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Abstract

Modern intensive care units (ICUs) collect large volumes of data in monitoring critically ill 

patients. Clinicians in the ICUs face the challenge of interpreting large volumes of high-

dimensional data to diagnose and treat patients. In this work, we explore the use of Hierarchical 

Dirichlet Processes (HDP) as a Bayesian nonparametric framework to infer patients’ states of 

health by combining multiple sources of data. In particular, we employ HDP to combine clinical 

time series and text from the nursing progress notes in a probabilistic topic modeling framework 

for patient risk stratification. Given a patient cohort, we use HDP to infer latent “topics” shared 

across multimodal patient data from the entire cohort. Each topic is modeled as a multinomial 

distribution over a vocabulary of codewords, defined over heterogeneous data sources. We evaluate 

the clinical utility of the learned topic structure using the first 24-hour ICU data from over 17,000 

adult patients in the MIMIC-II database to estimate patients’ risks of in-hospital mortality. Our 

results demonstrate that our approach provides a viable framework for combining different data 

modalities to model patient’s states of health, and can potentially be used to generate alerts to 

identify patients at high risk of hospital mortality.

I. Introduction

Modern intensive care units (ICUs) provide continuous monitoring of critically ill patients, 

collecting large volumes of clinical and physiological data. Furthermore, detailed 

information about the patients’ disease progression, symptoms and medications is carefully 

documented by the clinical staff in the form of progress notes. Despite the rich sources of 

clinical data, existing severity scores, such as the Simplified Acute Physiology (SAPS) [1] 

and APACHE [2], use snapshot observations of commonly measured clinical variables to 

assess the severity of patients’ illness. Recently, a body of research surrounding the analysis 

of patient data using machine learning techniques has arisen, broadening the array of 

methods that can be used to analyze a variety of clinical and physiological data [3], [4], [5], 

[6], [7], [8].
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In this work, we explore the use of Hierarchical Dirichlet Processes (HDP) [9] as a 

probabilistic topic modeling framework to estimate patient’s health state by combining 

multiple sources of information, including nursing notes, clinical variable ranges, and 

clustering analysis on physiological time series data. Our goal is to identify patterns from 

heterogeneous sources of patient data to alert clinicians of early warning signs of patient 

deterioration. We use HDP to automatically discover groups of co-occurring patterns, or 

“topics”, shared across multimodal patient data from the entire cohort. We characterize each 

patient by a k-dimensional vector, defined as the distribution of the patient data over the 

learned k topics. In this study, we apply HDP to the first 24 hour ICU data from the MIMIC 

II database [10], and evaluate the clinical utility of our approach in predicting patient in-

hospital mortality.

Topic modeling is a Bayesian learning method often used for analyzing documents. The 

method represents documents using an un-ordered collection of words, and then finds 

patterns of co-occurring words across multiple documents. This enables grouping of words 

by themes, which are called topics [9], [11], [12]. Several recent works have analyzed 

patient data in a topic modeling framework [6], [13], [14], [15]. Saria et al. [13] developed a 

method of analyzing time series data by applying topic modeling to find patterns in time 

series data. In [6], [14], physiological variables were combined with topic models of clinical 

text for patient mortality prediction. However, these previous works did not combine 

features of physiological time series with clinical text in the same generative topic modeling 

framework to characterize patients’ states of health.

In [16], Lehman et al. used a Bayesian nonparametric switching state space approach to 

model dynamics of time series for outcome prediction. In [17], a method based on 

generalized linear dynamic models was proposed to estimate patients’ mortality risks in the 

ICU by combining heterogeneous data. In contrast, our approach focuses on pattern 

discovery and uses HDP to combine clinical time series with text in a Bayesian 

nonparametric mixture modeling framework for patient phenotyping and risk stratification.

The rest of the paper is organized as follows. First, we describe the data used in the study. 

We then describe HDP as a topic modeling technique, and detail the methods used to encode 

data from clinical text and time series data as input to the HDP framework. Finally, we 

evaluate the clinical utility of our approach and present its predictive performance in hospital 

mortality prediction.

II. Methodology

A. Patient and Variable Selection

Data for this study was obtained from the Multi-Parameter Intelligent Monitoring in 

Intensive Care (MIMIC- II) [10] database available from PhysioNet [18]. The creation, 

maintenance, and use of the MIMIC-II database was approved by the institutional review 

boards of the Massachusetts Institute of Technology (MIT) and Beth Israel Deaconess 

Medical Center (BIDMC). The database contains records from 24,581 ICU patients admitted 

to Bostons Beth Israel Deaconess Medical Center between 2001–2008. MIMIC-II contains 

information from bedside monitors, validated by ICU nurses.
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We analyzed patient data from the MIMIC-II database, using only adult patients whose stay 

in the ICU lasted for at least 24 hours. The measured clinical variables included heart rate 

(HR), mean arterial blood pressure, respiration rate, temperature, Glasgow Coma Score 

(GCS), glucose, sodium, potassium, hematocrit, creatinine, urine output, white blood cell 

count, HCO3, lactate, pH, and PCO2. The data was processed to consist of hourly averages 

of the patient data for each variable. Only the first 24 hours of data for each patient were 

used in this study.

B. Topic Modeling Using HDP

We used HDP to automatically discover topics from multimodal patient data. A topic is a 

multinomial distribution over words from a finite, known vocabulary. In this study, the 

vocabulary of words were defined based on combining “codewords” extracted from both 

time series and clinical text; a topic represents shared groups of co-occurring time series 

features and clinical concepts extracted from the nursing progress notes. HDP models 

documents with multiple Dirichlet Processes (DP), one for each document, to enable 

document-specific mixing proportions. It uses a non-parametric prior to enable mixture 

models to share components [9]. The number of topics is assumed to be unknown a priori, 

and is inferred from the data. Running HDP results in a topic model containing an inferred 

number of discovered topics.

For HDP parameter settings, we used the same notations as in [9]. A two-level hierarchical 

Dirichlet process implementation was used to build our topic models. We used a symmetric 

Dirichlet distribution with parameters of 0.2 for the prior H over topic distributions. We used 

fixed concentration parameters 0.1 and 1 for γ and α respectively. Results presented were 

output of the model after 1000 iterations of Gibbs sampling.

C. Data Preparation

We generated our input for HDP by combining features from both nursing notes and the 

time series. In order to incorporate time series data into the HDP framework, we used two 

different methods to encode features of time series data as codewords. We describe the two 

encoding procedures in the following sections.

1) Static Features of Clinical Time Series—In the first method, we quantized each 

time series using the clinician-defined static ranges in SAPS-I[1]. For variables without 

listed SAPS-I variable ranges, we used the percentiles at 2.5%, 25%, 50%, 75%, and 97.5% 

as the edges for our clinical variable ranges. In total, 103 unique codewords corresponding 

to different clinical variable ranges were defined. Our data for generating the clinical 

variable range input iterated through the data for each patient, counting the number of times 

that the average hourly data for each patient fell into the various ranges for the clinical 

variables. Each variable range was turned into a codeword for HDP.

2) Dynamic Features of Clinical Time Series—In the second method, we used K-

means clustering to group time series into clusters with similar trajectories and dynamic 

features for generating codewords for the topic modeling algorithm. For this we used hourly 

averaged clinical time series from the last 18 hours of the first 24 hours of any given ICU 
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stay for clustering procedure, and only patients with at least two data points in this range for 

the variable in question were included in the clustering.

We extracted feature vectors from time series of each patient. These feature vectors included 

the minimum and maximum values, the slope and y-intercept of the corresponding linear 

regression, and the sum of the squared residuals of the linear regression. We chose these 

features because they succinctly captured the dynamic features of the time series, including 

threshold values, overall trend, and variability. Our K-means clustering algorithm used a 

standard Euclidean distance function, and was run once for each variable, with one feature 

vector representing each patients data for the given variable. We used the silhouette values 

[19] to determine the number of clusters for each variable. K-means was then run on the 

feature matrix for each variable, and the results were turned into word counts by having a 

codeword to represent each cluster, resulting in 100 unique codewords covering all the 

clusters for the 16 variables. Word counts amounted to one word for each cluster that a given 

patient had a feature vector assigned to.

3) Clinical Concepts from Nursing Progress Notes—Using natural language 

processing techniques [20], the nursing progress notes were parsed into clinical concepts, 

defined by the Unified Medical Language System (UMLS) codes. We generated word 

counts using the UMLS clinical concepts extracted from nursing notes. These word counts 

were determined using 5792 unique codewords which ranged from documented procedures 

to patient symptoms to noted diseases. The number of occurrences for each of these 

codewords in the nurses notes for each patient were totaled and included in the input for 

HDP.

D. Evaluation and Statistical Methods

Using the word to topic assignments, we constructed a topic proportion vector for each 

patient, which is a k-dimensional vector that contains the proportion of words belonging to 

each of the k topic. Patient data was divided into development (70%) and test sets (30%) in 

order to evaluate prediction performance. Our primary metric for measuring the success of 

the algorithm is area under the receiver operator characteristic curve (AUC). To evaluate the 

in-hospital mortality prediction performance, the topic proportion of each document (defined 

as the proportion of words assigned to each topic) was used as input to logistic regression for 

hospital mortality prediction. The nursing progress notes and time series of the 70% 

development set patients were used as the development set to build the topic model and train 

the logistic regression model; data from the remaining 30% testset patients were used as the 

held-out data set to test the mortality prediction performance.

In analyzing the development set, we performed association analysis on each time series 

cluster identified. Univariate logistic regression analysis produced p-values for association 

with patient mortality of clusters from the K-means clustering results. We measured the p-

value, cluster size, and odds ratio for each cluster. Odds ratios greater than one indicate that 

patients in the given cluster have a higher odds to die in the hospital than the average patient, 

and odds ratios less than one indicate that patients in the given cluster have a lower odds for 

in-hospital mortality than the average patient.
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III. Results

We analyzed over 17,000 adult patients who had stayed in the ICU for at least 24 hours. The 

development set contained 12,091 patients and the test set contained 5,183 patients. We 

encoded the first 24-hour patient data (nursing progress notes and 16 clinical variables) 

using a total of 5995 unique words; the number of unique UMLS terms in this corpus was 

5792; the number of unique time series “codewords” was 203 (103 from clinician-defined 

static ranges, and 100 from K-means clustering). Figure 1 shows an example progress notes 

where bolded texts were extracted as UMLS codewords for formulating the word count 

input to HDP.

A. Clustering Results

The optimal number of clusters learned based on the silhouette function was between 5 and 

11 clusters, depending on the variable. In Figure 2, we generated plots of example patient 

time series nearest the cluster centroids for example variable. Figure 2a shows an example 

HR cluster (N=360) with a p-value of 0.0451, and an odds ratio of 0.6833. Figure 2b shows 

a GCS cluster (N=687) with a p-value of 0.0094, and an odds ratio of 1.33 with a 95% 

confidence interval of (1.07 1.65). Figure 2c shows a sodium cluster (N=277) with a p-value 

of 0.0006 and an odds ratio of 1.6976. Figure 2d shows a HCO3 cluster (N=162) with a p-

value of 0.0154 and an odds ratio of 1.6147. These results demonstrate that there is value in 

phenotyping the patients based on the trajectories and dynamic features of their vital signs 

and lab results, and in particular there are significant patterns with predictive value for 

mortality.

B. Hospital Mortality Prediction Performance from HDP Combining Text and Time Series

To evaluate the in-hospital mortality prediction performance, the topic proportion of each 

patient was used as input to logistic regression for mortality prediction. HDP generated 49 

topics; after pruning rare topics, the remaining 40 topics were used to construct topic 

proportions for the prediction task. We performed 10-fold cross validation using the 

development set, producing a median AUC of 0.80 with an interquartile range of (0.79 0.81). 

We then apply the model with the best AUC from the development set on the test set, an 

AUC of 0.80 was achieved. This exceeds the performance when using an algorithm based on 

the SAPS-I acuity score, which produces an average AUC of 0.72.

IV. Discussion

We have conducted a proof-of-concept study and demonstrated that HDP provided a viable 

framework for combining different data modalities for patient risk stratification. Using HDP, 

related clinical concepts and time series patterns that tended to co-occur across patient data 

were grouped together to form topics. Topic learning was done in a completely unsupervised 

manner; no prior medical knowledge of disease associations were used. Our clustering 

results have identified time series patterns (e.g., from Glasgow Coma Scores) that were 

clinically meaningful and statistically significantly associated with patient hospital mortality, 

demonstrating the potential use of a dynamics based approach in patient phenotyping.
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We have chosen to use clinician-defined thresholds to quantize physiological variables so as 

to learn clinically interpretable “codewords” from time series data. While we have used 

hand-crafted features to characterize trends and variability patterns in clinical time series, 

future work will include automated feature learning and a dynamics-based approach in 

modeling physiological time series [3], [4], [16]. We employed K-means clustering as a 

simple and computationally efficient approach to identify patterns in clinical time series. 

Future work will investigate clustering techniques that can better capture patterns and 

trajectories of sparse and irregularly sampled clinical time series [21], [22]. We chose HDP, 

as opposed to the most prevalent topic modeling framework, Latent Dirichlet Allocation 

(LDA) [23], because HDP infers the number of topics from the data, and therefore is more 

suited for applications in pattern discovery, whereas LDA assumes a fixed number of topics.

V. Conclusions

We have presented a Bayesian non-parametric approach based on HDP that combined data 

from different modalities for estimating patient’s health state. We demonstrated that the 

learned topic structure of time series and clinical text contained prognostic values in 

stratifying patients’ in-hospital mortality risks. Future work involves incorporating other 

sources of data (such as waveforms or images) into the HDP framework to develop a more 

comprehensive view of each patient’s condition. As part of our ongoing and future work, we 

plan to investigate the clinical utility of our approach in identifying disease phenotypes [24] 

for patient prognosis and treatment decision support.
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Fig. 1. 
An example clinical text for a patient from the MIMIC-II database, where bolded texts were 

extracted as UMLS concepts, representing either a disease, symptom, medication, 

procedure, or finding from the patients nursing notes. A total of 5792 unique UMLS codes 

were used to capture clinical concepts from the first 24-hour nursing notes of the patient 

cohort.
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Fig. 2. 
Example time series clusters. Each plot shows time series of four different patients from the 

same cluster. For each cluster plot, we show the p-value and odds ratios from association 

analysis and the number of patients N in each cluster. A total of 100 unique “words” were 

defined, each corresponding to a unique cluster of similar time series segment. Note that 

GCS works on a scale of 3–15 to indicate how responsive the patient is; three denotes a 

completely unresponsive patient, whereas fifteen indicates a fully responsive patient.
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