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Abstract

Man-made xenobiotics, whose potential toxicological effects are not fully understood, are 

oversaturating the already-contaminated environment. Due to the rate of toxicant accumulation, 

unmanaged disposal, and unknown adverse effects to the environment and the human population, 

there is a crucial need to screen for environmental toxicants. Animal models and in vitro models 

are ineffective models in predicting in vivo responses due to inter-species difference and/or lack of 

physiologically-relevant 3D tissue environment. Such conventional screening assays possess 

limitations that prevent dynamic understanding of toxicants and their metabolites produced in the 

human body. Organ-on-a-chip systems can recapitulate in vivo like environment and subsequently 

in vivo like responses generating a realistic mock-up of human organs of interest, which can 

potentially provide human physiology-relevant models for studying environmental toxicology. 

Feasibility, tunability, and low-maintenance features of organ-on-chips can also make possible to 

construct an interconnected network of multiple-organs-on-chip towards a realistic human-on-a-

chip system. Such interconnected organ-on-a-chip network can be efficiently utilized for 

toxicological studies by enabling the study of metabolism, collective response, and fate of 

toxicants through its journey in the human body. Further advancements can address the challenges 

of this technology, which potentiates high predictive power for environmental toxicology studies.

Introduction

With the momentous advancement of technologies, introduction of man-made toxic 

xenobiotics, or toxicants, are accumulating in the environment that are poorly understood 

and/or not yet identified. The United States Centers for Disease Control and Prevention 

(CDC) reported over 80,000 chemicals used in 2012, which 2,000 chemicals are 

manufactured or imported into the U.S. in amounts of at least one million pounds per year, 

commonly referred to as high production volume (HPV) chemicals [1]. Due to the rate of 
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toxicant accumulation, unmanaged disposal, and the unknown toxicological effects to the 

environment, there is a crucial need to quickly and efficiently evaluate the potential adverse 

health effects upon inevitable integration into the human body. Unfortunately, most of the 

previous research has concerned with identifying human exposure to HPV chemicals rather 

than addressing the need to understand toxicological effects in human physiology-relevant 

models.

One of the most well-known conventional screening methods is Toxicity Forecaster or 

ToxCast in short, which is a high throughput screening (HTS) based method employed by 

the U.S. Environmental Protection Agency's (EPA). ToxCast prioritizes HPV chemicals in in 
vitro models, of which over 1,800 chemicals have been at least partially analyzed, whose 

data is then compared to the results of animal studies. This method, however, remains time-

consuming, costly, and still relatively low-throughput [2•,3]. In vitro models are limited in 

high predictive power due to significant shortcoming in the use of in vitro 2D models, which 

are incomparable to the complex, in vivo 3D microenvironment detailed in human 

physiology. The 3D microenvironment exhibits a well-organized architecture possessing 

intimate cell-cell interactions and cell-extracellular matrix (ECM) network that is essential 

for recapitulating the human physiology. In addition, toxicity studies from animal models 

may inaccurately portray toxicological effects in the human body due to obvious inter-

species differences [2•,3].

As illustrated in Figure 1, recent innovations in microfluidic technologies have produced 

organ-on-a-chip (OOC) platforms, which integrate advanced 3D tissue engineered constructs 

with microfluidic networks to minimize the shortcomings of in vitro 2D models [2•,4•]. Such 

cohesive platform enables important physiological cues, such as the vasculature and 

interstitial fluid flow, which improves mimicry of the in vivo physiological conditions for 

studying stem cell differentiation, metastasis, etc. In addition, inter-species differences can 

be eliminated through the use of human cells. Furthermore, OOC researchers have begun to 

investigate interconnecting multiple OOC systems into a network (Figure 1), in order to 

emulate inter-organ relationships and ultimately objectify human-body-like 

microphysiological systems [4•]. While OOC systems have primarily been utilized for stem 

cell, cancer, and drug testing, they can also be used towards environmental toxicology 

studies. In this mini-review, conventional environmental toxicology screening will first be 

summarized for select HPV toxicants. OOC technologies will then be discussed in regard to 

its potential for assessing environmental toxicants, in addition to what challenges must be 

addressed to produce a better alternative to in vitro 2D models and animal models.

Conventional Environmental Toxicology Screening

Conventional HTS relies on 2D cultured cells to evaluate the cytotoxicity to drugs or 

toxicants, whose responses differ from those obtained in vivo due to the lack of physical and 

humoral interactions provided by the ECM, cell-cell interactions, and other molecular 

components of the native organ [5]. Indeed animal models do reproduce organ complexity 

more accurately but deduction of toxicological responses may be ambiguous due to inter-

species differences and thus irrelevant to human physiological responses. Also, the time 
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consumption, cost, and ethical concerns of animal testing disfavors its use in toxicological 

research [5,6].

Microfluidic HTS systems (typically considered a precursor to OOC systems), where cells 

are cultured in microfluidic channels, do incorporate flow components in a miniaturized 

manner (leading to low fluid consumption, assay miniaturization, and parallel processing) 

[7,8,9,10]. Yet, they cannot assess detailed information regarding the effects of generated 

metabolites, bioaccumulation, cell-ECM interactions, and processing via organs as it travels 

throughout the human body.

On the other hand, precision-cut organ models, where thin tissue slices are used rather than 

2D cultured cells, demonstrate the sheer advantage of direct interspecies comparison with 

respect to metabolic capacity and sensitivity for toxicants [6], and therefore has been 

identified as useful models for toxicological assessment [5,11,12]. However, obtained tissue 

slices are largely constrained by the limited viability for toxicological testing, which inhibits 

long-term toxicity studies [5].

Known HPV Toxicants

Select known HPV toxicants of interest (especially prioritized by the CDC) are listed here: 

environmental phenols, polybrominated diphenyl ethers (PBDE), phthalates, and 

perfluorinated chemicals (PFCs) (Table 1).

Many environmental phenols, notably bisphenol A (BPA), serve as endocrine-disrupting 

chemicals (EDCs), which mimic or antagonize endogenous hormones due to similarities in 

their chemical structures [13,14]. Although the use of BPA has strictly been limited, BPA is 

ubiquitously prevalent in manufacturing plastics and frequently leaches into water sources, 

resulting in bioconcentration in the environment [14,15,16,17,18]. Alarmingly, BPA can 

induce endocrine-disrupting health effects at modest concentrations of nanograms per liter 

[19,20,21,22].

PBDEs, of which the most common form is decabromodiphenyl ether (DECA), are utilized 

as flame retardants in commercial products with well-documented varying effects in 

numerous animal organisms [23,24,25]. Human susceptibility to PBDEs through inhalation, 

dermal absorption, and ingestion is substantially high due to their lack of chemical binding 

to products [26]. Several limitations from previously conducted in vitro models include 

inaccurate use of PBDE dose-dependent concentrations [27] and evaluation of culture 

medium rather than quantifying PBDE accumulation in cells [28,29,30], which ultimately 

challenges translation of in vitro to in vivo results.

Like PBDEs, phthalates are industrial chemicals that also exhibit leaching behavior [31]. 

The most common phthalate toxicant is diethylhexyl phthalate (DEHP), which contaminates 

inhaled indoor air [32,33,34]. Majority of in vitro studies support phthalates as 

xenoestrogens [35], but remain unverified for in vivo studies. The plethora of in vitro 
toxicological studies have specifically yielded species-specific results that are not human 

physiology-relevant [36].
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PFCs are used for protective coating of products, notably heat-resistant non-stick coatings. 

With limited water solubility and low volatility, PFCs, such as perfluorooctanoic acid 

(PFOA), bioaccumulate in the environment and in the body [37,38]. This slow elimination 

time challenges the determination of how lifestyle, diet, and other exposure-related factors 

influence physiological responses, and ultimately understanding the kinetics of the toxicant 

metabolism and subsequent removal from the body.

OOC Technologies

OOCs are microfluidic-based systems with advanced 3D tissue engineered constructs and 

cultured human cells to replicate a human organ of interest [2•]. Microfluidic channel 

networks are designed and fabricated to mimic the organ structure (e.g. liver sinusoid, 

nephron in a kidney, etc.). The channel surfaces are usually modified with the layers 

mimicking the ECM, allowing the human cells to adhere, spread, and proliferate within the 

channels (thus requiring tissue engineering technologies). Once OOCs are constructed, fluid 

flow is applied to generate mechanical forces that recapitulate the in vivo microenvironment 

experienced by cells [2•,39]. Specifically, organ-specific fluid flow enables gradient 

formations of molecular components and maintenance of cell-cell interactions [39,40•,41], 

which are vital to emulating human physiological responses. Previous research has 

demonstrated that incorporated ECM networks yielded in vivo-like behaviors such as apical-

basal polarization [42], lumen formation [43], increased differentiation [44], and appropriate 

protein expression [45]. Finally, OOCs are significantly low-cost, possesses tunable 

properties, mass-producible, with low reagent consumption and waste production compared 

to the conventional 2D assays [46,47]. Figure 2 provides a summary of available OOC 

technologies that may be used to address significant health concerns of toxicants, although 

most of them are not designed to study them.

While many different OOC systems have already been demonstrated for various 

applications, we are particularly interested in kidney, liver, and lung OOC systems (referred 

to as kidney-on-a-chip, liver-on-a-chip, and lung-on-a-chip) due to their important roles in 

bioactivation, filtration, and susceptibility to the environmental toxicant exposures.

Kidney clears endogenous waste and exogenous toxicants from the body, and is highly 

susceptible to xenobiotic and metabolite-induced nephrotoxicity [46]. Unknown 

consumption of food disinfectants may induce oxidative stress to the human kidney 

[48,49,50]. Various existing literature demonstrates a strong promise of kidney-on-a-chip 

devices for studying drug-induced toxicity and drug interaction studies through recreating 

renal tubule microenvironment within microfluidic channels [51,52,53•,54] with appropriate 

transport functions [54], crucial for investigating filtration capabilities. Some fundamental 

requirements essential to reproducing efficient kidney-on-chips include the biocompatibility 

of chip materials, fabrication with non-cell-adhesive materials [55], and the control of fluid 

shear stress to facilitate tight monolayer formation.

Liver is responsible for drug bioactivation, drug clearance, and production of reactive 

metabolites that can interact with other downstream organs [56,57,58]. During these 

processes, liver is also susceptible to drug-induced injury. Multiple biomimetic liver-on-a-
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chip platforms have been established for drug toxicity testing [59,60,61,62]. Liver-on-a-chip 

is essential in multiple-OOC systems because of its high concentration of biotransformation 

enzymes that may bioactivate xenobiotics [63•]. A metabolically active liver model must be 

integrated into in vitro models in toxicology studies in order to determine toxicological 

effects of metabolites and serve as an ideal representation of human physiology [64], which 

is generally considered very challenging in 2D models. One such important interplay among 

organs is that of the hepatic and renal systems. According to human physiological processes 

and anatomical placements, the liver nearly receives all of the xenobiotic-containing blood 

perfused by the intestinal system (gut), whose bioactivated metabolites may compromise the 

renal system during subsequent hepatic first pass effect during circulation [63•]. A good 

alternative is the interconnected, multiple OOC systems (e.g., liver- and kidney-on-a-chip 

connected in a series), which is discussed later.

The respiratory tract is a significant entry port of the human body due to the thin mucosal 

barrier with adsorptive surface area of the alveoli, which enables rapid access to the 

bloodstream [2•]. Lung-on-chips engineered with appropriate alveolar-capillary interface and 

vacuum strain to mimic physiological breathing can be used to study aerosolized toxicants. 

The challenge resides with the reconstruction of a reliable alveolar-capillary barrier without 

a complex culturing process [65].

Since OOCs are easy to construct, small-scale, and flexible in changing their designs, they 

can be made into not only high-throughput systems but also interconnected, multi-OOC 

systems. Such multi-OOC systems can better simulate the overall physiological responses of 

human body, especially for toxicants. Such multi-OOC systems can be built into human-on-

a-chip system, which will greatly improves in vivo physiological responses due to the better 

relationship modeling and correct anatomical placement (Figure 3).

Use of OOCs towards Environmental Toxicology

Governmental funding programs are currently expanding worldwide on developing 

innovative drug screening tools, in particular, in vitro cell-based or tissue-based models 

reproducing human physiology [66]. OOCs are obviously superior platforms over those in 
vitro models, and better predict the in vivo-like responses. While OOCs have substantially 

been used for drug screening, several drug toxicity studies are currently emerging, which 

may be adapted to environmental toxicology assessment. For example, Homan et al. 

recapitulated human kidney's dose-dependent responses to a nephrotoxin on a 3D bioprinted 

proximal tubules on chip [67]. In addition, primitive OOC systems that utilize cell spheroids 

still serve as adequate alternatives to 2D in vitro models and are being tested for drug 

toxicity assessment. Ziolkowska et al. presented a microfluidic chip with carcinoma cell 

spheroids to investigate the efficacy and toxicity of an anticancer drug [68]. Wei et al. 

presented a similar concept using primary hepatocyte spheroids on innovative fibers, which 

achieved excellent prediction of in vivo drug clearance rate [69]. Albeit these preliminary 

studies have been demonstrated for drug assessment, they may be translated into 

environmental toxicology.
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Many researchers acknowledge that the future direction must entail influence of multi-organ 

crosstalk and ultimately reconstitute the human-on-a-chip that is capable of ideally replacing 

animal studies [70]. This multi-OOC feature is a very important aspect for assessing 

environmental toxicants, to fully and correctly emulate the inter-organ and systemic 

responses from human body. Toxicity studies with multi-OOC do exist, albeit for drug 

screening but not for environmental toxicology: Maschmeyer et al. connected and 

maintained four OOCs to profile drug metabolism and processing among organ cross-talking 

networks for 28 days [71••]. Oleaga et al. demonstrated a 14-day sustained multi-OOC 

model with functional cardiac, muscle, neuronal and liver activities [72••]. More 

significantly, they evaluated 5 drugs with known adverse health effects, whose results were 

in general agreement with available human and animal data [72••]. Such productive step 

towards human-on-a-chip may serve an ideal tool for assessing environmental toxicants.

However, the number of such multi-OOC toxicology studies remain minimal, and those 

small number of studies continue to focus primarily on drugs, not environmental toxicants. 

With the development of physiologically relevant OOC models, toxicant screening may 

become possible with reduced cost, time, and labor. Not to mention, further questions may 

be answered that current technologies have not been able to address with such multi-OOC 

models – for example, the effects of environmental toxicants on the development of allergies 

[15].

Nonetheless, there will be several challenges that need to be considered with advancing 

OOC technologies. The chip materials must be made tissue-compatible and optimized to 

closely capture the complexity of native tissues [73]. Use of primary cell culture is ideal, 

while they have a limited lifespan, undergo rapid phenotypic alterations, and show large 

variability over different batches of isolation [2•]. Because of these limitations, well–

established, immortalized cell lines are most commonly used in OOC studies, while their 

immortalized trait often presents false tissue-specific functions [74••,75]. Additionally, 

current analytical methods for OOCs (mostly fluorescence microscopy-based) remain 

tedious, disruptive, time-consuming, and lack real-time in situ analysis capability [53•,

73,76••]. Non-invasive monitoring tools for in situ OOC analysis has been previously 

demonstrated [47], again still quite small in number, which may facilitate the assay analysis 

with low costs.

Conclusion

There is an overwhelming burden of assessing numerous HPV toxicants present in the 

environment. In vitro models and animal models are inadequate for understanding the in 
vivo toxicological responses. In addition, they are severely limited in detecting additive or 

synergistic interactions of environmental toxicants occurring within the human body [77]. 

With the recent advances of OOC technologies that better recapitulate human physiology, 

adverse health effects of toxicants and assessment of multiple exposure of various toxicants 

can be evaluated. There are scarcely any conclusive studies of human responses to toxicants 

available with OOC technologies. In fact, the majority of OOC literature have been focused 

on preclinical studies of pharmaceutical drugs, but not on environmental toxicology. In this 

sense, we strongly suggest that OOC technologies should be employed for identifying and 
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understanding environmental toxicants, which will significantly benefit the general public 

towards complete understanding on numerous environmental toxicants.
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Highlights

- Poorly understood xenobiotic toxicants are oversaturating the environment.

- Conventional methods are incapable of accurately predicting human 

physiological responses.

- Organ-on-a-chip systems may provide superior models in assessing 

environmental toxicants.

- Human-on-a-chip can serve as an ultimate platform for evaluating environmental 

toxicants.
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Figure 1. 
Evolution from in vitro models to multi-OOC systems. Figure reproduced from Planz et al., 

with permission from Elsevier [70].
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Figure 2. 
Summary of existing OOC technologies. Figure of uterus-on-a-chip was adapted from [90] 

with permission from Elsevier. Figure of lung-on-a-chip was adapted from [90]. Tumor-on-

a-chip figure was reproduced from [93]. Figure of heart-on-a-chip [94], kidney-on-a-chip 

[53•], BBB-on-a-chip [92], and liver-on-a-chip [95] were reproduced with permission from 

the Royal Society of Chemistry.
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Figure 3. 
Schematics of interconnected multi-OOCs, with microfluidic circulatory system to 

ultimately yield an anticipated human-on-a-chip. As toxicants enter the integrated model via 

inhalation through the lungs, or ingested through the gut, an intimate study of toxicant 

bioactivation, metabolism, transport, and fate can be observed. Such interconnected system 

model is crucial for understanding potential in vivo responses to the toxicants from various 

organs. Figure was adapted by Huh et al. with permission from Elsevier [76••].
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