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Abstract

Rationale—Intensive care unit (ICU) patients are at risk for both over- and under sedation, 

presently. An automated, physiologically-based method for monitoring sedation levels might help 

reduce this risk by allowing more precise titration of sedation in critically ill individuals.

Objective—To develop a peronsalizable algorithm to discriminate between sedation levels in 

ICU patients based on heart rate variability (HRV).

Methods—We gathered 21,912 hours of routine electrocardiogram (ECG) recordings from a 

heterogenous group of 70 adult ICU patients. All patients included in the study were mechanically 

ventilated and were receiving sedatives. As “ground truth” for developing our method we used 

Richmond agitation-sedation scale (RASS) scores grouped into four levels denoted “comatose” 

(−5), “deeply sedated” (−4 to −3), “lightly sedated” (−2 to 0), and “agitated” (+1 to +4). We 

trained a support vector machine learning algorithm to calculate the probability of each sedation 

level from HRV measures derived from the ECG. To estimate algorithm performance we 

calculated leave-one-subject-out cross-validated accuracy.

*Corresponding author: SBELURNAGARAJ@mgh.harvard.edu, MGH Neurology Department, WACC 827, Boston, MA 02114, 
USA. 

Copyright form disclosure: Dr. Nagaraj received support for article research from the National Institutes of Health (NIH). He 
received funding from NIH-National Institute of Neurological Disorders and Stroke (NINDS), Andrew David Heitman Foundation, 
Rappaport Foundation. Dr. Quraishi disclosed: unpaid Board membership on the Vitamin D Council and C Diff Foundation. He 
received funding from Abbott Nutrition, Lungpacer Inc, and Travena Inc. Dr. Purdon received support for article research from the 
NIH. He received funding from Masimo Corporation (technology patent licensing royalties paid to Massachusetts General Hospital) 
and from speaker’s honoraria. Dr. Westover received support for article research from the NIH. The remaining authors have disclosed 
that they do not have any potential conflicts of interest.

HHS Public Access
Author manuscript
Crit Care Med. Author manuscript; available in PMC 2018 July 01.

Published in final edited form as:
Crit Care Med. 2017 July ; 45(7): e683–e690. doi:10.1097/CCM.0000000000002364.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Measurements and Main Results—The patient-independent version of the proposed system 

discriminated between the 4 sedation levels with an overall accuracy of 59%. Upon personalizing 

the system supplementing the training data with patient-specific calibration data, consisting of an 

individual’s labeled HRV epochs from the preceding 24 hours, accuracy improved to 67%. The 

personalized system discriminated between light- and deep-sedation states with an average 

accuracy of 75%.

Conclusions—Our results suggest that HRV information can be used to monitor sedation levels 

in medical and surgical ICU patients with varied pathophysiologies. Future work incorporating 

disease pathology, pharmacological information and other physiological variables may further 

improve the accuracy of this model.

Keywords

Sedation monitoring; Richmond Agitation Sedation Scale; heart rate variability; support vector 
machine; intensive care

INTRODUCTION

Managing sedation safely in critically ill mechanically ventilated patients requires accurate 

monitoring of the level of consciousness. ICU patients are often sedated to relieve stress, 

prevent injuries and to facilitate ventilation and analgesia (1). Over- and under sedation 

increase the risk of adverse patient outcomes, including prolonged mechanical ventilation, 

extended ICU stays, and delirium (2). Current practices rely on behavioral scoring systems 

based on the patient’s response to verbal or physical stimulation. However, these systems 

rely on experience and clinical observation and are thus subjective, and are inaccurate at 

deep levels of sedation (3). Physiologically-based monitoring might be able to overcome 

these limitations, enabling more judicious titration of sedatives and reduced sedative-related 

adverse events.

Electroencephalogram (EEG)-based methods have been developed to assess the level of 

consciousness during general anesthesia (4–10). Applications of these EEG based methods 

have received little attention in the ICU, in part because EEG is not routinely available for 

general ICU patients. The electrocardiogram (ECG), however, is universally available in the 

ICU setting. ECG-based heart rate variability (HRV) has been shown to relate systematically 

to level of consciousness in some groups of patients (11). Whether sedation can be reliably 

inferred from HRV in individual ICU patients remains unclear.

In preliminary work we found that HRV measures show potential value as features in an 

automated monitoring system to predict the level of consciousness of ICU patients (12). 

Here we extend our previous work by developing a sedation level assessment system based 

on HRV measures that is patient-specific. Starting from 31 different time, frequency, 

nonlinear and complexity measures of HRV, we used an optimization procedure to determine 

an optimized set of features and used them to train a machine learning algorithm to predict 

patients’ level of consciousness. We rigorously tested and validated the patient-specific 

system on a large set of ICU ECG recordings. The proposed system provides a foundation 

for developing HRV-based sedation assessment monitors.
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METHODS AND MATERIALS

Dataset

For this study we used 21,912 hours of ECG data from 70 patients (43 males; 27 females), 

recorded using GE bedside patient monitors and archived using BedMaster software (Excel 

Medical Electronics, Jupiter FL, USA) at a sampling frequency of 240 Hz. Recordings took 

place in several ICUs at Massachusetts General Hospital (MGH), Boston, USA, under an 

IRB-approved protocol. Table 1 provides patient demographic characteristics.

Sedation assessment

To categorize sedation levels, we used the Richmond agitation-sedation scale (RASS), which 

has been shown to exhibit good inter-rater reliability in medical and surgical ICU patients 

(13). RASS scores range from −5 (deeply sedated/unresponsive) to +4 (agitated/violent) 

with 0 representing a calm awake state. ICU nurses performed RASS assessments as part of 

routine care at approximately 2-hour intervals. A member of the study staff later collected 

RASS scores from the medical record. Trained clinical research staff also performed RASS 

assessments once daily as part of the research protocol. In total our data included 4,258 

RASS assessments from 70 patients. In addition, we recorded time and dosages for sedative 

and analgesic medications (both intravenous infusion and bolus).

We grouped RASS scores into four categories (see Supplemental Material - Table 1). For 

convenience, from here on we refer to RASS groupings as A = Agitated = RASS >0; B = 

“Lightly sedated”, RASS 0, −1, −2; C = “Deeply sedated”, RASS −3, −4; and D = 

“Comatose”, RASS −5. We chose to group RASS scores to balance two considerations. 

First, grouping increases the number of samples in each category for classifier training. 

Second, assignment of RASS scores is imperfect, giving rise to some degree of “label 

noise”. That is, scores assigned to patients in clinically similar states may vary slightly: A 

patient who is lightly sedated with minimal stimulation may be assigned to either RASS −1 

or −2, but will not be scored as RASS −5. We designed our RASS grouping such that 

categories were distinct enough to enable reliable classifier performance while still defining 

distinct clinical states.

Overview of the automatic sedation level classification system

Figure 1a provides an overview of the processing steps for the proposed automatic HRV-

based sedation-level inference system (AHSISt). In the following sections we provide details 

for each step.

Artifact reduction and feature extraction

Obtaining informative HRV measures depends critically on first pre-processing the RRI 

signal to reduce artifacts. To obtain candidate R-wave peaks, we applied the Pan-Tompkins 

algorithm to the ECG signal, yielding an initial series of RRI (14). As an initial step we 

remove abnormal ectopic beats using a threshold-based method (15). However, numerous 

spurious RR peaks remain, thus we further clean the RRI signal using a threshold rejection 

method based on the interquartile range, adapted from Kauffman et al. (16). In this method, 

after obtaining differences between successive RRI (RRIdiff = RRIn+1 − RRIn where n is the 
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sample number), we calculate the absolute value of RRIdiff, and discard the largest 2% of the 

values. Gaps created by the 2% discarded data are filled in using linear interpolation. After 

pre-processing, we regard the cleaned and interpolated RRI as the cleaned heart rate time 

series. All subsequent HRV features are based on the cleaned RRI signal. An example 

illustrating the process of artifact reduction is shown in Supplemental digital content - 

Figure 1. Examples of the cleaned heart rate time series and accompanying RASS scores 

from four patients are shown in Supplemental digital content - Figure 2.

Due to limited prior knowledge regarding optimal features for predicting sedation levels, we 

extracted a large set of features from the cleaned RRI signal that have been used in previous 

studies in adults (17–20). Table 2 describes the 31 features that we extracted. We normalized 

all features using the box-cox transformation (21) to have uniform mean and standard 

deviation before feeding them to the SVM training and classification algorithms.

Nested cross validation for model training and testing

We used a nested cross validation (CV) strategy, consisting of distinct inner and outer CV 

loops to train the model (inner CV loop), and to obtain approximately unbiased estimates of 

model prediction performance (outer CV loop). Technical details regarding model training 

and evaluation are discussed briefly here; for further details see the Supplemental Material.

In the outer CV loop data is separated into separate training and testing sets. Model training 

and optimization is performed entirely on the training data while leaving the testing set 

untouched. The resulting model is then evaluated on the left-out testing data. For the outer 

CV loop we use a leave-one-subject-out CV strategy (LOSOCV). That is, we perform 70 

rounds of CV, where in each round data from 69 of the 70 subjects is used for training, and 

the remaining data from one subject is used for testing. In a second round of experiments, to 

personalize the algorithm for an individual patient, we allowed a portion of the left-out 

patient’s past data to be included in the training set (see below).

The inner CV loop is used for model parameter optimization. This is performed on the 

training data from the 69 patients included in each outer CV loop. In each inner CV loop we 

determine an optimal window duration (dur_) for extracting HRV features from the ECG, an 

optimal set of features to include in the final model (“feature selection”), and optimal values 

of parameters (σ, C) required by the support vector machine (SVM) algorithm.

Training of the patient-independent AHSISt system—Initially, each training set 

consisted of all data except that from a single test subject. This resulted in a split of 69:1 

between training and testing sets. For the patient-independent version of AHSISt, we strictly 

excluded all data from the testing set from the procedures used for classifier training and 

parameter tuning.

Training of the patient-specific AHSISt system—For creating a patient-specific 
version of AHSISt, we added the first 24 hours of data (day 1) from the testing set (i.e. 12 

epochs, one RASS assessment every 2 hours) to the training data set; we used the remaining 

data for testing (days 2 to day M, where M is the total number of days in the ICU). In this 

way we allowed past observations regarding the relationship between an individual’s HRV 
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features and their RASS level to inform future HRV-based predictions of RASS scores for 

the same individual. This technique of using prior data from an ECG recording to train a 

patient-specific prediction algorithm is commonly used in arrhythmia classification systems 

(22, 23). This procedure allows the classifier to become calibrated, or individualized, to 

provide patient-specific prediction of ICU sedation levels (see figure 1b).

Handling of class imbalance in the training data—The training dataset had an 

unequal number of epochs from different RASS groups (see Supplemental digital content- 

Figure 3). This is potentially problematic, as SVM classifier training is sensitive to class 

imbalance (24). To overcome this challenge, we used a sample-size equalization strategy in 

which we selected random epochs from each group in the training set corresponding to the 

size of the class with the smallest number of available samples, creating a series of balanced 

training sets. For the patient-specific AHSISt we ensured that all data from the patient’s first 

recording day was included in the balanced training set.

RESULTS

An example of the proposed system output shown as continuous probabilistic values for a 

single patient using the patient-independent and patient-specific versions of AHSISt is 

shown in Supplemental digital content - Figure 4. We see that by calibrating AHSISt with 

the initial 24hrs of data, the ability to correctly classify sedation levels (Supplemental digital 

content - Figure 4C) is significantly improved compared to the patient-independent system 

(Supplemental digital content - Figure 4A).

The training procedure used in 10-fold cross validation explored 70 different values of 

window size dur-. A value of 15 minutes provided the maximum cross-validated accuracy 

during the training process. The proposed system in this work is patient specific, in that it 

creates a new classifier for each individual patient. SFS identified different optimal subsets 

of features for each patient in the LOSOCV procedure. However, mean heart rate (MHR), 

root mean square of SDNN (RMSDD), high frequency spectral power (PHF), poincaré plot 

measures (SD1, SD2) and kolmogorov complexity features were consistently selected by the 

automated feature selection process across all patients.

The overall estimated cross validated accuracy of the patient-independent and patient-

specific AHSISt were 59% and 67%, respectively, substantially better than chance level 

accuracy (38%). Figure 3 shows the distribution of classification decisions made by AHSISt 

as a function of the true underlying RASS group. AHSISt identifies RASS group C (“deep 

sedation”) most accurately (74%). Accuracy for RASS group D (“comatose”) was lowest. 

The majority of misclassifications that occur are due to assignments to neighboring sedation 

levels.

Figure 3b shows the accuracy obtained using patient-specific AHSISt for individual patients. 

Except for 2 patients, the accuracy was better than chance for all other patients. For the two 

outliers, most misclassifications occurred between neighboring sedation levels e.g. between 

group C (deeply sedated) and D (comatose); or between groups A (awake and agitated) and 

B (lightly sedated).
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To gain insight into the intrinsic limits associated with inferring sedation levels from HRV in 

individual patients, we trained a binary classifier to discriminate between two RASS groups 

that are well separated clinically: light-sedation [RASS 0, −1] versus deep-sedation [RASS 

−4, −5]. The overall accuracy obtained was 75% and the area under the receiver-operator 

characteristic (ROC) curve (AUC) was 0.73. At the operating point on the ROC curve that 

maximizes accuracy, the proposed system correctly classified 66% of deep-sedation 

(sensitivity = 66%) and 86% of light-sedation epochs (specificity = 86%). This analysis 

provides a measure of the distinguishability of “deep-sedation” and “light-sedation” states 

from the standpoint of HRV.

From the predicted SVM probability output, we observe that the binary classifier is able to 

provide, as byproduct, a continuous score, that tends to be higher for deeper sedation levels 

and lower for lighter levels. As a preliminary test of whether this score might serve as a 

proxy for sedation level, we used the binary classifier, which is trained only on epochs of 

light and deep sedation, to assign a score to all epochs corresponding to 4-class RASS 

scores. We then calculated the Spearman’s rank-correlation (ρ) between our binary classifier 

score and the RASS scores and obtained an overall ρ=0.5. These results are promising and 

suggest that with further improvement measures of HRV may ultimately be able to provide a 

useful continuous measure of sedation depth.

DISCUSSION

In a previous investigation we found that HRV features showed promise for distinguishing 

between different levels of sedation in mechanically ventilated ICU patients (12). Our 

present results extend these findings by demonstrating that HRV-based classification of 

sedation levels can be accomplished with an accuracy substantially above chance at the level 

of individual patients. To the best of our knowledge, this is the first attempt to automatically 

classify sedation levels using HRV features in a large heterogeneous set of mechanically 

ventilated ICU patients.

The proposed system using HRV has advantages over conventional purely behaviorally 

assessment-based methods for assessing depth of sedation. First, HRV-based sedation 

monitoring is objective, free from inter-observer variability. Second, it is based on ECG 

measurements that are readily available and a standard of care within the ICU. Third, it can 

be performed continuously. Finally, interpreting the output of the proposed system in a 

probabilistic way makes it flexible and suitable for following HRV trends.

However, the current system is not yet ready for clinical deployment; several limitations 

need to be addressed in future work. First, we did not take into account infusion rates and 

types of sedative drugs administered, which can influence HRV (25, 26) independent of 

changes in sedative state. We were unable to incorporate pharmakokinetic and 

pharmacodynamics information (PKPD) in the present study because our data is 

observational, based on patients managed according to usual care, with all of the variation in 

care that this implies; and our data did not provide sufficient power to estimate PKPD 

models for each drug or for drug-drug interactions and drug-disease interactions and their 

relationship to HRV and RASS levels. Estimating prediction models that incorporate such 
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information would best be performed under controlled conditions to limit patient 

heterogeneity (e.g. using a distinct sedation strategy in a homogenous patient population), or 

would need to include a far larger number of subjects. Overall, the heterogeneity of our 

patient cohort is a strength and a weakness: A strength because it suggests that our results 

apply broadly and robustly across a wide range of patients; a weakness due to the inability to 

further account for PKPD and disease effects that translates into imperfect prediction 

performance. Future refinements of our approach, enabled by larger datasets and/or 

controlled trials, will allow including PKPD information and personalized information about 

the patient’s illness and are expected to further improve performance.

Second, we did not consider associations between deeper levels of sedation and increasing 

levels of organ failure. Several studies have shown the influence of multiple organ 

dysfunction on the autonomic nervous system (27–32). Therefore, additional modeling to 

account for the severity of organ dysfunction or medical illness might improve classifier 

performance. In addition, other physiological signals such as blood pressure, respiration rate, 

temperature, and SpO2 may carry complementary information, and inclusion of features 

derived from these signals could improve classifier performance (33).

Third, we grouped the RASS scores, which can take on 10 different values, into 4 groups. A 

preferable future approach might be to treat level of sedation as a continuous rather than 

categorical variable.

Fourth, because RASS scores rely on clinical behavioral observations, they are subject to 

some degree of human error. We tried to address this by grouping scores into four clinically 

distinct levels, but some “annotation noise” probably remained and may have limited 

performance. In addition, our data does not allow us to assess the accuracy of a continuous 

measure of sedation, because RASS scores are discrete-valued, and because the number of 

examples of each RASS score is imbalanced (necessitating our choice to group scores into 4 

levels). In other words, rigorously validating a continuous measure of sedation will require 

obtaining continuous measures of the response variables, e.g. measures of threshold stimulus 

intensities required to elicit a response from the patient.

Fifth, our method of evaluating classifier performance may be overly harsh: in our method, 

we penalize equally classifying RASS 0 as RASS −1 or as RASS −5. Future work should 

explore a “soft” classification strategy, assigning probabilities to possible sedation levels 

rather than making hard classification decisions. This would allow performance scoring 

using a metric that penalizes misclassifications to nearby states less than far away states. In 

addition, RASS scoring is intrinsically limited, and this may set a ceiling on the performance 

we are able to obtain with our methodology. We are exploring two approaches to overcome 

this limitation in future work: (i) obtaining higher quality assessments using a small, 

specially trained set of raters with extensive measures to ensure high inter-rater agreement 

and measurement validity; (ii) using our method in a prospective fashion to predict 

behavioral responses to a battery of stimuli (e.g. increasing grades of verbal, tactile, and 

noxious stimuli), in effect bypassing the RASS scoring system.
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Finally, a sixth limitation is that AHSISt uses observations of RASS and HRV from the first 

24 hours of monitoring as input to the training procedure. In this sense AHSISt might be 

considered “semi-automatic”, because it requires some human input for optimal 

performance. In practice, on the first day AHSISt could be started in the patient-independent 

mode (which had an accuracy of 57%). For subsequent days, it would be possible to further 

improve performance by repeatedly retraining with new incoming RASS+HRV data as the 

patient continues to be monitored. Since the nurse records this information every two hours 

in current practice, this would not pose an additional burden, and would provide the added 

value of continuous monitoring between clinical assessments.

As described above, there may be room for making the proposed system more or even fully 

automatic by developing a multimodal AHSISt algorithm which includes additional 

information from other sources, including EEG.

CONCLUSION

This work presents a novel framework to infer levels of sedation in critically-ill 

mechanically ventilated ICU patients using HRV features as input to a machine learning 

algorithm. Using a set of signal descriptors extracted from the ECG, the proposed system 

obtains promising prediction results across a heterogeneous cohort of 70 ICU patients. The 

proposed sedation level classification system represents a positive step towards developing a 

practical physiologically-based sedation monitoring system for ICU patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of (a) the proposed automatic sedation classification system, (b) the calibration 

window (initial 24 hours of ECG ) and prediction window using 15 minutes of ECG (15 

minutes was found as optimal window length in the classification) for patient-specific 

system, (c) identifying optimal RRI epoch length for sedation level assessment (d) a sample 

RRI, (e) its corresponding spectrogram, and (f) sample probability output from the patient 

specific classification where day 1 recording is used for calibrating the system and the 

predicted on the remaining days.
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Figure 2. 
Illustration of the proposed patient-specific AHSISt with LOSO performance assessment 

and 10-fold optimal parameter selection routines. Note that day 1 recordings are used during 

training process in case of patient-specific system. Data from the test patient was not used in 

case of patient-independent system.
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Figure 3. 
The distribution of the epochs classified by the proposed automatic sedation system for 

different sedation levels, and (b) accuracy of the proposed patient-specific AHSISt for 

individual patients.
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Table 1

Demographic and clinical characteristics of the patients used in this study.

Characteristic Value

Age

 Median 58

 Interquantile range 51–68

Weight (kg)

 Median 83

 Interquantile range 71–102

Male sex – no. (%) 43 (61)

Days in ICU

 Median 13

 Interquantile range 8–22

Charlson comorbidity index

 Median 3

 Interquantile range 2–5

APACHE II score at enrollment

 Median 25

 Interquantile range 18–31

Delirium

 No. of patients – (%) 56 (80)

 No. of positive CAMICU assessments*

  Median 3

  Interquantile range 1–8

Use of sedative or analgesic agent in ICU - (%)+

 Propofol 98

 Benzodiazepines 84

 Dexmedetomidine 34

 Opiods 97

*
number of positive CAMICU assessments (CAMICU=1) during the ICU stay.

+
percentage of patients in this study receiving the drug.
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Table 2

List of HRV features used in this work for the classification of sedation levels.

Domain Features

Time • Maximum, minimum, mean, median of NN.

• Standard deviation of NN (SDNN), percentage of consecutive NNs that vary by 5, 10, 15, 20, 25, 30 ms (pNNx).

• Root mean square of SDNN (RMSDD), mean heart rate (MHR), standard deviation of heart rate (SDHR), HRV 
triangular index, coefficient of variation.

• Max change in NN (MCNN), Mean of the absolute value of first derivative of NN (MAFDNN), Nonlinear 
energy, Line length.

Frequency • PVLF-Power in very low frequency spectrum (0.003–0.04 Hz).

• PLF-Power in low frequency spectrum (0.04–0.15Hz).

• PHF-Power in high frequency spectrum (0.15–0.4 Hz).

• PLF/PHF.

• PLF/PTOT × 100, PTOT is the total power spectrum.

• PHF/PTOT × 100.

Nonlinear • Poincaré plot measures (SD1, SD2).

Complexity

• Shannon entropy.

• Spectral entropy.

• Kolmogorov complexity.
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