance threshold for SIM was set to p-value , 0.0001. Next, the
function “fit”was used to simultaneously estimate the effects of all QTL
by fitting all the detected QTL in a single model. Note that this means
that some QTL are no longer significant once all are included simul-
taneously. In this study, two separatefinalmodels, one based on percent
variance and one based on p-value, were considered. The function
“qindex” was used to select QTL based on two criteria: (a) percent
variance . 2 and p-value , 0.05, and (b) only p-value , 0.0001 to
include for fitting the final model. LD was estimated between flanking
markers for QTL using the function “mpcalcld” in R/mpMap (Huang
andGeorge 2011). This uses amulti-allelic measure for LD as described
in Huang et al. (2012).

Data availability
Theauthors state that all rawdatapertaining to the experimentshasbeen
submitted to the journal. A guide to supplemental files and raw data
submitted to the journal can be found in File S1. Raw genotype data can
be found in http://snpseek.irri.org/_download.zul. IRB is not applicable
in our case. Downloadable files are available at URLs: Hapmap data
(https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/
pub-data/MAGIC-Raw-genotype-data-Raghavan-2017.zip) and VCF
data (https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/
pub-data/MAGIC-vcf-all-chromosomes.zip).

RESULTS AND DISCUSSION

GBS data filtering
The postprocessing of GBS data was considered in detail given its
tendency for genotyping errors. The SNP data of each founder replicate
was compared against its 14 · sequence data in the 3 K panel
(Alexandrov et al. 2014). On average, the GBS calls and 14 · calls
differed by 1.7%. This information was used to assume less than a
2% error in genotyping. The GBS raw data, those which were run
through the standard GBS pipeline TASSEL 3, were used to generate
SNP calls that served as the primary GBS dataset (as compared to the
filtered datasets from postprocessing). The filtering of SNPs signifi-
cantly reduced the original number of SNPs. Founder filtering resulted
in three sets of SNPs (46,827, 68,826, and 88,083), MAGIC line filtering
resulted in a further reduction of SNP markers (21,521, 24,800, and
33,056), and finally the merging of founders and lines resulted in three
sets of common markers (16,702, 20,349, and 27,101), as shown in
Figure 1. SNP data were also extracted from lines corresponding to
markers filtered in the founders only (46,827, 68,826, and 88,083) (see
dotted line in Figure 1). The six datasets derived consisted of 16,702,
20,349, 27,101, 46,827, 68,826, and 88,083 markers. These filtering
criteria will allow researchers to select an appropriate set of SNPs,
keeping in mind that the stringency of criteria will provide a more
accurate but smaller set of SNPs. Hence, the choice of thresholds will
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depend on the goals for analysis, as interval mappingmay require fewer
markers than fine-scale association mapping.

Imputation and marker spacing
Toregain someof the information lost throughfiltering, themissingdata
for the founders and AILs were imputed. The function “mpimpute”
(Huang et al. 2014) has been shown to have nearly 100% accuracy in
founder imputation and . 90% imputation accuracy for a range of
sample sizes, levels of missing data, and marker densities. At postim-
putation, SNPs with MAF , 5% in the AILs and with a minimum
intermarker distance of 0.1 cM were filtered out.

As the filtering stringency decreased, the number of marker data
points increased. In the first three data sets (16,702, 20,349, and
27,101), the marker data of lines were filtered for missing data and
MAF at the first stage prior to imputation, while no filtering was applied
to the line marker data in the following three datasets (46,827, 68,826,
and 88,083) (Figure 1).

In order to select a dataset for mapping, an intermediate filtering
criterionwasused.The largest set ofmarkerswas selected for lineswhere
filtering was applied prior to imputing (33,056) and was combined with
the largest dataset for founders (88,083), resulting in 27,101 markers
common to lines and founders. It was noted thatmissing datawere high
because the replicated founder data (missing# 6) were used for the first
stage of filtering. Imputation of missing line and founder marker data
followed by filtering for MAF , 0.05 resulted in complete data (no
missing data points) for 27,041 markers, which were used for GWAS.
To extract markers for interval mapping, the 27,041 markers were
binned such that no two markers were closer than 0.1 cM or
25,000 bp, which resulted in 6166 markers. All interval mapping per-
formed in this study was conducted on this set of 6166 markers. On
average, the intermarker distance was 0.24 cM; 66% of the markers
had an intermarker distance of, 0.2 cM and 98% of themwere within
0.65 cM.

Founder probabilities and levels of recombination
Founder probabilities and levels of recombination were estimated using
the imputed marker sets that were filtered for MAF (4800, 5486, 6166,
7391, 8445, and 9283) (Figure 1). As the number of markers increases,
the chance of observing genotyping errors and, hence, overestimating

the number of recombinations estimated also increases. This trend is
apparent at varying marker levels across the filtered data sets. To coun-
teract the trend, this study introduced a penalty for shifting between
founders and considered the effect of varying levels of penalty on re-
combination estimates (Figure 2). By filtering on the minimum dis-
tance between markers (mindist = 0.1 cM), the number of markers and
consequently the number of estimated recombinations were reduced. It
is important to note that the marker data are not uniformly dense since
the maximum distance was not limited.

Between 63 and 71 recombinations were observed per AIL at the
lowest penalty (3) and a probability of genotyping error of 0.03 using
6166 and 7391 markers, respectively (Figure 2). Also, the number of
recombinations increased with the number of markers, and increasing
the penalty resulted in fewer estimated recombinations. At all the pen-
alty levels tested, the number of recombinations did not change much
as the number of markers increased from 4800 to 6166, but a steeper
increase in the following three marker sets (7391, 8445, and 9283) was
observed. In this study, as the penalty increased, the slope decreased
with increasingmarker numbers. Ideally, onemight expect the number
of recombinations to stabilize as the genome is saturated with markers.
As the least stringent criteria produced a set of 9283 markers, there is
still scope for greater saturation. In comparison to these results, Huang
et al. (2009) reported 33.8 recombination breakpoints per RIL derived
from a cross between Oryza sativa 93-11 (indica) and Nipponbare
(japonica).

This study found slightly more recombinations than the simula-
tions reported by Yamamoto et al. (2014), though there are a num-
ber of possible reasons for this difference. To saturate the genome
(373,245,519 bp) (http://rice.plantbiology.msu.edu/annotation_pseudo_
current.shtml) with markers every 0.1 cM, �15,000 markers would be
needed (assuming 0.1 cM equals�25,000 bp). With the current dataset,
we were able to extract a maximum of 9283 markers. Simulation exper-
iments (population size n = 800; genome size 1526.8 cM; bin 0.1 cM;
cycles 0) reported �150 genome segments per individual (Yamamoto
et al. 2014).

Due to the increase in the number of recombinations observed
beyond 7391 markers, we decided to select 6166 markers for mapping.
This choice of core set was also based on the intermediate filtering
criteria, and the fact that no SNP data were missing in the founders for

Figure 1 Filtering for SNP markers from GBS
marker data in founders and lines (post-GBS pipe-
line). The scheme shows the use of different criteria
resulting in multiple sets of SNP marker sets,
emphasizing the impact of filtering criteria on
downstream results. GBS, genotyping by sequenc-
ing; MAF, minor allele frequency; Mindist, minimum
distance between any two markers; SNP, single
nucleotide polymorphism.
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these markers. While it would be interesting to see the effect of filtering
and imputation on mapping, it would be best to investigate this in
simulated data.

Someof the issueswehaveseenwithgenotypeerrors, and increases in
recombination breakpoints with additional markers, may be due to our
use of a linkage map based directly on the physical map. Estimation of
recombination (centimorgandistance) fromphysical genomesize isbest
done in a proper mapping population, as the values are dependent on
the genomes of the parents being used in the cross. However, compar-
ative O. sativa genome sequencing publications (Yu et al. 2005; Schatz
et al. 2014; Sakai et al. 2014), show that various rice cultivars have very
high genome similarity (and chromosome colinearity) across major
subpopulations (. 95%), which gives us confidence in using a single
estimation of recombination for O. sativa. The availability of a high-
quality genome sequence in rice, and high-density genetic maps using
sequence-basedmarkers (SSR), have enabled a reasonable estimation of
the physical-to-centimorgan distance conversion in rice. This process
will be least appropriate in regions where the MI founders differ from
the reference, and due caution should be exercised for any QTL that
appear in such regions.

Ingeneral, itmustbekept inmindthat thechoiceoffilteringthresholds
will influence downstream analysis. It is clear that larger populations and
densemarkers are required to detect small-effect QTL or recombinations,
but this also entails a higher cost in genotyping. Lower-cost genotyping
technologies,whileproducing largernumbersofmarkers,maybeprone to
more errors and, hence,will requiremore stringentfiltering,which in turn
reduces the number of markers. Statistical methods such as applying
penalties and marker imputation as discussed above may correct this to
some extent, but these must be used with caution.

Phenotype analysis and QTL mapping
The summary statistics of the traits in the population and founders are
shown in Table S1. Generally, in cases when there were contrasting
alleles within the founders for traits, transgressive segregation was ob-
served. For most traits, we observe a continuous range of values among
founders, except in case submergence tolerance where only Sambha
Mahsuri-Sub1 is tolerant.

The imputed and filtered marker data were used for QTL mapping,
with a linkage map generated from the physical map of the Nipponbare

reference genome. The sequence length in the pseudomolecule release
7 (MSUv7) is373,245,519bp.This roughly converts to1492cM,which is
comparable to map lengths reported earlier (Harushima et al. 1998).
Similar procedures for interval mapping were followed for all eight
traits considered, with BLUPs taken as response in the genetic model.
We note that this may not be ideal in the case of low heritability traits,
but our traits all have medium to high heritability. We report peak
widths for both interval and association mapping, but note that these
are not exactly comparable, since for association mapping we take the
peak to include all markers significantly associated with the trait,
whereas for interval mapping this is based on a 1 LOD drop-off. The
average 1 LOD support interval of theQTL reported in this study is 2.83
cM (0.707 Mbp), the interval between flanking markers is 0.29 cM
(0.072 Mbp), and the LD (r2) between flanking markers is 0.85
(Table S3).

Yield: The BLUPs of yield for the founders ranged between 5.4 and
6.4 tonsper hectarewith Fedearroz 50, IR77186-122-2-2-3 (PSBRc158),
and IR64633-87-2-2-3-3 (PSBRc82) being the top three yielders. The
BLUPs of yield for the MAGIC lines ranged from 4.4 to 8.6 tons per
hectare, with nearly 20% (286 of the 1316) of the MI entries having
greater yield than the founders. The high-yielding checks NSCIRc
222 (IRRI 154) and NSIC Rc132H (Mestizo 6, hybrid variety) yielded
6.7 and 7.9 tons per hectare, respectively, in the conducted trials. The
heritability for this study was 54%. SIM detected four QTL on chro-
mosomes 2, 3, 7, and 8. The phenotypic variance explained by the final
model with percent variance . 2% and p-value , 0.05 was 10.13%,
supported by a QTL on chromosome 3 (4.19 cM; 1.27 Mbp) and
another QTL on chromosome 8 (104.62 cM; 26.2 Mbp) (Figure S1).
The phenotypic variance of the QTL on chromosome 3 was 7.68% and
that on chromosome 8 was 3.17%. The phenotypic variance explained
by the final model with p-values , 0.0001 was 10.13%, and was also
supported by the twoQTL on chromosomes 3 (4.19 cM; 1.27Mbp) and
8 (104.62 cM; 26.2 Mbp). The results of SIM for 2014 DS or 2015 DS
also detected these QTL on chromosomes 3 and 8.

Association mapping detected significant associations on chromo-
somes 3 and 8. The SNP markers on chromosome 3 at positions
1,270,943 and 1,343,246 bp were the top two hits with p-values
1.74E214 and 3.09E214, respectively, and with R2 equal to 4.9%.

Figure 2 Graph showing the trend in average
number of observed recombinations per line of
indica MAGIC (MI) population. The estimates are
made at varying numbers of markers (x-axis) and
penalty (Pen) levels. The x-axis indicates the num-
ber of single nucleotide polymorphism (SNP)
markers used for estimating recombinations/
marker sets (see Figure 1). Recombinations were
estimated at a genotyping error probability of 0.3.
AIL, advanced intercross lines.

1726 | C. Raghavan et al.

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.042101/-/DC1/TableS1.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.042101/-/DC1/TableS3.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.042101/-/DC1/FigureS1.docx


On chromosome 8, one marker on position 26,573,952 bp was de-
tected to be significant at p-value 1.14E205 and with an R2 of 4.9%.

TheQTLonchromosome3 (4.19 cM; 1.27Mbp)wasalsodetected as
being significant for flowering time (Table S2). The QTL on chromo-
some 8 colocalized with the QTL that was reported to be linked to grain
weight per plant and source activity (source QTARO: http://qtaro.abr.
affrc.go.jp) (Yamamoto et al. 2012). In this study, small-effect QTL for
yield were detected, which will be validated. SIM also detected signif-
icantQTL on chromosomes 2 and 7 (Table S2) that colocalizedwith the
QTL for plant height qPH-2 (QTARO) and the QTL for 1000-grain
weight gw7 (Li et al. 2000), respectively. Since yield is a complex
trait, it may be a better approach to study the marker–marker and
marker–trait interactions rather than to validate each small-effect
QTL independently.

Flowering time: The flowering time of the eight founders ranged
between 85 and 101 d, with IR77298-14-1-2-10 flowering the earliest
and Sambha Mahsuri-Sub1 flowering the latest. Flowering in the
MAGIC lines ranged from 84 to 106 d. The heritability for flowering
time was 49%. Eight significant QTL were detected using the SIM
approach (Table S2). The final model with percent variance . 2 and
p-value , 0.05 detected four QTL on chromosomes 1, 3, 6, and
7 (Figure S2), and explained 22.36% of the variance. The QTL on
chromosome 3 (4.19 cM; 1.27 Mbp) accounted for 17.51% of the
phenotypic variance. The final model with p-value, 0.0001 detected
QTL on chromosomes 3, 5, and 6, explaining 22.97% of the variance.

Associationmapping detected 73markers associated with flowering
timeonchromosome3.TheSNPmarkersonchromosome3atpositions
1,343,246 and 1,270,943 bp (which were also flankingmarkers detected
by intervalmapping)were themost significantmarkers with p-values of
3.57E232 and 4.34E232, respectively, and an R2 of 12.9%. The QTL
detected on chromosome 3 (between 1,270,943 and 1,343,246 bp) colo-
calized with theHd9 (heading date) and dth3 (days to heading/drought
tolerance) QTL (Lin et al. 2002). Association mapping also detected
three markers (p-value , 0.003) between �31.9 and 31.97 Mbp on
chromosome 1, which are close to the QTL detected at 127.84 cM
(31.97 Mbp). The marker at position 31,971,239 bp was the most
significant and is also a flanking marker reported by SIM (Table S2).

TheQTL on chromosome 1 detected by SIM (153.1 cM; 38.29Mbp)
colocalized with the QTL reported for panicle/flower morphology and
development as well as for plant height (sd1) (McNally et al. 2009)
(Table S2). In this study, SIM detected a second QTL on chromosome
1 (127.84 cM between 31.9 and 31.97 Mbp) (Table S2) which colocal-
ized with a flower morphology QTL. The two QTL on chromosome
1 are separated by 25 cM (6.31Mbp). The QTL on chromosomes 6 and
7 colocalized with the days-to-heading QTL Hd3b (Yano et al. 2001)
and Hd7, respectively (QTARO). A comparison of QTL for yield and
QTL for flowering time shows the QTL in proximity (Table S3), sug-
gesting possible correlations between the traits.

Plant height: In this trial, the plant height of the MAGIC founders
ranged from86 (IR64633-87-2-2-3-3 (PSBRc82) to112 cm(IR4630-22-
2-5-1-3), while the height of the lines ranged from 73 to 136 cm. The
heritability for plant height was 70%. SIM detected 15 QTL (Table S2).
The final model with percent variance . 2% and p-value , 0.05 was
explained by theQTL on chromosomes 1, 3, 4, 5, 6, 7, 11, and 12 (shown
in bold in Table S2) accounting for 26.19% of the variance. The final
model with p-value , 0.0001 explained 23% of the phenotypic vari-
ance, due to the QTL on chromosomes 1, 3, 5, and 11. The QTL on
chromosome 1 (153.71 cM; 38.44 Mbp) (Figure S3) explained 9.8% of
the variance and colocalized with sd1 (McNally et al. 2009). It should be

noted that a second QTL was detected on chromosome 1 by SIM at
38.16 cM (9.55 Mbp).

GWAS detected 61 markers on chromosome 1, including flanking
markers from the interval mapping between 35 and 41 Mbp, to be
significantly associated with an R2 of 17–18%. The second largest QTL,
which explained 8.5% of the variance, was detected on chromosome
3 at 4.68 cM, �0.5 cM (0.12 Mbp) from the yield/flowering QTL. This
QTL on chromosome 3 was also detected by GWAS with 17 markers
significantly associated, although they were spread over 21 Mbp. There
are possible interactions between the loci controlling yield, plant height,
and flowering time. TheQTL on chromosome 6 (56.83 cM; 14.35Mbp)
colocalized with a previously reported plant height QTL qPH2-6-1 (Cui
et al. 2004), which has also been indicated in an interaction between
tiller number, plant height, and heading date.

Grain length: The grain length of the founders ranged from 5.09 to
6.97mmwith IR77298-14-1-2-10, IR64633-87-2-2-3-3 (PSBRc82), and
IR77186-122-2-2-3 (PSBRc 158) having long grains (6.6–7.00 mm).
Grain length in the examined MAGIC population ranged from 5.1 to
7.3 mm. SIM detected 10 QTL. The final model with percent
variance . 2 and p-value , 0.05 explained 49.05% of the variance,
with the QTL on chromosomes 3 (65.68 cM, 16.64 Mbp) and 7 (98.73
cM; 24.70 Mbp) accounting for 31.51 and 13.66% of the phenotypic
variance, respectively (Table S2). The QTL on chromosomes 3 and
7 were also fit by the final model with p-value, 0.0001 and explained
46.73% of the variance (Figure S4).

The QTL on chromosome 3 was also detected by association
mapping. There were 57 significant markers between 16.2 and
21 Mbp. This was also previously reported in an earlier study on a
subset of the MI early generation (S4) population (Bandillo et al.
2013). This QTL is known to colocalize with the QTL for grain
length (qGL-3), grain width (gw3.1), and length by width ratio
(qLWR-3) (Yu et al. 2011) (source QTARO). It is also located near
the grain size QTL GS3 (Fan et al. 2006). In the larger (1316 lines)
S6:8 population, 53 markers at �24 Mbp on chromosome 7 were
detected to be associated with grain length. This QTL on chromo-
some 7 has been previously reported to be linked to the grain width
QTL grb7-2 (source QTARO) or grain size (Shao et al. 2012).

Grain width: The grain width of the founders ranged from slender
(1.85mm) tobroad (2.5mm). SambhaMahsuri-Sub1andIR77186-122-
2-2-3 (PSBRc 158) both have slender grains compared to the broad
grains of IR4630-22-2-5-1-3 and IR45427-2B-2-2B-1-1. In the MI
population, grain width ranged from 1.7 to 2.8 mm. SIM detected
29QTL. The final model with percent variance. 2 and p-value, 0.05
explained 57.18% of the variance based on 19 QTL (shown in bold in
Table S2). Seven QTL on chromosomes 1, 2, 3, 5, 7, and 8 (Table S2)
were detected by the final model with p-value, 0.0001 and accounted
for 47.08% of the phenotypic variance.

Association mapping detected 39 markers (4.3–5.6 Mbp; R2 46.5%)
on chromosome 5 that are associated with grain width. The marker at
5,391,586 bp, which is also the right flanking marker (Table S2) on
chromosome 5, was the most significant. The QTL on chromosome
5 (4.9–5.4 Mbp) colocalized with qGW-5 (Weng et al. 2008). GWAS
also detected 49 markers on chromosome 7 (24.4–24.8 Mbp) to be
associated with grain width. The QTL on chromosome 7 (97.6 cM;
24.42 Mbp) colocalized with the grain width QTL grb7-2 (source
QTARO) or grain size (Shao et al. 2012). This QTL explained the most
phenotypic variance (16.58%). It is situated 1.13 cM (0.28 Mbp) away
from the QTL detected for grain length in this study (Table S2). The
QTL on chromosome 8 (105.95 cM; 26.54 Mbp) (Table S2) was
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detected by both interval and association mapping (26.3–27.3 Mbp)
approaches and colocalized with the grain width and yield potential
QTL GW8 (Wang et al. 2012). The QTL on chromosomes 5, 7, and
8 (Figure S5) have also been previously reported in the MI population
(early generation S4) (Bandillo et al. 2013).

SIMdetected a fourth significantQTLonchromosome3at 97.21 cM
(interval 24.48 and 24.53Mbp), which colocalized with the grain length
or width-related QTL (qGL-3, gw3.1, and qLWR-3) and with the QTL
linked to grain weight (gw3a) and yield (Yd3-13) (source QTARO).
GWAS (16.7–16.8 Mbp) and SIM detected a QTL for grain width on
chromosome 3 at 64.33 cM (16.3 Mbp) (Table S2) which is 1.35 cM
(0.34 Mbp) away from the QTL for grain length (Table S2) detected in
this study. The locations of theQTL on chromosome 3 for yield, flower-
ing time, plant height, and grain length and width suggest possible links
among these traits.

Amylose content: Amylose content is a key cooking quality trait that
determines consumer preference. The amylose content (percent by
weight) in grains of the founders fell into a narrow intermediate type
category between 19.8 and 24.6%. Amylose content in the rice grains of
the MAGIC population ranged from 11 to 25%. SIM detected 12 QTL
with the most significant QTL found on chromosome 6 (Table S2). The
final model with percent variance. 2 and p-value, 0.05 included five
QTL (Table S2), explaining 53.62% of the phenotypic variance. Only
one large QTL on chromosome 6 was fitted by the final model with
p-value , 0.0001, accounting for 49.92% of the phenotypic variance.
The QTL on chromosome 6 which localized within the waxy/qAC-6
locus (1.69–1.72 Mbp) alone accounted for 49.92% of the phenotypic
variance (Figure S6).

Association mapping detected 123 significant markers on chromo-
some 6 between 0.36 and 2.8 Mbp, with a marker at 1,760,469 bp being
the most significant. It is noted that this QTL (chromosome 6: 6.33 cM;
1.72Mbp)was closely located to aQTL forflowering time (chromosome
6: 7.75 cM; 2.07 Mbp) (Table S2). A second QTL on chromosome
6 (68.99 cM; 17.39 Mbp) detected by SIM colocalized with an amylose
content QTL amy6-1, which is located in proximity to a plant height
QTL (56. 83 cM; 14.35 Mbp) detected in this study. The QTL for yield,
flowering time, and plant height have also been reported at this locus
(source QTARO). Although several other (besides the ones detected on
chromosome 6) QTL were detected in this study, only those on chro-
mosomes 1 (154.39 cM; 38.61 Mbp) and 5 (detected only by SIM at
91.51 cM; 22.91 Mbp) colocalized with previously detected QTL asso-
ciated with eating quality.

Submergence tolerance: Sambha Mahsuri-Sub1 was the only tolerant
founder used. The tolerant checks Swarna-Sub1 and IR64-Sub1 were
used alongside the susceptible checks Swarna, IR64, and IR42 in the
submergence trials. Only �7% of the lines were tolerant to 16 d of
flooding (i.e., survived 7 d after draining). SIM detected seven QTL
on chromosomes 1, 3, 5, 7, and 9. The final model with percent
variance . 2 and p-value , 0.05 detected QTL on chromosomes
7 and 9 and explained 23.97% of the variance, with the largest QTL
being the Sub1 QTL (22.44%) (Table S2). The final model with
p-value , 0.0001 detected one large QTL on chromosome 9 at 27.15
cM (7.08 Mbp). The major Sub1 QTL (chromosome 9: 27.15 cM; 7.08
Mbp)wasmapped (Figure S7) within a 1 LOD support interval 0.69 cM
(0.17Mbp) and 31.9 kb betweenmarkers at 7,045,612 and 7,077,542 bp.
The QTL SUB1A is linked to culm/shoot growth trait (Source
QTARO). A second QTL on chromosome 9 (81.94 cM; �20.7 Mbp),
which colocalized with the QTL for flowering (OsRRMh) and drought
tolerance/root length (mrl9a) (Source QTARO), was also detected by

SIM in this study. The QTL detected by SIM on chromosome 1 (be-
tween 2,349,219 and 2,502,008 bp) colocalizes with qSUB1.1 recently
reported in a FR13A by IR 42 RIL (Gonzaga et al. 2016).

Association mapping detected 100 significantly associated markers,
with the top 10 markers located between 6.1 and 6.19 Mbp on chro-
mosome 9. The QTL on chromosome 7 (82.03 cM; 20.5–20.8 Mbp)
(Table S2) colocalized with the days-to-heading QTL dth7.1 (Gao
et al. 2014) (Source QTARO). Toojinda et al. (2003) reported a QTL
for submergence tolerance on chromosome 7 (19,256,914–19,257,039 bp).
It was noted in this study that a small proportion of lines are sub-
mergence tolerant, which may be due to interactions between sev-
eral QTL and the major Sub1 QTL detected in this study. The
submergence tolerance mechanism is associated with suppressed
shoot growth and delayed flowering (Septiningsih et al. 2013).
The MAGIC population would be ideal to understand the interac-
tion between the detected QTL and to identify lines with different
combinations of these QTL.

Brown spot: The parents exhibited variation in resistance to sm2, an
isolate of B. oryzae. IR77298-14-1-2-10 was the most susceptible while
Sanhuangzhan-2, Sambha Mahsuri-Sub1, and IR4630-22-2-5-1-3 were
resistant. The BLUPS in the AILs ranged from 7 to 30 (resistant to
susceptible). The heritability for brown spot was 40%. SIM detected a
large QTL on chromosome 12 (76.71 cM; 19.30 Mbp) (Figure S8) and
two others on chromosomes 4 and 8. Only the QTL on chromosome
12 was fitted by both the final model with percent variance . 2 and
p-value , 0.05 and also the model with p-value , 0.0001. The phe-
notypic variance accounted for by both the final models was 34.42%.

GWAS mapping also detected the QTL on chromosomes 12 (19.3
Mbp) as highly significant (p-value = 3.62E225). This QTL has been
validated independently in other studies (biparental and 2 k diversity
panel) at IRRI. The QTL interval (chromosome 12: 19,301,158–
19,339,344 bp) colocalized with qDLA-12-3 (QTARO), a QTL for leaf
blast resistance. A secondQTL on chromosome 12was detected by SIM
at 39.83 cM (10.08 Mbp), which colocalized with qDLA-12-3 and is
near the meta QTL yield under drought stress (MQTL) dty12.1 (Swamy
et al. 2011). The QTL on chromosome 8 also detected by SIM colo-
calized with a drought tolerance QTL and a flowering QTL qDTH8
(QTARO). Since brown spot disease is often observed in regions where
there is water/soil stress, the QTL on chromosome 8 might be inter-
esting to further investigate.

Conclusions
This paper reports on analytical methods applied to understand the
genetics of theMI population in rice. It shows howGBSdata can be used
to generate large numbers of SNPmarkers as well as the importance of:
(a) filtering criteria, (b) imputation of missing data, and (c) accounting
for genotyping errors in downstream analysis. We have shown how
filtering criteria affect estimated recombination numbers. Datasets de-
rived from low filtering stringencies have high recombination numbers
based on theoretical assumptions. These high levels could possibly be
due to genotyping errors, which we accounted for in the analysis.
Replicating founders for sequencing is useful to ensure high confidence
of SNP calls. An alternative is to have deep sequence data for the
founders, which may be used to impute SNP marker calls in lines
to improve coverage. When dealing with large population sizes,
GBS-generated data are the most cost-effective choice, but the savings
in genotyping costs must be balanced with increased informatics
requirements.

Comparing significantQTL detected from both GWAS and interval
mappingapproachesweregenerally consistent for thedetectionofmajor
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genes or large-effect QTL. However, the methods differed for smaller-
effectQTL, sousing both approaches in combinationmayprovidemore
strength of evidence for genomic regions to follow up in further
validation experiments. Both new QTL and major QTL reported from
independent studies were detected. Some QTL for multiple traits are
within 2 cM of each other (highlighted in red in Table S3). However, in
some of these cases, for example the QTL on chromosome 3 (4.19 cM;
1.27Mbp) that is linked to both yield and flowering, the allelic effects of
the founders are not alike. Further dissection of such loci, by charac-
terizing MAGIC lines with varying allelic combinations, will help to
clarify whether there are multiple QTL in this region or a single pleio-
tropic one. All results from our mapping effort will be moved forward
for validation and marker development. The SNPseek database
(Alexandrov et al. 2014) will be used to extract haplotypes in the region
of interest.

This work aims to capitalize on the primary advantage of MAGIC
populations, namely that they combine favorable alleles from several
different founders for multiple traits. For geneticists, this is an ideal
situation tostudyQTLformultiple traits usingonemappingpopulation,
although increases in the number of traits and QTL rapidly add to the
complexityof analysis.A systematic coordinated effort inphenotyping is
critical to optimally exploit the MAGIC population. However, pheno-
typing and data maintenance efforts will demand time and funds.
Maximizing data collected from a single trial would be an effective
approach by coordinating data collection for multiple traits among
phenotyping groups.
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