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Abstract

Background—The development of novel therapeutics and treatment regimens for the 

management of asthma is hindered by an incomplete understanding of its heterogeneous nature 

and pathophysiology. Metabolomics can provide an integrated and global profile of a biological 

system in a dysregulated state, making it a valuable tool to identify biomarkers along the disease 

development pathway and to understand the biological mechanisms driving that pathway.

Methods—Liquid Chromatography-Mass spectrometry metabolomic profiling was conducted on 

plasma samples provided at recruitment for 380 children with asthma from the ‘Genetic 

Epidemiology of Asthma in Costa Rica Cohort’. Metabolites associated with three clinical 

characteristics of asthma severity (i) airway hyper-responsiveness (AHR) (ii) percent-predicted 

forced expiratory volume in one second/forced vital capacity ratio (FEV1/FVC), and (iii) 

FEV1/FVC post-bronchodilator were identified and their discriminatory ability assessed. 

Metabolite set enrichment analyses was applied to explore the biology underlying these 

relationships.

Results—AHR was associated (p<0.05) with 91 of 574 metabolites (15.9%), FEV1/FVC pre-

bronchodilator with 102(17.8%), and FEV1/FVC post-bronchodilator with 155 (27.0%). The 

findings suggest these characteristics capture some common and some distinct phenotypic aspects 

of lung function; glycerophospholipid, linoleic acid and pyrimidine metabolism were common to 

all three characteristics. The corresponding metabolomic profiles showed moderate but robust 

discriminatory ability.
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Conclusions—The results confirm the existence of an asthma severity metabolome. However, 

differences in the metabolomic profiles of the three lung function characteristics studied, suggest 

that refinement of both phenotype classification and metabolite selection should be a priority as 

the field of asthma metabolomics progresses.
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Introduction

The worldwide public health burden of asthma continues to increase [1]. Asthma and related 

disorders are among the most common chronic diseases in industrialized countries[2–7] 

affecting 26 million U.S. children and adults[8]. Yet the development of novel therapeutics 

to treat asthma has not kept pace with the increase in its prevalence. One of the bottlenecks 

in the progress of such therapeutic advances is an incomplete understanding of the 

pathophysiology of asthma. Asthma is a heterogeneous syndrome encompassing a number 

of different subtypes and multiple phenotypic aspects, complicating the interpretation of its 

underlying biological mechanisms. New approaches are required to address this.

High-throughput omics technologies including epigenetics, genomics, transcriptomics, 

proteomics and metabolomics represent a novel opportunity to explore the biology of 

asthma. Metabolomics; the systematic study of all the small molecules in a biological 

system, reflects the genome, the transcriptome and the proteome as well as their interactions 

with the environment. Thus it can provide an integrated and global profile of a system in a 

dysregulated state [9–11]. Metabolomics is increasingly being recognized as a valuable tool 

to identify biomarkers along a pathogenic pathway and to understand the biological 

mechanisms driving that pathway. Asthma is a complex disease with both environmental and 

genetic influences which are as yet not fully understood [12]. As such, it is particularly well 

suited to metabolomic profiling, both for the development of novel biomarkers and for the 

improved understanding of pathophysiology. However, to date, metabolomic studies of 

asthma remain limited and methodologically heterogenous. Despite promising findings there 

are currently no clinically translatable biomarkers of this disorder [13]. Further work in this 

area is required.

The aim of this study was to identify metabolites and metabolomic profiles that distinguish 

children with asthma by their degree of lung function, and to explore the biology underlying 

these profiles. This study is nested within the ‘Genetic Epidemiology of Costa Rica’ 

Cohort’. Elucidating the biological mechanisms driving different phenotypic aspects of 

asthma severity in children will assist the development of strategies for improved 

management and treatment, helping to ease the global burden of this disorder.
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Methods

Study Population

The ‘Genetic Epidemiology of Asthma in Costa Rica’ cohort is based within a Hispanic 

population isolate from the Central Valley of Costa Rica with one of the highest prevalences 

of asthma worldwide (24% in children) [14]. From February 2001 to August 2008, screening 

questionnaires were sent to the parents of children aged 6–14 years who were enrolled in 

140 Costa Rican schools. Children were eligible for the study if they had asthma and a high 

probability of having ≥6 great-grandparents born in the Central Valley of Costa Rica. 

Asthma was defined by physician-diagnosis and ≥2 respiratory symptoms or asthma attacks 

in the prior year. A total of 439 unrelated children with asthma and their parents were 

willing to participate in the study. All participating children completed a protocol including 

questionnaires, assessment of airway responsiveness to methacholine and spirometry 

conducted with a Survey Tach Spirometer. The questionnaire was a slightly modified and 

translated version of the one used in the Collaborative Study on the Genetics of Asthma 

[15]. A subset of 380 children had metabolomic profiling on blood samples provided at 

enrolment. Written parental and participating child consent was obtained. The study was 

approved by the Institutional Review Boards of the Hospital Nacional de Ninos (San Jose, 

Costa Rica) and Brigham and Women’s Hospital (Boston, Mass, USA).

Metabolomic profiling

Metabolomic profiling methods have been published previously [16] and are described in 

detail in the supplementary methods. Briefly, profiling was conducted at the Broad Institute 

(Massachusetts Institute of Technology, Cambridge, MA, USA) using four liquid 

chromatography-tandem mass spectrometry (LC-MS) methods to measure complementary 

sets of metabolite classes: (1) HILIC-positive platform: Amines and polar metabolites that 

ionize in the positive ion mode using hydrophilic interaction liquid chromatography (HILIC) 

and MS analyses; (2) HILIC-negative platform: Central metabolites (i.e. metabolites central 

to the normal physiological processes of a biological system) and polar metabolites that 

ionize in the negative ion mode using HILIC chromatography with an amine column and 

targeted MS; (3) C8-positive platform: Polar and non-polar lipids using reversed phase 

chromatography and full scan MS; (4) C18-negative platform: Free fatty acids, bile acids, 

and metabolites of intermediate polarity using reversed chromatography with a T3 UPLC 

column (C18 chromatography) and MS analyses in the negative ion mode.

Reference and internal samples were analyzed to confirm LC-MS system sensitivity, 

chromatography quality, and as a quality control check during the analyses. A pooled 

reference sample was analyzed throughout the analytical run as an additional quality control 

measure and to serve as reference for scaling raw LC–MS peak areas across sample batches.

Features with a signal-to-noise ratio <10 were and those which were undetectable/missing 

for >10% of the samples were excluded All remaining missing values were imputed with the 

median peak intensity for that feature. Features with a coefficient of variance in the quality-

control samples greater than 25% across all batches were excluded to ensure good technical 

reproducibility. All features were then log transformed to normalize them and pareto-scaled 
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to reduce the variation in fold change differences between them, and to make the effect 

estimates for each feature comparable. Features were indexed by their mass-to-charge ratio 

(m/z) and retention time (rt) and metabolite identities were confirmed using known 

standards. The analyses presented here were restricted to those features that could be 

annotated to metabolites using these known standards.

Statistical analysis

To assess different aspects of asthma severity, three clinical characteristics were studied (i) 

airway hyper-responsiveness (AHR, measured as a 20 percent decrement in FEV1 after the 

administration of <= 16.8mg/ml of methacholine), (ii) pre-bronchodilator lung function, as 

measured by percent-predicted forced expiratory volume in one second/forced vital capacity 

ratio (FEV1/FVC), and (iii) FEV1/FVC post-bronchodilator (summarized in Table 1).

Metabolite features were analyzed as measured LC-MS peak areas, which are proportional 

to feature concentration. For each endpoint a partial least squares discriminant analysis 

(PLS-DA) model was utilized to determine the combined ability of the measured metabolites 

to predict that endpoint using MetaboAnalyst v.2.5 (http://www.metaboanalyst.ca/). 

FEV1/FCV ratios were dichotomized above and below the median. A seven-fold internal 

cross-validation procedure was implemented to guard against model over-fitting, and the 

overall significance of the model’s discriminatory ability was evaluated using permutation 

testing.

Independent generalized regression models adjusting for age at metabolomic profiling and 

gender were constructed to identify metabolites associated with the three endpoints of 

interest; FEV1/FVC ratios were treated as continuous variables and AHR as a binary 

variable. The ability of the significant metabolites to distinguish children by asthma severity 

was assessed using a Receiver Operator Characteristic (ROC) curve analysis. For each 

endpoint a baseline model including age and gender was compared to a model including a 

summary score for the metabolites identified at a threshold of p<0.05, p<0.01, p<Bonferroni.

Finally, metabolite set enrichment analyses (MetaboAnalyst v.2.5[17]) was applied to the 

metabolites found to be associated with each endpoint in order to explore the biology 

underlying these relationships. The hypergeometric test was specified for the over-

representation analysis and relative-betweenness centrality for the pathway topology 

analysis.

Results

The baseline characteristics of the study population are described in Table 1. Metabolomic 

profiling of plasma samples was available for 380 children. The mean age was 9.1 years 

(SD: 1.8 years), 59.5% were male and all were Hispanic. The majority of children were 

defined as mild to moderate asthmatics; 91% were on some form (inhaled or oral) of regular 

treatment for the control of chronic symptoms.
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Metabolomic profiling

Metabolite profiling data were available from four platforms which generated a total of 

18,062 metabolite features (Figure 1), after data processing and QC 8185 metabolite features 

remained. Of these 8185 features, 574 could be annotated to known metabolites using 

authentic reference standards and were included in these analyses.

When including all metabolites the metabolomic profiles showed poor discriminatory ability 

under the PLS-DA analysis after seven-fold internal cross-validation (Table 2). The R2 and 

Q2 metrics were <0.1 for all three endpoints. FEV1/FVC ratios performed slightly better 

than AHR and permutation testing confirmed that these models were robust. The metabolites 

with the largest Variable Importance in the Projection (VIP) values for the first component 

are shown in Table 2

To refine the ability of the metabolomics profiles to distinguish between children with based 

on their degree of severity logistic regression models were run adjusting for gender and age 

at expression profiling. AHR was associated (p<0.05) with 91 metabolites (15.9% of 

annotated metabolites), FEV1/FVC pre-bronchodilator with 102 (17.8%), and FEV1/FVC 

post-bronchodilator with 155 (27.0%). At the most stringent Bonferroni corrected 

significance threshold, FEV1/FVC post-bronchodilator retained the largest number of 

significant metabolites (n=11, (1.9%)) (Table 2). Overall there was considerable crossover 

between the three clinical characteristics; AHR shared 24 common metabolites with both 

FEV1/FVC endpoints (pre- and post-bronchodilator), and pre- and post-bronchodilator 

FEV1/FVC showed almost identical metabolomic signatures, incorporating 97 common 

metabolites. The top metabolites for each metabolite included those with the highest VIP 

scores in the PLS-DA analysis, strengthening the evidence for a relationship with asthma 

severity.

The inclusion of a summary score based on the first principal component of the significant 

metabolites for each endpoint resulted in an area under the curve (AUC) for that endpoint 

that outperformed a baseline model including only age and gender (Table 2). Discriminatory 

ability varied depending on the threshold used to classify a metabolite as ‘significant’ and 

therefore the number of metabolites included in the profile. For AHR the metabolite model 

significantly outperformed baseline when using a classification of p<0.05 (AUC [95%CI] 

0.652 [0.589, 0.716], p=0.034) of p<0.01 (0.678 [0.616, 0.740] p=0.006) and of metabolites 

that were robust to Bonferroni adjustment (0.666 [0.05, 0.727], p=0.014). For FEV1/FVC 

although the AUC increased with significance level the model only significantly 

outperformed the baseline when using the p<0.01 (pre: 0.609 [0.552, 0.666], p=0.048, post: 

0.660 [0.605, 0.714], p=0.0004) and Bonferroni adjusted (pre: 0.590 [0.532, 0.648], 

p=0.048, post: 0.671 [0.617, 0.726], p=0.0004) metabolites.

To assess the influence of potential confounders that may be related to lung function in 

children a fully adjusted logistic regression model additionally including BMI, smoke 

exposure (in utero or during childhood), exercise (ever/never) and asthma treatment regime 

(regular use to control chronic symptoms versus sporadic use for acute symptoms) was run. 

Adjustment for these variables did not alter the findings; the majority of metabolites and 

metabolomics pathways retained significance. This was particularly evident for those with 
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metabolites with the strongest associations (p<0.01). The results of the ROC curve analysis 

were also comparable (supplementary table S1).

Metabolite-set enrichment analysis using MetaboAnalyst [17], which uses a combination of 

over-representation and pathway topology analysis, further supported the notion that 

FEV1/FVC ratio and AHR capture some common and some distinct phenotypic aspects of 

lung function (Figure 1). Among the significant (p<0.05) metabolites of all three variables, 

three pathways were enriched (p<0.05); glycerophospholipid, linoleic acid and pyrimidine 

metabolism. The two measures of FEV1/FVC ratios shared a total of seven common 

pathways; four of these pathways are involved in amino acid metabolism, two in 

carbohydrate metabolism and one pathway; aminoacyl tRNA biosynthesis, in genetic 

information processing. Two pathways; sphingolipid metabolism and D-glutamine/glutamate 

metabolism were specific to AHR, while Pantothenate and CoA biosynthesis was enriched 

only among the FEV1/FVC post BD metabolites.

Discussion

Asthma has doubled in prevalence during recent decades and is among the most common 

chronic diseases in industrialized countries [1]. New approaches for the identification of 

novel biomarkers and therapeutic targets that reflect the heterogeneity of asthma are 

necessary. This requires a greater understanding of the biology underpinning this 

heterogeneity. One such approach is metabolomics. Asthma represents a particularly 

interesting disorder for the application of metabolomics, given the interplay between 

genetics and environment in its etiology, and the somewhat limited understanding of its 

pathophysiology. In this study a comprehensive analysis of the association between the 

metabolome and three different measures of lung function was conducted in a large well 

characterized cohort of Costa-Rican children with asthma. The pathways and metabolites 

highlighted in this study will serve as a critical foundation for the improved understanding of 

asthma biology and the identification of potential biomarkers of severity and therapeutic 

targets.

There was considerable crossover in terms of the significantly associated metabolites 

between the three investigated clinical characteristics of asthma Pre- and post- 

bronchodilator FEV1/FVC and AHR. Pre- and post-bronchodilator FEV1/FVC showed 

almost identical metabolomic signatures; the majority of the constituent metabolites were 

amines, a metabolite class consistently linked with asthma [18–20]. Thiamine, which can 

trigger allergic reactions [21], and creatinine, a break down product of creatine which 

exacerbates lung inflammation [22], were among the top metabolites for all three outcomes. 

The results also support the reported role of myristic acid, oleic acid and carnitines in 

asthma [23, 24]. Yet there was also evidence that the metabolomic profile for AHR, a 

composite variable incorporating airflow obstruction, hyper-responsiveness, and 

inflammation, included aspects distinct from the FEV1/FVC signatures, which reflect mainly 

airflow obstruction. The majority of the AHR-associated metabolites were polar and non-

polar lipids, in agreement with previous evidence demonstrating altered lipid profiles in 

asthmatics [25]. Succinate, Alanine and Phenyalanine which have been reported to be 
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associated with asthma and asthma related outcomes in multiple studies and multiple 

biological media [13] were only significantly associated with FEV1/FVC.

Metabolite-set enrichment analysis using MetaboAnalyst, which uses a combination of over-

representation and pathway topology analysis, further supported the notion that FEV1/FVC 

ratio and AHR capture some common and some distinct phenotypic aspects of lung 

function. Three pathways, relating to lipid and nucleotide metabolism, were enriched among 

the metabolites identified as significantly associated with all three asthma endpoints. A 

number of these pathways and their constituent metabolites have been previously associated 

with asthma endpoints [20, 26–28]. It is hypothesized they may be involved in the overall 

asthmatic phenotype through broad mechanisms such as the mediation of the inflammatory 

response, oxidative stress and alterations in the cellular energy requirements of activated 

inflammatory cells. Conversely other pathways were only associated with single clinical 

characteristics, such as sphingolipid metabolism and AHR. This is in agreement with 

previous evidence specifically linking sphingolipids and sphingolipid metabolism to airway 

hyperactivity [29]. FEV1/FVC pre- and post- bronchodilator shared eight pathways, however 

there were still some differences both on a metabolite and pathway level, suggesting that 

responsiveness to bronchodilators may also be reflected in the metabolome.

The ability of metabolites to classify asthmatic children by lung function was assessed using 

both PLS-DA models and ROC curve analysis. When all metabolites were included, the 

PLS-DA model indicated that discriminatory ability was poor, reflecting the broad range of 

the metabolome that can be captured by metabolomic profiling. This metabolome is 

sensitive to both internal and external influences that may be unrelated to asthma status and 

therefore any asthma-severity signal is weak. Conversely when a metabolite summary score 

based on metabolites shown to be associated with asthma status was created, ROC curve 

analysis demonstrated that this had moderate to good discriminatory ability using, which 

outperformed a baseline model. With further refinement such profiles may support the 

development of asthma biomarkers as the field progresses. Crucially, sensitivity analyses 

demonstrated these results were not confounded by any of the environmental factors studied.

Asthma metabolomics studies to date report encouraging results including biologically 

plausible metabolites and metabolomic pathways associated with the development and 

manifestation of asthma. However, validation of most of these findings is lacking. This may 

in part be due to the heterogeneous nature of asthma which could lead to incomparable study 

populations when a single definition of asthma is utilized. These findings suggest that 

different phenotypic aspects of asthma and asthma severity may be reflected by different 

aspects of the metabolome. Consequently asthma metabolomics studies must consider the 

heterogeneity of asthma, it must include detailed phenotypic information on the asthma 

population studied and it must include a broad range of the metabolome. This study is 

among the first studies to utilize metabolomics to explore different measures of asthma 

severity, and adds to the growing body of literature on asthma metabolomics. This study was 

conducted within the ‘Genetic Epidemiology of Asthma in Costa Rica’ study; a highly 

homogeneous cohort with consistent and controllable environmental exposures, detailed 

clinical information, and minimal population stratification. Four metabolomic profiling 

platforms were utilized providing broad coverage of the metabolome.
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However there were some limitations to these analyses. Only a percentage of the metabolite 

ion features could be annotated and studied. It is likely that there are additional metabolites 

and therefore pathways involved in the clinical manifestations of asthma which could not be 

identified here. Given the highly dimensional nature of metabolomics false positives are also 

possible and a number of the findings would not be robust to correction for multiple testing. 

However, many false discovery rate methods are considered too stringent for metabolomics 

analysis, due to the high correlation and redundancy between metabolite features, and there 

is a lack of agreed standards in the field to deal with this issue [30].

Conclusions

These results further confirm the existence of an asthma severity metabolome in children 

that can be measured and interrogated to provide further information on the biology and 

mechanistic pathways underlying lung function in asthma. However, further refinement and 

validation of this metabolome is still required. The differences in the metabolomic profiles 

of the three lung function characteristics studied emphasizes the need to carefully consider 

the phenotypic measures of asthma severity used to characterize asthmatics and asthma 

subgroups, in order to best capture the phenotypic heterogeneity of this disorder. The fact 

that the models for FEV1/FVC ratio displayed differing discriminatory ability that those for 

AHR, may again reflect the diverse nature of the AHR outcome, which encompasses 

multiple aspects of airway disease that may be associated with different dysregulated 

metabolomic pathways. The variation in the discriminatory ability of the models when 

varying p-value thresholds were used to determine a ‘significant’ association further 

emphasizes the importance of determining the correct metabolites with which to build 

metabolomic models.

The findings suggest that novel methods to explore both phenotype and metabolite selection 

should be a priority as the field progresses, in order to develop novel and better targeted 

management and treatment strategies that can address the significant and growing public 

health burden of asthma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors wish to thank the participants of the Genetic Epidemiology of Asthma in Costa Rica Study, and all 
those involved in conducting the study. The Genetics of Asthma in Costa Rica Study was supported by grants 
HL066289 and HL04370 from the U.S. NIH. Dr. Celedón’s contribution was supported by grants HL117191 and 
HL119952 from the U.S. NIH.

Funding

The Genetics of Asthma in Costa Rica Study was supported by grants HL066289 and HL04370 from the U.S. NIH. 
Dr. Celedón’s contribution was supported by grants HL117191 and HL119952 from the U.S. NIH. The funding 
bodies played no role in the study design in the collection, analysis and interpretation of data; in the writing of the 
report; or in the decision to submit the article for publication.

Kelly et al. Page 8

Biochim Biophys Acta. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abbreviations

AHR Airway hyper-responsiveness

AUC Area under the curve

FEV1/FVC Percent-predicted forced expiratory volume in one second/forced vital 

capacity ratio

LC-MS Liquid chromatography tandem mass spectrometry

PLS-DA Partial Least Squares-Discriminant Analysis

QC Quality Control

ROC Receiver operator characteristic

TCA cycle tricarboxylic acid
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Highlights

• The metabolome can be interrogated to inform on the biology underlying lung 

function in asthma

• Different aspects of lung function relate to different metabolic pathways

• Developments in the field are necessary before clinical translation is possible
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Figure 1. Metabolic pathways that were significantly enriched (p<0.05) among the metabolites 
significantly associated with three phenotypic aspects of asthma
For AHR- analysis conducted on 91 metabolites; for %prd FEV1/FVC pre-BD 102 

metabolites and for %prd FEV1/FVC post-BD 155 metabolites

Kelly et al. Page 13

Biochim Biophys Acta. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kelly et al. Page 14

Table 1

Baseline and clinical characteristics of 380 children with asthma

Variable Asthmatic Children (n=380)

Gender Male (%) 226 (59.5%)

Age at baseline [yrs] mean (range) 9.1 (4.5, 13.3)

Age at asthma onset [yrs] mean (range) 2.3 (0.0, 10.0)

AHR to Methacholine <=16.8 Yes (%) 236 (62.1%)

% predicted FEV1/FVC Ratio pre-bronchodialator mean (range) 97.5 (69.9, 113.7)

% predicted FEV1/FVC Ratio post-bronchodialator mean (range) 100.3 (73.5, 113.7)

Receiving regular treatment for asthma symptom controla Yes (%) 346 (91.1%)

BMI mean (range) 18.2 (11.3, 41.4)

Smoke exposure (in utero or during childhood) Yes (%) 116 (30.5%)

Exercise Ever (%) 302 (79.5%)

a
defined as regular use of inhaled or oral medication for the control of asthma symptoms
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Table 2

Metabolites significantly associated with three lung function outcomes in 380 asthmatic children at varying 

significance levels and the ability of these metabolites to distinguish asthmatic children by lung function

Airway hyper- responsiveness 
to metacholine

%Predicted FEV1/FVC pre 

bronchodilatora
%Predicted FEV1/FVC post 

bronchodilatora

PLS-DA model (1st component)

 R2 0.05 0.06 0.06

 Q2 0.004 0.01 0.02

 Permuted p-value 0.531 0.025 0.006

 Top Ten Metabolites with the 
highest VIP score

Thiamine; 
Glycoursodeoxycholate; 

gamma-linolenic acid; C4-OH 
carnitine; palmitoleic acid; 

myristic acid; 
Taurohyodeoxycholate/

Tauroursodeoxycholate; CMP; 
Taurocholate; oleic acid

1-Methoxy-1H-indole-3- 
carboxaldehyde; Calystegine A6; 

Proline betaine; C50:1 TAG; 
Uracil; Glycolithocholate; 

creatinine; C44:0 PG; (ent-2b,4S,
9a)- 2,4,9-Trihydroxy- 10(14)-

oplopen-3- one 2-(2- 
methylbutanoate) 9- (3-
methyl-2E- pentenoate); 

Taurocyamine

(2E,6E)-2,6- Nonadienal; 
Thiamine; C50:1 TAG; 1-
Methoxy- 1H-indole-3- 

carboxaldehyde; TAG source 
fragment; Taurocyamine; 
C44:0 PG; C36:4 DAG; 

Taurocholate; C56:1 TAG

Regression modelb (n(%))

 <0.05 91(15.9%) 102 (17.8%) 155 (27.0%)

 <0.01 31(5.4%) 64 (11.1%) 71 (12.4%)

 <bonferroni 1 (0.2%) 8 (1.4%) 11 (1.9%)

ROC curve analysis (AUC (95% 
CIc )

 Baseline <0.05 0.585 (0.520, 0.651) 0.545 (0.487, 0.603) 0.526 (0.468, 0.585)

 metabolites <0.01 0.652 (0.589, 0.716)* 0.603 (0.546, 0.660) 0.590 (0.532, 0.648)

 metabolites <bonferroni 0.678 (0.616, 0.740)* 0.609 (0.552, 0.666)* 0.602 (0.545, 0.659)*

 metabolites 0.666 (0.605, 0.727)* 0.660 (0.605, 0.714)* 0.671 (0.617, 0.726)*

a
For the regression analyses FEV1/FCV ratios were treated as continuous variables, for the PLS-DA and ROC curve analyses FEV1/FCV ratios 

were dichotomised at the median

b
adjusting for age and gender; a logistic model was used for AHR and a linear model for FEV1/FVC ratios

c
A baseline model including age and gender was compared to a model including a summary score for the metabolites identified at a threshold hold 

of p<0.05, p<0.01, p<Bonferroni.

*
indicates whether the models including the metabolite summary score perform significantly better than the baseline model
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