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Frustration is a powerful mechanism in condensed matter systems, driving

both order and complexity. In smectics, the frustration between macroscopic

chirality and equally spaced layers generates textures characterized by a pro-

liferation of defects. In this article, we study several different ground states of

the chiral Landau–de Gennes free energy for a smectic liquid crystal. The stan-

dard theory finds the twist grain boundary (TGB) phase to be the ground state

for chiral type II smectics. However, for very highly chiral systems, the hier-

archical helical nanofilament phase can form and is stable over the TGB.
1. Introduction
Chirality is a ubiquitous driver of form and complexity in a host of systems—

from biologic to chemical to physical. Competition between local chiral order

and the geometric constraints of packing yield a proliferation of complex and

hierarchical geometric phases [1–4]. The physical system can respond to this

type of frustration in any number of ways. It can suppress either source of com-

petition and behave as the bulk phase in the absence of it. This typically occurs

in regimes where the energetic cost associated with the source frustration is

small. However, when the terms are comparable, the system has to find a com-

promise. One way it can do this is by admitting chirality in small regions of the

frustrated phase via the introduction of topological defects—points, lines or

walls where the symmetry of the phase changes.

Topological defects often characterize a particular phase of a condensed

matter system as they are defined by the interface between regions with different

symmetries. Although typically the hallmark of a phase transition, topological

defects can also arise from frustration within a system. They act to mediate the

frustration induced by two competing yet mutually exclusive terms in the free

energy. The Abrikosov phase of type II superconductors might be the most

familiar example of this. A lattice of flux vortices reconciles the Meissner effect

of the superconducting state with an applied magnetic field. Such frustration

exists in soft matter systems and frequently results in complex geometrical

states of matter. The prototypical example is the chiral smectic-A*, a phase of

liquid crystals that favours equally spaced layers and inherent molecular chirality.

These two conditions cannot be simultaneously satisfied, resulting in frustration.

Frustration need not be an intrinsic property of the free energy functional. In

geometric frustration, the symmetries of the local groundstate or microstructure

are not a subset of the symmetries of the manifold on which the system lives. In

the smectic-A* phase, molecular chirality is incompatible with equally spaced

layers. A proliferation of phases attempts to mediate between these two

extremes. Most notably, the twist grain boundary phase (TGB) employs grain

boundaries created from an infinite row of parallel screw dislocations to

rotate flat layers [5].

The helical nanofilament (HN) phase, like the TGB phase, originates from

the intrinsic frustration between the equally spaced layered smectic phase

and macroscopic chirality. In systems of achiral bent-core liquid crystals and mix-

tures of achiral bent-core and rod-like molecules, chiral phases often arise from

http://crossmark.crossref.org/dialog/?doi=10.1098/rsfs.2016.0118&domain=pdf&date_stamp=2017-06-16
mailto:sabetta@gatech.edu
http://orcid.org/
http://orcid.org/0000-0002-1173-5163
http://orcid.org/0000-0003-2862-108X


rsfs.royalsocietypublishing.org
Interface

Focus
7:20160118

2
spontaneous symmetry breaking [6–9]. Macroscopic homo-

chiral domains populate the sample, with both handednesses

occurring with equal probability. Unlike the B2 and B3 bent-

core phases, where molecular tilt with respect to the smectic

layers admits chirality through the spontaneous breaking of

mirror symmetry, the HN phase, a smectic-A phase, allows

the director to twist with respect to the layers [10–13].

Although initially considered to have the same mor-

phology as the TGB, the hierarchical structure of the HN

phase exhibits a distinctively different motif. Upon cooling

from a high-temperature fluid phase, helical bundles consisting

of approximately five nested smectic layers, nucleate. These

homochiral, coherently rotating filaments form the basis of the

hierarchical HN phase. They assemble, with axes aligned, into

a hexagonal lattice producing a nanoporous bulk structure.

From freeze fracture experiments on the bulk HN texture, an

archetypal Bouligand texture [1,14] reveals an underlying

cholesteric texture with the pitch direction parallel to the

centre of the filaments [15]. The HN phase accommodates

chirality by forming helicoidal layers that locally match a choles-

teric texture at the expense of long ranged ordering of the layers.

Conversely, the TGB phase locally prefers flat layers, only

admitting chirality across grain boundaries, thus allowing the

layer normal to rotate by a fixed angle.

This article is organized as follows. In §2, we discuss the

Landau–de Gennes model for the smectic free energy.

Sections 3 and 4 concern, respectively, the TGB phase and

the HN phase including both the mathematical description

of their morphologic structure and the free energy for their

formation. In §5, we present a unified phase diagram for

four chiral liquid cryastalline phases: the cholesteric, the

smectic-A, the TGB and the HN phase.
2. The smectic free energy
Landau–de Gennes theory has proven exceedingly powerful in

understanding the phase behaviour of smectics, particularly

the nematic to smectic-A transition (NA) [16]. The onset of

smectic order is characterized by the development of a mass

density wave locally modulating the molecular positions.

In mean-field theory, a non-zero value for the complex

smectic-order parameter c (x) ¼ c0(x) eiqsmf(x) indicates both

the emergence of smectic order and the location of smectic

layers denoted by level sets of the phase field f ¼ nd, where

d ¼ 2p/qsm is the layer spacing. Gauge-like minimal coupling

of the nematic director field n to the smectic-order parameter,

reminiscent of the Landau–Ginzburg theory for superconduc-

tors, penalizes deviations of the director field from the layer

normal N. The low energy deformations to the nematic director

field still cost energy in the smectic phase. This phenomenology

is captured by the Landau–de Gennes free energy

FL�dG ¼
ð

d3x

(
Cjðr� iqsmnÞcj2þðt� tcÞjcj2þ

u
4
jcj4:

þK1

2
ðr �nÞ2þK2

2
ðn � r�nþ q0Þ2þ

K3

2
ððn � rÞnÞ2

)
,

ð2:1Þ

where q0 is the chirality of the high-temperature cholesteric

phase and the three terms of the Frank free energy describe

the splay, twist and bend deformations of the nematic field.

Further discussion shall be restricted to the London limit [17]
(unless otherwise specified), where gradients in the magnitude

of the smectic order may be neglected.

The ratio of two natural lengthscales, kG ¼ l/j, the

twist Ginzburg parameter, governs the phase behaviour of

chiral smectics: the twist penetration depth is the maxi-

mum length the director can deviate from the layer normal,

l ¼ (K2/B)1/2, where B ¼ 2Cq2
smc

2
0 is the compression mod-

ulus and the coherence length j ¼ (C/jt 2 tcj)1/2 is the

distance over which c0 decays to zero. Type I materials�
kG , 1ffiffi

2
p
�

completely expel chirality from the smectic

phase. In the smectic phase c0 = 0, the free energy density

attains its minimal value fsmA
¼ jt�tcj2

u þ K2q2
0

2 corresponding to

the order parameter c0 ¼
�
�2jt�tcj

u

�1=2
, and the cholesteric

phase becomes favourable above the thermodynamic critical

chirality qth¼
�

2
K2u

�1=2
jt� tcj.

In the case of a mixed phase, containing both smectic and

cholesteric qualities, a simple treatment no longer governs the

thermodynamic properties. Deformations of the director field

and layer spacing simultaneously contribute to the nature of

the phase. Restricting to regions within the smectic phase, the

free energy reduces to

FL�dG ¼
1

2

ð
d3x

(
� ðt� tcÞ2

u
þBjrf�nj2:

þK1ðr �nÞ2þK2ðn � r�nþ q0Þ2þK3ððn � rÞnÞ2
)
:

ð2:2Þ
3. The twist grain boundary phase
The TGB phase, an intermediate phase featured in type II

materials (kG . 1ffiffi
2
p ) admits chirality into the smectic via grain

boundaries formed from an infinite row of parallel screw dislo-

cations. Each grain boundary joins two regions of smectic-A

together by rotating the layer normals through an angle a¼

2tan21(a/‘d), which depends on the separation between

defects ‘d. A lattice of parallel grain boundaries separated by ‘b

enable the smectic normals to approximately follow an under-

lying cholesteric texture with the average chirality �q ¼ a=‘b:
3.1. The morphology of the twist grain boundary phase
Before calculating the free energy density of the TGB phase,

the natures of both the layer morphology and director field

need be made manifest. The Euler–Lagrange equation for

the free energy functional, equation (2.2), in the one elastic

constant approximation (K1 ¼ K2 ¼ K3 ¼ K ), given by

dF
df
¼ r2f�r � n ¼ 0 ð3:1Þ

dF
dn
¼ B(rf� n)þ K(r2n� 2q0r� n) ¼ 0, ð3:2Þ

can be difficult to solve for generic director field n. If the director

field is divergence free, the phase field will always be given by

harmonic functions. For instance, the phase field for a single

screw dislocation,fscrew ¼ z 2 b
2p tan21(y/x), satisfies Laplace’s

equation everywhere except along the lower dimensional set

y ¼ 0, x ¼ 0 which defines the dislocation core.

In the low chirality limit, only a single grain boundary

need be considered [5], which is given by Scherk’s first
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Figure 1. (a) A single grain boundary consists of an infinite row of helicoidal dislocations along the x-axis, separated by spacing ‘d. This rotates planar layers at
z ¼21 through an angle a at z ¼þ1. (b) The bulk TGB phase results from combining an infinite row of these grain boundaries periodically along the z-axis,
separated by ‘b. Each grain boundary rotates the layer normals through angle a, thus the grain boundaries themselves must be rotated with respect to one another
along the z-axis. (c) The director field n ¼ cos(s (z))ex þ sin(s(z))ey also rotates in accordance with the layers. It is close to constant within each grain and jumps
through angle a across each grain boundary. The width of this jump is given by the penetration depth l.
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surface (shown in figure 1a) [18]. The p/2 TGB has the mor-

phology of Schnerk’s first surface [19,20]. We shall begin with

the phase field for a single grain boundary

f0 ¼ cos
a

2

� �
x� b

2p
Im ln cos

p

‘d
ðyþ izÞ

� �

¼ � b
2p

Im ln½e�pz=‘d e�2pif�=b þ epz=‘d e�2pifþ=b�, ð3:3Þ

that rotates layers at z ¼21, f2¼ x cos(a/2) 2 y sin(a/2)

by a to fþ¼ x cos(a/2) þ y sin(a/2) at z ¼þ1, where

2 sin(a/2) ¼ b/‘d, 2b is the winding of the phase around

any of the line singularities, and ‘d is the spacing between

defects within the grain boundary. A branch point singularity

marks each of the screw dislocations in the grain boundary at

z ¼ 0 and y ¼ (jþ 1
2 )‘d, j [ Z:

A TGB bulk phase consists of a periodic array of grain

boundaries living in the plane perpendicular to the pitch

direction q̂, each rotated by a about q̂ with respect to the pre-

vious grain boundary. The corresponding set of singularities

exist at z ¼ k‘b, y cos (ka)� x sin (ka) ¼ (jþ 1
2 )‘d, 8 j, k [ Z:

The natural extension of the phase field becomes

fTGB¼
1

2
(fþ1þf�1)

� b
2p

X1
k¼�1

Imlncos
p

‘d
(ycos(ka)�xsin(ka)þ i(z�k‘b))

� �
,

ð3:4Þ

where f+1 are the asymptotic values of the phase field as

z!+1. In place of specifying the asymptotic values f+1 of

the phase field, it often proves more convenient to specify

the behaviour at the origin, for instance, taking that there

is a grain boundary at z ¼ 0, with the axes of the screw
dislocations parallel to the x-axis. If we note that the asymptotic

values may be written as f+1¼f+1þ
P1

k¼1 (f+(kþ1)�f+k),

where f+k¼xcos((k� 1
2)a)+ysin((k� 1

2)a), then the phase

field for the bulk TGB with specified behaviour at the origin

is given by

fTGB¼�
b

2p
Imln½e�pz=‘d e�2pif�1=bþepz=‘d e�2pifþ1=b�

� b
2p

X1
k¼1

Imln½1þe2pðz�k‘bÞ=‘d e�2piðfkþ1�fkÞ=b�

� b
2p

X1
k0¼1

Imln½1þe�2pðzþk0‘bÞ=‘d e�2piðf�ðk0þ1Þ�f�k0 Þ=b�:

ð3:5Þ

The morphology of this structure is shown in figure 1b. This

form of the phase field has the advantage as it highlights the

exponential overlap between grain boundaries.

3.2. The energetics
To simplify the following calculations, the compression term

in the free energy may be split into two terms, jrf 2 nj2 ¼
(jrfj2 2 1) þ 2(1 2 n .rf ), where the first term enforces

equal spacing of layers and the second may be viewed as

an effective potential felt by the director field. The gradient

of the phase field will be necessary for calculating the director

field and the free energy, which, upon some manipulations, is

given by

rfTGB ¼ sin
a

2

� � X1
k¼�1

[(�sin (ka)ex þ cos (ka)ey)g?k þ gzkez]

ð3:6Þ

where
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g?k ¼
sinh ((2p=‘d)(z� k‘b))

cosh ((2p=‘d)(z� k‘b))þ cos ((2p=‘d)(y cos (ka)� x sin (ka)))

gzk ¼
sin ((2p=‘d)(y cos (ka)� x sin (ka)))

cosh ((2p=‘d)(z� k‘b))þ cos ((2p=‘d)(y cos (ka)� x sin (ka)))
:

9>>>>>>=
>>>>>>;

ð3:7Þ
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V
¼ B

2V

ð
d3xðjrfj2 � 1Þ ¼ B

2V

ð
d3x sin2 a

2

� � X1
j,k¼�1

ðcosðð j� kÞaÞg?jg?k þ gzjgzkÞ � 1

2
4

3
5

¼ 2B sin2ða=2Þ
‘b

ð‘b=2

z�
dz
X1

k¼�1

coth
2pjz� k‘bj

‘d

� �
� 1

� �
¼ B sin2 a

2

� �( ‘d

p‘b
ln

sinhðp‘b=‘dÞ
sinhð2p z�=‘dÞ

� �
� 1:

þ 2z�
‘b
þ
X1
k¼1

‘d

p‘b
ln

sinhð2pðk‘b � z�Þ=‘dÞ
sinhðp‘bð2k � 1Þ=‘dÞ

sinhðp ‘bð2k þ 1Þ=‘dÞ
sinhð2pðk‘b þ z�Þ=‘dÞ

� �
� 2þ 4z�

‘b

� �)

¼ B‘d sin2ða=2Þ
p‘b

ln
1� e�2p‘b=‘d

1� e�4pz�=‘d

� �
þ
X1
k¼1

ln
ð1� e�4pðk‘b�z�Þ=‘dÞð1� e�2p‘bð2kþ1Þ=‘dÞ
ð1� e�4pðk‘bþz�Þ=‘dÞð1� e�2p‘bð2k�1Þ=‘dÞ

� �( )
ð3:8Þ
where the cut-off z2�j is the size of the dislocation cores.

A full treatment of this problem would employ a com-

pletely general director field n ¼ cos(t (r))(cos(s (r))ex þ
sin(s (r))ey) þ sin(t (r))ez, where s (r) and t (r) and generic

rotations of the director field about the z- and x-axes, respect-

ively. However, we shall consider an effective model for the

director field, n ¼ cos(s (z))ex þ sin(s (z))ey, as n .rf becomes

integrable. The resulting effective free energy for the director

field is given by1

Feff ¼
ð

dz
K2

2
(@zs� q0)2 þ B(1� cos (s� am))

	 

, ð3:9Þ

where am ¼ a(mþ 1
2 ) is the piecewise constant grain angle of

the mth grain. As each of the grains are identical, after a shift

and rotation, it is sufficient to consider s0 ¼ s 2 a0 in the

region 0 � z � ‘b, with boundary conditions s0(‘b/2) ¼ 0

and s0(0) ¼2a/2. The solution to this variant of the sine-

Gordon equation is given by the elliptic amplitude function

s0(z) ¼ 2 am
z� ‘b=2ffiffiffiffi

m
p

l
,�m

� �
, ð3:10Þ

where the value of the elliptic modulus m is set by the

implicit equation am (‘b=(2
ffiffiffiffi
m
p

l),�m) ¼ a=4, shown in

figure 1c. Free energy density for the director field is

Fdir

V
¼ 1

‘b

ð‘b

0

dz

(
K2

2

2 dnððz� ‘b=2Þ=l
ffiffiffiffi
m
p

, mÞ
l
ffiffiffiffi
m
p � q0

� �2

þ 2B sn2 z� ‘b=2

l
ffiffiffiffi
m
p , m

� �)

¼ 8Blffiffiffiffi
m
p

‘b
E

a

4
,�m

� �
þ K2q0

q0

2
� a

‘b

� �
� 2B

m
, ð3:11Þ

where the elliptic functions are defined as dn2(z, m) ¼ 1 2 m
sn2(z, m) with sn(z, m) ¼ sin(am(z, m)) and E(z, m) ¼Ð z

0 dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2 (t)

p
is the incomplete elliptic integral of the

second kind.
The transition between smectic-A and TGB occurs at

qc1¼ lnkGffiffi
2
p

kG
qth when the energy gain from introducing twist

outweighs the cost of introducing a single defect. Calculating

the boundary between the TGB and cholesteric phases

requires an examination of the stability operator M(x, x0) ¼
d2FðxÞ

dc� ðXÞdcðX0Þ ¼ 2Cf2r22 j22þ q2
smjrf 2 nj2gd(x2x0). In the

linear approximation, f ¼ f+j within each grain, the eigen-

functions are those of a harmonic oscillator and the

minimal eigenvalue is qsmq02 j22. Thus, the onset of order

coincides with the first eigenvalue of the stability operator

going negative at qc2 ¼
ffiffiffi
2
p

kGqth. [5]
4. The high chirality limit and the helical
nanofilament phase

Conversely, the HN phase requires a high background chiral-

ity in order to form. Thus, we consider quenching smectic

layers from a background pure cholesteric phase given by

n ¼ cos(q0z)ex þ sin(q0z)ey. Growing layers from this configur-

ation tries to minimize the compression term of the free

energy Fcomp ¼ B
2

Ð
d3xjrfHN � nj2. If the cholesteric director

field is confined to the xy-plane, rotation in registry along the

pitch direction will minimize compression along the z-axis.

Under this assumption, the constrained Euler–Lagrange

equation for this system is given by

r? � (c0rf) ¼ r? � (c2
0n): ð4:1Þ

Being a pure twist configuration implies r � n ¼2q0n,

which violates the integrability condition for a scalar field

rf ¼ n. Yet there can still be a lower dimensional subspace

of points satisfied by this condition. The helicoidal field

floc ¼ x cos (q0z)þ y sin (q0z) ¼ r cos (q0z� f), ð4:2Þ

vanishes along a two-dimensional subsurface y cos(q0z) 2

x sin(q0z) ¼ 0, absolute minimum of the Landau–de Gennes

free energy. Therefore, a helicoidal bundle of radius R has a
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compression energy per unit length of pBq2
0R4/8, while the

condensation energy of forming the smectic-A texture in

the same volume is pK2q2
0R2/2. Consequently, the natural

size for a helicoidal bundle is R�¼
ffiffiffi
2
p

l, where l is the pen-

etration depth for twist, or the length over which the layer

normal can deviate from the director field. The twist pen-

etration depth will always set the radius for bundles as it is

the only scale in the system over which the geometric frustra-

tion can be mediated. We note, however, this value might

deviate slightly from
ffiffiffi
2
p

in bulk structures but will be close

to unity [21].
4.1. The helical nanofilament phase morphology
In order to create a bulk phase, a two-dimensional lattice of

bundles forms with all of the layers coherently rotating

in registry [15]. That requires the bundles to condense from

a background phase of uniform high chirality. We must

now solve the Euler–Lagrange equation, equation (4.1), for

a periodic arrangement. The resulting phase field, f must

be harmonic in both x and y and will generically be satisfied

by the ansatz that

f ¼ Re[Q(w) e�iq0z], ð4:3Þ

where Q(w) is an analytic function of the complex variable w ¼
x þ iy [21]. The choice of Q ¼ w recovers the optimal local

configuration, equation (4.2) and implies that all simple zeros

in Q(w) result in a helical bundle with the same handedness

as the underlying chiral cholesteric field. However, for conven-

ience, we introduce the dimensionless coordinate z ¼ w/l to set

the lattice constant for all cases to unity.

Analytic functions with a periodic array of zeroes are

given by Jacobi elliptic functions, doubly periodic analogues

of trigonometric functions. Each elliptic function has a corre-

sponding simple pole for each simple zero. Combining the
elliptic functions in different combinations and tuning the

elliptic modulus can generate a function with zeroes lying

at the lattice vectors of any two-dimensional Bravais lattice.

The HN phase with square lattice symmetry is given by

equation (4.3) with

~Q
sq

(z) ¼ 1

ksq

sn(ksqz, msq)

dn(ksqz, msq)
, ð4:4Þ

where the normalization ksq ¼ 2K(msq) � 1.854 is twice the

complete elliptic integral of the first kind and the elliptic

modulus for the square lattice is msq ¼ 1=2. The zeroes sit

on the square lattice given by z ¼ {r, s}, 8{r, s} [ Z, and the

requisite singularities are a lattice of simple poles that live

on the dual lattice z ¼ {rþ 1
2 , sþ 1

2 }, 8{r, s} [ Z. Likewise,

the hexagonal HN phase is given by

~Q
hex

(z) ¼ 31=4

khex
1þ

ffiffiffi
3
p cn2(khexz, mhex)

dn2(khexz, mhex)sn2(khexz, mhex)

� ��1=2

,

ð4:5Þ

where the normalization khex ¼ 2K(mhex) � 3.196

and the elliptic modulus for the hexagonal lattice is

mhex ¼ (2�
ffiffi
3
p

)
4 . Level sets of the phase field generated for

this lattice are shown in figure 2a. The simple zeroes live on

the triangular lattice z ¼ {rþ s=2,
ffiffiffi
3
p

s=2}, 8{r, s} [ Z. For

the hexagonal lattice, the complementary divergences

are square root branch points that live on a honeycomb

lattice z ¼ {rþ s=2,
ffiffiffi
3
p

s=2þ 1=
ffiffiffi
3
p

}z ¼ {rþ s=2þ 1
2 ,

ffiffiffi
3
p

s=2þ
1=(2

ffiffiffi
3
p

)}, 8{r, s} [ Z.

4.2. The energetics
The Landau–de Gennes free energy, equation (2.2), recast for the

phase-field ansatz f ¼ Re[Q(w) e2iq0z] penalizes deviations

of the layer normal from the ideal cholesteric director field,

n¼ cos(q0z)ex þ sin(q0z)ey, in the compression term Fcomp ¼

Bjrf 2 nj2. The compression energy density can be split into
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the reduced temperature, ~t, reduced chirality ~q and Ginzburg parameter
kG ¼ l/j for the molecules. The phase boundary between the TGB and
chiral nematic phases occurs at the upper critical chirality, qc2

, while the
onset of the HN phase occurs for lower reduced temperature and a finite,
non-zero reduced chirality. (a) The phase diagram for a Ginzburg parameter
kG ¼ 3. (b) For higher values of the Ginzburg parameter, the critical point
for the onset of the HN phase moves deeper into the TGB phase. This leaves
room for other high-temperature bent-core smectic phases, such as B2, from
which HN experimentally condenses.
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two components with rf? n and rk ? n, which, upon inte-

grating out the director field, yield f comp,?=(2p=q0) ¼ Bq2
0l2

4 j ~Qj
2

and f comp,k=(2p=q0) ¼ B
2 j@z ~Q� 1j2 respectively. The Landau–

de Gennes free energy per volume is

F
V
¼ 1

A

ð
~V

d2z
Bq2

0l2

4
j~Qj2 þ B

2
j@z ~Q� 1j2 � (t� tc)2

u

( )
, ð4:6Þ

where A is the total area of one unit cell of the lattice and ~V

denotes the area occupied by the smectic phase.

By construction, both of the trial phases have a simple

zero at the centre of each bundle, yet deviations from linearity

with growing bundle radius combined with the divergences

contribute to the compression energy, as these are the locales

where the director field, corresponding to the layer normal

deviates most from the ideal cholesteric. In the case of

divergences, the layer normal traces out a helicoid of the

opposite chirality and at the core of the divergence, the direc-

tor would yield a helicoid of opposite handedness of the

underlying cholesteric. These are points at which the smectic

order breaks down, melting to the cholesteric. These melted

regions have cholesteric energy proportional to their

volume, giving the morphology of bulk phases the flavour

of a packing problem.

The magnitude of the energies follows from the higher

order corrections to the Taylor expansions of ~Q near centres of

the bundles and the divergences. Near the simple zeroes,

the expansions for the square and hexagonal lattices are

given, respectively, by ~Q
sq ¼ z� ksq4

40 z5 þO(z9) and ~Q
hex ¼

zþ khex6

42
ffiffi
3
p z7 þO(z13), while in the vicinity of the poles,

the Taylor series are, respectively, ~Q
sq ¼ i

ksq z
�1 þ ksq2

20 z
3 þO(z7)

and ~Q
hex ¼ (1�i)

2 phex3=2
�
z�1=2 � i 31=4khex3

6 z 5=2Þ þOðz11=2Þ,
where p ¼ 31/4/khex � 0.412. It is clear that both terms will con-

tribute to a higher compression free energy for the square lattice,

thus we confine the remainder of our analysis to the hexagonal

case. From the Taylor expansions near the zeroes and poles of

the hexagonal lattice, the two components of the compression

energy areð
~V

d2zj~Qhexj2�1�2�31=4

khex
cosh�1 (2)

ffiffiffiffiffiffiffiffiffiffi
1�e
p

ð
~V

d2zj@z ~Qhex�1j2�3
ffiffiffi
3
p

p3ffiffiffiffiffiffiffiffiffiffi
1�e
p �4

ffiffiffi
3
p

pþeþ4p3=2(12(1�e))1=4,

ð4:7Þ

where e is the filling fraction (figure 2b). Thus, the total free

energy for the hexagonal HN phase is

F
V
¼ Bq2

0l2ffiffiffi
3
p 1� 2� 31=4

khex
cosh�1ð2Þ

ffiffiffiffiffiffiffiffiffiffi
1� e
p� �

þB
3
ffiffiffi
3
p

p3ffiffiffiffiffiffiffiffiffiffi
1� e
p � 4

ffiffiffi
3
p

pþ eþ 4p3=2ð12ð1� eÞÞ1=4

� �
� e
ðt� tcÞ2

u
ð4:8Þ

5. Discussion
5.1. The phase diagram
Both the HN phase and the TGB phase condense from a

higher temperature cholesteric, but the morphology of the

HN phase is predicated upon having a higher chirality than

is necessary to create the most highly chiral p/2 TGB

phase. As the two constructions for the two phases follow
from the same Landau theory, a phase diagram containing

the two can be constructed. It behoves us to introduce a

new non-dimensional parameter space, ~q ¼ q0=qsm and
~t ¼ (t� tc)=(q2

smC) ¼ 1=(j2q2
sm), which yield free energy

densities for the TGB and HN phases, respectively, given by

FTGB

BV
¼

~qsinða=2Þ
a

ln
1�e�2asinða=2Þ=~q

1�e�4sinða=2Þ=
ffiffiffiffi
�~t
p

" #
þ 8~qkGffiffiffiffi

m
p

a
ffiffiffiffiffiffi
�~t
p E

a

4
,�m

� �

þ
~q2k2

G

2~t
� 2

m
�

~t
4

1� 2~q

a
ffiffiffiffiffiffi
�~t
p

� �
ð5:1Þ

and

FHN

BV
¼�

~q2kGp2

4~t
1�2pcosh�1ð2Þ

ffiffiffiffiffiffiffiffiffiffi
1�e
p� �

þ3
ffiffiffi
3
p

p3ffiffiffiffiffiffiffiffiffiffi
1�e
p

þ4p3=2ð12ð1�eÞÞ1=4�4
ffiffiffi
3
p

pþe�
~te
4

, ð5:2Þ

where kG ¼ l/j is the Ginzburg parameter for the system, the

TGB parameters are the turning angle, a and m, the solution

to am
�

‘b

2
ffiffiffi
m
p

l
,�m

�
¼a=4, and the HN parameters are the frac-

tion of each unit cell occupied by smectic phase, e and the

hexagonal parameter, p¼31=4= 2K 2�
ffiffi
3
p

4

� �� �
�0:412. The

border between the TGB phase and the cholesteric is given

by the upper critical chirality ~qc2
, but the HN phase is

stable for lower chiralities. The phase selection criterion com-

pares the lowest of the TGB energies for all values of rotation

angle a to the lowest HN energy for all possible filling frac-

tions, e. The phase diagram is three dimensional with axes
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along the non-dimensional chirality, ~q, reduced temperature ~t
and the Ginzburg parameter, kG. Slices with constant kG are

shown in figure 3a.

The most salient feature of this phase diagram is that the

HN phase only becomes stable above a critical chirality,

which is smaller than qc2
and always occurs at lower reduced

temperature than the zero chirality TGB/smectic/cholesteric

triple point. As the Ginzburg parameter increases, the reduced

temperature becomes lower and the TGB phase becomes reen-

trant upon increasing reduced chirality (figure 3b). Although

this feature is unusual, it should be noted that in real systems

the HN phase condenses from a higher temperature B2 phase

of concentric cylindrical shells with a helical twist in the direc-

tor field. This phase has not been included in our description

and may account for the discrepancy.

5.2. Conclusion and future directions
We have presented a new continuum description for the

smectic layer structure of the TGB phase, which features a

continuously tunable angle u, the angle of rotation of the

smectic layers across each grain boundary. This phase is

one minimizer of the chiral Landau–de Gennes free energy.

The HN phase is another minimizer of the same free

energy, stable for higher chiralities than the TGB phase.

There is one set of parameters for which the p/2 TGB

phase and the square lattice description of the HN phase
have identical smectic layers, although the underlying choles-

teric reorients between the two phases. Our united

description allows us to create a complete phase diagram

for the Landau–de Gennes energy for chiral smectics-A. We

demonstrate that the HN phase is generally stable for

higher values of the reduced chirality and extends below

the lower critical chirality of the TGB phase and into the cho-

lesteric phase. This is analogous to the A* phase of

helimagnets, which may be described by a similar Landau

theory. Further, a complete description would include other

bent-core smectic phases, such as B2, and may shed light

on exotic magnetic states.
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Endnote
1Note that (1=A)

Ð
dx dyg?k¼sgn(z�k‘b): For m‘b , z , (mþ 1)‘b,

m [ Z, the integrals of the x- and y-components of the gradient
of the phase field simplify as follows, (1=A)

Ð
dx dyfTGBx ¼

�sin (a=2)(
Pm

k¼�1 sin (ka)�
P1

k¼mþ1 sin (ka)) ¼ 2 sin (a=2)
P1

k¼mþ1

sin (ka) ¼ cos (a=2)� 2 sin (a(mþ 1)=2) sin (am=2) ¼ cos (a(mþ 1
2 )),

likewise (1=A)
Ð

dx dyfTGBy ¼ cos (a(mþ 1)=2).
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