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Abstract

Despite its simplicity and noninvasiveness, the use of the electrogastrogram (EGG) remains 

limited in clinical practice for assessing gastric disorders. Recent studies have characterized the 

occurrence of spatial gastric myoelectric abnormalities that are ignored by typical approaches 

relying on time-frequency analysis of single channels. In this paper we present the high-resolution 

(HR) EGG, which utilizes an array of electrodes to estimate the direction and speed of gastric 

slow-waves. The approach was verified on a forward electrophysiology model of the stomach, 

demonstrating that an accurate assessment of slow-wave propagation can be made. Furthermore, 

we tested the methodology on eight healthy adults and calculated propagation directions (181 ± 29 

degrees) and speeds (3.7 ± 0.5 mm/s) that are consistent with serosal recordings of slow-waves 

described in the literature. By overcoming the limitations of current methods, HR-EGG is a fully 

automated tool that may unveil new classes of gastric abnormalities. This could lead to a better 

diagnosis of diseases and inspire novel drugs and therapies, ultimately improving clinical 

outcomes.

Index Terms

EGG; electrophysiology; gastric myoelectric activity; medical signal processing; multi-channel; 
slow-waves; smooth muscle; stomach; wave propagation

I. Introduction

Electrogastrography (EGG) is a noninvasive technique for recording the gastric myoelectric 

activity using electrodes placed cutaneously on the abdominal surface overlaying the 

stomach. The simplicity and safety of EGG make it attractive for diagnosing abnormalities 

in gastric motility. Spectral analysis of individual EGG channels have previously been used 
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to quantify anomalies. Normal EGG readings have traditionally been defined as 

demonstrating a 2–4 cycles/minute frequency for at least 70% of the recording [1]. 

Moreover, the amplitude of the signal increases after meal ingestion for normal subjects, 

reflecting a postprandial increase in the electromechanical activity of the stomach [1]. EGG 

irregularities, including bradygastria, tachygastria, and concurrent loss of signal amplitude 

increase with meal ingestion, have been reported in patients with nausea and vomiting [2], 

dyspepsia [3], [4], gastroparesis [5], and motion sickness [6].

There have been contradictory reports in the literature about the correlation between EGG 

parameters and abnormalities in gastric emptying. Some investigations have reported no 

relation [7], while others have reported a strong positive correlation [8]. Overall, normal 

EGG does not assure normal gastric emptying (sensitivity < 50%), but an abnormal EGG 

may predict delayed gastric emptying (specificity 78%–92%) [9]. In other words, while 

subjects with an abnormal EGG typically have delayed gastric emptying, there are patients 

with a normal EGG who can still have slow emptying. This limitation is an important reason 

why EGG has not been widely adopted clinically.

High-resolution electrical mapping during surgery has recently been carried out to 

understand normal gastric slow-wave activity [10]. This technique involves positioning a 

spatially dense electrode array directly on the surface of the stomach to allow for the 

recording and reconstruction of patterns of electrical activation [11]. The finding for normal 

subjects, in brief, was that the gastric slow-waves originate in the pacemaker region of the 

corpus, quickly form circumferential bands around the stomach, propagate slowly in the 

axial direction, and eventually terminate in the pylorus. Due to the slow speed of 

propagation, multiple wavefronts typically exist on the stomach surface at any given time.

Using the same technique, the researchers also evaluated the gastric slow-waves in subjects 

with gastroparesis [12] and chronic unexplained nausea and vomiting [13] in order to define, 

quantify, and classify abnormalities with spatiotemporal detail. They observed aberrant 

initiation and conduction of the slow-waves, which occasionally led to premature 

termination and colliding wavefronts. The crucial finding was that half of the subjects 

exhibited spatial abnormalities that occurred at the normal 3 cpm frequency. This suggests 

that single channel EGG recordings are unable to detect such abnormalities. Results from a 

recent study [14] further emphasize this point by modeling both normal slow-wave 

propagation and a conduction block resulting in colliding wavefronts. It revealed that a 

single channel EGG recording on the abdominal surface would be unable to detect the 

irregularity.

There have been attempts at extracting EGG spatial information from multiple surface 

electrodes in the past [15], [16]. By placing four electrodes along the axis of the stomach, 

the amount of frequency coupling between channels can be evaluated, with the notion that 

coupling between channels reflects normal wave propagation. This method, however, does 

not measure true wave propagation and therefore does not accurately estimate propagation 

velocity. Moreover, this approach is dependent on the placement of electrodes, particularly 

the reference. If the reference electrode is positioned in a region with strong gastric signal, 
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phase shifts will not be observed. Given the amount of inter-subject variability in stomach 

anatomy, standardizing electrode placement becomes challenging [17], [18].

In addition to the potentials recorded by surface electrodes in the EGG, the gastric electrical 

currents also produce a magnetic field that can be measured with a magnetometer, known as 

the magnetogastrogram (MGG). The relationship between the EGG and MGG is analogous 

to that of the electroencephalogram (EEG) and magnetoencephalogram (MEG) utilized for 

studying the activity of the brain. The MGG has been used to detect gastric slow-wave 

frequency and propagation with promising results [19], [20]. A key feasibility distinction 

between the two modalities is that the MGG requires measuring the signal with large, 

expensive equipment in a controlled environment, while the EGG has the potential for 

ambulatory monitoring [21].

Herein, we address the spatial limitations of the EGG by presenting the high-resolution 

electrogastrogram (HR-EGG), a method for determining gastric slow-wave propagation 

direction and speed from an array of skin-mounted electrodes.

II. Methodology

A. Spatial Sampling

In order to accurately map the potentials on the abdominal surface, the layout and size of the 

electrodes need to be considered. The abdominal surface potential is a continuous field that 

is discretely sampled at each electrode location. The recorded potentials are a smeared 

version of the current sources generated by the interstitial cells of Cajal on the stomach 

surface. This is due to the conduction of the signal through the tissue (i.e. fat, muscle, and 

skin) separating the electrodes and the source. While volume conduction limits the spatial 

resolution of HR-EGG compared to serosal recordings, it makes it feasible to discretely 

sample the abdominal potentials. The separating tissue acts as a natural anti-aliasing spatial 

filter, enabling accurate sampling of the potentials with a reasonable number of electrodes 

[22].

The discrete sampling of continuous time-series data has been well-characterized [23]. The 

key concept is the Nyquist criterion, which states that for lossless digitization, the sampling 

rate should be at least twice the maximum frequency (i.e. fs > 2fmax, where fs is the 

sampling rate and fmax is the maximum frequency of the signal). Once a time series has been 

aliased, there is no signal processing technique that can recover the lost information.

The Nyquist criterion for temporal sampling also applies to spatial sampling. The density 

and measurement area of the electrodes dictate the highest spatial frequency that can be 

detected without spatial aliasing. The electrode is an analog filter that eliminates spatial 

frequencies with wavelengths shorter than its measurement diameter [22]. This is due to fact 

that the electrode averages the potentials within the region that is in contact with the gel or 

measurement area. Consider an array of electrodes that have uniform center-to-center 

spacing d and electrode diameter D. Applying the Nyquist criterion to the edge-to-edge 

distance between neighboring electrodes results in the following constraint:
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d − D <
λmin

2 (1)

where λmin is the shortest spatial wavelength of the signal [22].

The electrode spacing and measurement area is determined by a lower bound for the spatial 

wavelength of the cutaneous wave, which can be estimated by considering its slowest speed 

and highest frequency (λ = speed/freq). We assume that the slowest physiological serosal and 

cutaneous speeds are equivalent. After applying the appropriate values from the literature for 

healthy subjects (1.5 mm/s, 0.06 Hz) [10], the minimum spatial wavelength (λmin) of the 

cutaneous wave is calculated to be 25 mm. Therefore, to ensure that no spatial aliasing 

occurs, the edge-to-edge distance between electrodes should be less than 12.5 mm (λmin/2). 

We chose an electrode diameter D of 11 mm with a center-to-center spacing d of 20 mm, 

which results in an edge-to-edge distance of 9 mm to satisfy this condition.

B. Surface Laplacian

Typically, biopotentials are recorded with a differential amplifier, where the desired signal 

appears as a voltage between two input terminals. Differential amplifiers are able to reject 

the common mode signal from various sources of interference, yielding improved signal 

quality. A consequence of this recording scheme is that the local potentials are not 

accurately depicted. The surface Laplacian can provide a more realistic representation of 

local source distributions compared to conventional bipolar recordings by removing the 

effects of the reference electrode and eliminating volume conducted signals from distant 

regions [24]. The surface Laplacian has previously been applied for ECG mapping to 

provide better spatial resolution and resolve depolarizations in different regions of the heart 

[25]. The surface Laplacian has also been shown to be more robust to ECG and respiratory 

interference when recording small intestine electrical activity [26].

The surface Laplacian is the second spatial derivative of the surface potential estimated on 

the surface of a geometry that passes through the electrode locations. For a voltage Φ on a 

planar surface, it is defined by the expression:

∇S
2(ΦS) = ∂2Φ

∂x2 + ∂2Φ
∂y2 (2)

A simple nearest-neighbor method of estimating the surface Laplacian of EEG data was first 

published in 1975 by Hjorth [27]. This approach used a finite-difference approximation for 

the second spatial derivative of the scalp potential by averaging potential differences 

between a central and four surrounding electrode locations. Although there have been many 

advances since the first paper, the finite-difference approximation is practical and easy to 

implement.
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The original method was improved by including eight electrodes positioned radially with 

respect to the central electrode position [28]. Involving a larger number of electrodes 

improves the possibility of obtaining a good approximation. Before averaging, the potential 

difference is divided by the corresponding electrode distance in order to represent the 

gradient. This is calculated using the following equation:

v0 = P0 − 0.15 (P1 + P2 + P3 + P4) − 0.1 (P5 + P6 + P7 + P8) (3)

where, P0 is the potential measured at the central electrode, and P1 to P8 are the potentials 

measured at the radially neighboring electrodes, as seen in Fig. 1. The weighting coefficient 

for each of the surrounding electrodes is proportional to the reciprocal of its distance to the 

center electrode. The method described by (3) was used as a pre-processing step before the 

estimation of wave propagation.

C. Wave Estimation

Motivated by a realistic, multi-scale model of EGG [29], we expected coherent spatial 

propagation of the surface potential in healthy subjects. We implemented a technique 

originally developed to compute the 2D component velocity from image sequences [30] to 

estimate features of stomach wave propagation on the abdominal surface. By using a data-

driven approach that evaluates the temporal evolution of constant phase spatial contours, 

strong underlying assumptions are not made of the spatial properties of the cutaneous 

potentials.

Here, we provide the framework which forms the basis of the algorithm. The Hilbert 

transform is first applied to the surface Laplacian estimate at each electrode location (x, y), 

resulting in a characterization of instantaneous amplitude a (x, y, t) and phase φ (x, y, t):

V (x, y, t) + iHb [V (x, y, t)] = a (x, y, t) eiφ(x, y, t) (4)

In biological signals, contours of constant phase provide a better approximation to the 

motion field compared to those of constant amplitude, since the amplitude of the signal is 

proportional to the distance of the recording electrode to the source. Surfaces of constant 

phase satisfy the equation:

φ (x, y, t) = c, c ∈ ℝ (5)

By assuming that the constant phase surfaces move along the motion field, we can 

differentiate the phase with respect to time using the total derivative:

dφ
dt = ∇φ · v + ∂φ

∂t = 0 (6)
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where ∇φ is the spatial gradient of the instantaneous phase, v = dx
dt , dy

dt  is the wave velocity, 

and “·” represents the dot product operator. Since the phase gradient is parallel to the 

velocity direction, the speed can be calculated as:

speed (t) = ‖v (t)‖ = ∣ ∂φ
∂t ∣

‖∇φ‖
(7)

where for any z ∈ ℝn, ||z|| represents the 2-norm and z̄ indicates the spatial average (i.e. 

across all electrodes) at a given time. The wave direction is then computed by:

direction (t) = ang (∇φ) (8)

where ang(·) is the element-wise arc tangent, choosing the quadrant correctly.

A quantity called phase gradient directionality, PGD (t), is defined as a measure of how well 

the phase gradients align across the array [31]:

PGD (t) = ‖∇φ‖ ‖∇φ‖ (9)

PGD can take on values between 0 and 1, where 0 represents phase gradients that are 

randomly distributed and a value of 1 signifies perfect spatial alignment.

Estimates at time points when the PGD is less than 0.5 are typically ignored, since velocity 

is only well-defined when phase gradients are coherent across the array [31]. With a small 

number of sensors, it is possible that the PGD can be greater than 0.5 by chance, even when 

a spatial wave does not exist. We generated independent, identically distributed (i.i.d.) white 

Gaussian noise on a 3 by 3 sensor array across time (i.e. no spatial wave present) and 

evaluated the false positive rate of the PGD being greater than 0.5 by coincidence. Without 

an additional minimum duration constraint, up to a 50% of the samples would be considered 

to be a wave (see Fig. 2). By further imposing criteria that the PGD must be above 0.5 for a 

certain duration of time, the likelihood of false positives can be drastically reduced. We 

defined a sustained wave as one having a PGD greater than 0.5 for at least 2 seconds, since 

the false positive rate for noise with this specification is near zero (see Fig. 2). Values of 

wave propagation direction and speed in this paper are reported for instances that meet these 

criteria.

III. Experimental Methods

A. Model

A forward electrophysiology model of stomach was used to validate the wave estimation 

methodology. For simplicity, we ignored circumferential propagation of the serosal slow-

wave and solved the following 1D wave equation using a finite difference approach:
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∂2u
∂t2

= c (x)2∂2u
∂x2 (10)

where c(x) is the wave speed that depends on the location on the stomach surface. Gaussian 

pulses with a width of 35 mm were generated every 20 seconds (0.05 Hz) in the pacemaker 

region of the stomach, as illustrated in Fig. 3. The pulse width, in addition to the 

modulations of its speed and amplitude along the organoaxial direction of the stomach, were 

chosen to be consistent with the most recent description in the literature for healthy subjects 

[10]. Both the speed and amplitude were highest in the pacemaker region (6.0 mm/s, 0.57 

mV), followed by a reduction in the corpus (3.0 mm/s, 0.25 mV), and finally increased in the 

antrum (5.9 mm/s, 0.52 mV). Mur’s boundary condition was used to ensure the pulses were 

absorbed into the pylorus rather than being reflected back into the stomach. The Courant-

Friedrichs-Lewy condition dictated the temporal step-size to guarantee a converged finite-

difference solution. We expanded the 1D serosal solution onto a 2D mesh to match a 

realistic geometry of the stomach, using anatomical and physiological parameters described 

previously (see Fig. 3) [32].

The cutaneous potentials are essentially a weighted summation of the serosal slow-wave at 

every time point. Due to the electrical properties of physiological systems, a quasi-static 

assumption can be made even though the sources are time-varying [33]. By further assuming 

a volume that is linear, homogenous, and isotropic, the potential φ at a field point (x′, y′, z′) 
due to a volume current source density Iv (x, y, z) is given by [34]:

φ (x′, y′, z′) = 1
4πσ∼∫

v

Iv (x, y, z)
r dv (11)

where, σ̃ is the conductivity and r is the Euclidean distance between the source point and the 

field point. The primed variables refer to the points on the abdominal skin while the 

unprimed variables correspond to those on the stomach surface. We chose a conductivity of 

0.125 S/m, which is halfway between the mean conductivities of fat and the human trunk 

[33], the two primary constituents separating the stomach and skin. The distance r depends 

on the stomach size and abdominal thickness, which was chosen to be 4 cm. The simulated 

cutaneous potentials were computed at locations that matched our experimental electrode 

layout (5 by 5 grid, 2 cm center-to-center electrode distance, 95 mm2 electrode measurement 

area). Fig. 3 depicts the stomach anatomy and its relation to the electrode configuration used 

in the forward model.

B. Experimental Protocol

Ethical approval for this work was obtained from the institutional review board at the 

University of California, San Diego. Eight healthy subjects (5 male, 3 female, age = 26 ± 4 

years, BMI = 22 ± 3) without gastrointestinal symptoms or discomfort participated in the 

study. Subjects were asked to fast overnight prior to the recording. Any excess abdominal 
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hair was removed and the skin was prepped with NuPrep® to reduce electrode contact 

impedance. Conventional pre-gelled Ag-AgCl electrodes with a 95 mm2 measurement area 

were placed on the abdominal surface using anatomical landmarks for consistency between 

subjects. The array was horizontally centered on the subject’s midline and the top row was 

positioned 5 cm below the xiphoid. The electrodes were arranged in a 5 by 5 square grid 

with a 2 cm center-to-center electrode distance, as seen in Fig. 4. The middle electrode of 

the array was assigned as the reference and the ground electrode was placed on the right hip 

bone. The BrainProducts BrainAmp 32ch EEG amplifier was used to acquire the signals at a 

sampling rate of 250 Hz. The test meal was a 250 kcal nutrient bar (CLIF Bar®: 5g fat, 45g 

carbohydrate, 10g protein, 7g fiber) along with 8 ounces of room temperature water. The 

duration of the recording was 30 minutes pre-prandial and 60 minutes post-prandial. The 

subjects sat in a comfortable recliner angled at 45 degrees and were asked to limit talking 

and bodily movement throughout the recording.

C. Data Preprocessing

Prior to wave estimation, the signals recorded from each electrode were down-sampled to 5 

Hz and then bidirectionally filtered to avoid phase distortion using a finite impulse response 

band-pass filter with pass-band frequencies between 0.015 and 0.15 Hz. The surface 

Laplacian was then calculated at each interior electrode location using (3).

IV. Results

A. Simulated Data

To determine if the surface Laplacian method alters the estimates of direction and speed, we 

generated signals using a forward model with known parameters, as described in Section III. 

The signals were subtracted from the center electrode to replicate the use of a reference 

electrode in the experimental recording. The surface Laplacian was then calculated and the 

output was used to verify that the wave-estimation algorithm can estimate the correct 

direction and speed.

The simulation results are shown in Fig. 5. The voltages from three select simulated 

electrode sites from the horizontal axis illustrate the wave propagation across the array. The 

wave estimation algorithm outputs direction, speed, and PGD for every time point in the 

simulation, which is also displayed in Fig. 5. The average estimated direction (187 degrees) 

and speed (5.3 mm/s) match the model parameters. PGD is greater than 0.9 for all the time 

points, indicating phase gradients with near perfect spatial alignment.

B. Experimental Data

By generating a series of time snapshots, a sample wave can be visualized (Fig. 6). In the 

time window shown, the wave originated on the right side of the array and propagated 

slowly to the left at a speed of approximately 4 mm/s. The snapshots display local potentials 

as calculated by the surface Laplacian, which are spatially interpolated for better 

visualization. The amplitude of the signal was about 100 μV, as indicated by the color bar.

Gharibans et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A two-minute segment of the surface Laplacian time series from three electrodes parallel to 

the wave propagation direction is displayed in Fig. 7. A phase delay between the electrodes 

that is characteristic of wave propagation indicated by a black dotted line. The output of the 

wave estimation algorithm is also displayed with a shared time axis. The instantaneous wave 

direction and speed estimates for sustained waves are displayed in blue, while time points 

not meeting the sustained wave criteria are red. Sustained waves are defined as having a 

PGD greater than 0.5 for least 2 consecutive seconds. The waves in this two-minute window 

have a bearing of 180 degrees relative to the positive x-axis at a speed of about 4 mm/s. 

Time-points between subsequent slow-waves typically had lower PGD values did not meet 

the sustained wave criteria, indicated by the dots approximately every 20 seconds in Fig. 7. 

The data used to visualize the wave propagation in Fig. 6 corresponds the data from the 30–

50 second interval in Fig. 7. Note the start and end of a representative slow-wave is observed 

about 30 and 50 seconds, respectively.

To quantitatively confirm that the gastric electrophysiology was the source for the 

coordinated spatial activity, we computed the mean PGD as a function of frequency, as 

shown Fig. 8. The plot was constructed by calculating the average PGD for the dataset after 

applying various band-pass filters (bandwidth = 0.04 Hz) that swept through a frequency 

range from 0.02 to 0.17 Hz. The peak PGD value in this case occurred at 0.05 Hz, which 

corresponds to the normal stomach slow-wave frequency [1].

Histograms of wave direction, speed, and PGD reveal overall distributions of the wave 

propagation parameters for the entire recording (Fig. 9). Only time points of direction and 

speed during sustained waves were used to generate the histograms. For this particular 

subject, the waves propagated at 186 ± 27 degrees (subject’s left to right) and 3.2 ± 0.9 

mm/s throughout the recording. An average phase map was also computed for sustained 

waves by spatially unwrapping the phase at each time point and then subtracting the phase 

value of a reference electrode at that time prior to averaging (Fig. 9b). The white arrow 

shows the direction of propagation, which is along the negative phase gradient. Fig. 9c and 

Fig. 9d capture the variability in the wave parameters throughout the recording.

Wave propagation was observed in all eight of the subjects. Summary statistics for the 

various wave parameters are shown in Table I. The mean wave direction and speed for all the 

subjects were 181 ± 29 degrees and 3.7 ± 0.5 mm/s, respectively. On average, 41% of the 

time points met the sustained wave criteria. There were no statistically significant 

differences in slow-wave propagation between male and female subjects. To quantify that 

the observed wave phenomna were not be generated by noise, we designed the test statistic 

as the fraction of time that the PGD is greater than 0.5 for 2 seconds or longer. With 

generation of i.i.d. white Gaussian noise, we used a non-parametric bootstrapping method to 

develop the distribution of the test statistic under the null hypothesis. Examples of the false 

positive rate of i.i.d. white Gaussian noise are shown in Fig. 2. With this, we calculated a p-

value using the histogram from the bootstrap, which was less than 10−4 for all subjects.

A commonly reported EGG metric, the percent of 2–4 cycles/minute activity, is also shown 

in Table I. This value was calculated by generating a spectrogram (4 minute windows, 75% 

overlap) using the short-time Fourier transform of a single bipolar channel with the strongest 
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gastric signal for each subject, and evaluating the percentage of time the dominant frequency 

was within the 2–4 cpm range. A value over 70% is indicative of a normal EGG, and all the 

subjects were above 95%.

V. Discussion

The optimal number and layout of the electrodes remains an open question that deserves 

further attention. We note that strict application of the Nyquist criterion requires a priori 
knowledge of the spatial spectra along with the source distributions. Such information is not 

generally available, in part because knowledge of an adequate number of electrodes for the 

gastric signal would first require oversampling of the potential distribution to determine the 

highest spatial frequencies present in the data.

There may be concern that propagation of the potential from the source to the electrode may 

lead to phase delays that distort the estimated wave parameters. It has been shown that a 

quasi-static assumption can be made to describe the potential field in the human body [33]. 

Since the capacitive component of the tissue impedance is negligible in the frequency range 

of internal bioelectric events, electromagnetic propagation effects can be neglected. This 

allows us to make true gastric slow-wave speed estimates.

The surface Laplacian is critical in resolving the reference issue and yielding local potentials 

that can be used to estimate wave propagation. The signal recorded at an electrode position 

is a spatial average of the active current sources within the volume. The signal depends on 

several factors, including the volume geometry and conduction properties, as well as the 

location of the reference electrode. Each current source contributes to the signal based on its 

orientation, strength and electrical distance to the electrode. Two nearby electrodes record 

similar signals since they record the average activity in overlapping volumes of tissue. The 

surface Laplacian effectively reduces the volume that each electrode averages, culminating 

in improved spatial resolution [24]. The surface Laplacian emphasizes superficial localized 

sources, while suppressing deep sources along with shallow sources that are widespread and 

coherent. This property allows us to detect accurate gastric slow-wave propagation from the 

abdominal surface.

In this paper, we calculated the surface Laplacian using a finite-difference approach. Other 

surface Laplacian estimation methods have been developed for the brain that fit surface 

potential maps to spline functions [35] and incorporate more realistic scalp surfaces using 

MRI [36]. We investigated the use of more sophisticated surface spline Laplacian 

derivations, but did not observe any significant differences in the wave estimation 

parameters. Unlike the scalp, our electrode configuration for the stomach is fairly planar and 

therefore the finite-difference method was chosen for its simplicity.

Although our forward model had simulation parameters such as propagation speed and 

electrode location chosen to mimic the physiology and experimental recordings, it had 

several simplifying assumptions. In particular, we applied a 2D approximation of the 

stomach geometry and did not incorporate the ionic components of smooth muscle cells and 

the interstitial cells of Cajal. Nonetheless, our findings verify that the wave speed and 
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direction can be accurately estimated, and that the surface Laplacian does not distort the 

estimation of wave parameters.

It is well established that the normal gastric slow-wave frequency in humans is between 0.04 

and 0.06 Hz [1]. Selectively band-pass filtering the signal to narrow 0.04 Hz bands and 

sweeping across frequencies enabled us to confirm that the peak wave detection occurred at 

0.05 Hz. The average PGD was used as a metric to identify when waves were present, since 

a higher PGD indicates the presence of waves. The peak of the PGD spectrum occurred near 

0.05 Hz for all subjects, confirming that the stomach was the source of the detected wave 

propagation described in this manuscript.

Gastric contractions are initiated and coordinated by slow-wave activity, and the results from 

this study generally agree with existing descriptions of human gastric motility. MRI studies 

of contraction wave propagation in healthy stomachs have demonstrated a contractile 

displacement rate between 1.8–2.7 mm/s [37], [38], [39]. Using invasive serosal electrical 

measurements, O’Grady et al. observed a mean slow-wave propagation speed of 8.0 mm/s in 

the pacemaker region, a drop to 3.0 mm/s in the corpus, followed by an increase to 5.7 mm/s 

in the antrum for normal subjects [10]. The average speed recorded in our study was 3.7 

± 0.5 mm/s. The variability for each subject can be seen Table I, with the distribution for a 

representative recording shown in Fig. 9d. These results suggest that the HR-EGG reflects 

slow-wave activity in both the corpus and antrum, which is where most spatial abnormalities 

have been detected during invasive recordings [12], [13]. Higher gastric slow-wave speeds of 

7.4 mm/s were reported in a recent MGG study for normal subjects [20]. Further 

investigations are required to resolve the differences between these modalities.

An important consideration is that the stomach is a three-dimensional organ, and its angle of 

elevation relative to the plane of the electrode array may skew the results. Also, no obese 

(BMI > 30) subjects participated in this study. It is possible that a significant amount of fat 

tissue separating the stomach and electrodes will present a challenge in detecting wave 

propagation. A future study that includes imaging and/or modeling is required to determine 

how an individual’s stomach and torso anatomy affects the speed estimated from electrodes 

placed on the abdominal surface.

The slow-wave direction estimates in our study were consistent with the expected stomach 

orientation. Although there is a considerable amount of inter-subject variability, the stomach 

typically lies in the left superior quadrant, terminates across the median line and can descend 

below the plane of the umbilicus [40]. The average gastric slow-wave direction for our 

subjects was 181 ± 29 degrees, consistent with the aforementioned anatomical description. 

Nonetheless, a study with stomach localization relative to the electrodes can more 

quantitatively confirm that our direction estimates align with the principal stomach axis in 

normal subjects.

The slow-wave propagation was detected in both the fasting and post-prandial states for all 

the subjects in our study. There were no significant differences in the speed and direction of 

the waves in the two states. We chose a 250 kcal nutrient bar along with eight ounces of 

water since that is similar to the standardized meal given with tests of gastric motor function. 
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Further investigation is necessary to determine the consequence of test meals with different 

volume and composition on wave propagation parameters.

Traditional EGG spectral analysis relies on using large windows of the recording (typically 4 

minutes), due to the slow nature of the signal. This can be limiting, since gastric 

electrophysiological abnormalities may occur at a shorter time scale. Estimating the wave 

properties at every time sample, as shown in Fig. 7, allows for the detection of instantaneous 

episodes of abnormalities. Moreover, the methodology described in this manuscript is fully 

automated and not susceptible to human bias. The summary statistics for wave direction, 

wave speed and PGD in Table I demonstrate that the HR-EGG can be used to estimate the 

gastric slow-waves properties for normal subjects. Statistical signal processing, including 

state space models, can be used in the future to describe the dynamics of wave propagation 

across time.

There appears to be a trend towards portable, noninvasive systems that quantify 

gastrointestinal function, such as technology to extract gastric motility information from 

finger photoplethysmographic signals [41] and ingestible wireless motility capsules that 

measures whole gut transit times [42]. Synergistic with this theme, there have been recent 

developments in demonstrating thin, flexible, and stretchable skin-mounted electronics that 

can measure a multitude of electrophysiological signals [43], as well as developments in 

improving reliability, latency, and cost associated with the microfabrication procedures 

needed to build such systems at scale [44]. The maturation of these technologies, in parallel 

with developments in analytical methods such as the HR-EGG, will enable improved 

unobtrusive quantification of the state of the gastrointestinal system in health and disease.

VI. Conclusion

In this manuscript, we outline a methodology for noninvasive estimation of gastric slow-

wave propagation called the HR-EGG. This approach builds on recent findings 

demonstrating that gastric slow-wave spatial abnormalities can go undetected by traditional 

single channel recordings. Our proposed technique does not depend on the placement of the 

reference electrode and is fully automated. For the first time, to our knowledge, we are able 

to generate estimates of slow-wave propagation direction and speed at each time point using 

surface electrodes. Improved spatially detailed analysis of propagating gastric myoelectrical 

events will facilitate better understanding of the pathophysiology of gastric dysrhythmias 

among patients with motility disorders. This in turn will create opportunity for interventions 

to reduce gastric dysrhythmic activity and improve symptoms.
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Fig. 1. 
Schematic used to illustrate the eight neighboring electrodes that are used to calculate the 

finite-difference surface Laplacian. The source activity is within a measurement area 

centered at electrode P0.
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Fig. 2. 
The false positive rate of white Gaussian noise being classified with PGD greater than 0.5 as 

a function of minimum sustained wave duration. The different lines indicate independent 

simulations.
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Fig. 3. 
(a) Plot of stomach anatomy and electrode configuration used for the forward model. The 

black circles represent electrodes (5 by 5 array). The blue line corresponds to the location of 

the 1D serosal solution that is expanded to a 2D mesh to match the stomach geometry. The 

pacemaker (P), corpus (C), and antrum (A) regions of the stomach are labeled. (b) Time 

snapshots over a 16 second period for the 1D serosal solution are shown. The pulses are 

generated in the pacemaker (P) region, have a decreased speed and amplitude in the corpus 

(C) followed by an increase of both in the antrum (A), and eventually terminate in the 

pylorus.
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Fig. 4. 
Depiction of electrode configuration on the abdominal surface. Electrodes are disposable 

pre-gelled Ag-AgCl electrodes with 95 mm2 measurement area and 2 cm center-to-center 

spacing. The middle of the array is selected as the reference and the ground electrode is 

placed on the right hip bone.
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Fig. 5. 
Results from a 60 second simulation of cutaneous potentials from the forward model on a 5 

by 5 array. (a) The voltage from three channels with a dotted black line illustrating wave 

propagation. (b) Estimate of wave direction (mean: 187 degrees) and (c) speed (mean: 5.3 

mm/s). (d) The PGD is above 0.9 throughout the simulation.
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Fig. 6. 
Individual time snapshots of the voltages for a 20 second segment from Subject 1. Voltage is 

presented in white-blue color (blue representing positive voltage) and time (in seconds) is 

labeled above each plot. The snapshots are interpolated for visualization purposes. This 

particular wave took approximately 20 seconds to propagate across the array at about 180 

degrees relative to the positive x-axis.
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Fig. 7. 
(a) Voltages of three channels from a 120 second segment of from Subject 1 data. Wave 

propagation observed by the phase delay between the channels is depicted by the black 

diagonal dotted line. A plot is shown the (b) direction, (c) speed, and (d) PGD as computed 

by the wave estimation algorithm at every time point. A PGD threshold is used to detect 

sustained waves (above 0.5 for at least 2 seconds). Blue indicates a sustained wave while red 

is used for points that do not meet the criteria.
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Fig. 8. 
PGD as a function of frequency for the band-pass filtered data (bandwidth 0.04 Hz) from 

Subject 1. The star indicates the maximum PGD, which is at 0.05 Hz
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Fig. 9. 
(a) A histogram of the PGD values from every time point throughout the recording for 

Subject 1. (b) The mean phase map, computed using the instantaneous phase for time points 

meeting the sustained wave criteria. The white arrow indicates the propagation direction of 

the waves based on the direction of the negative phase gradient. (c) Polar histogram showing 

the estimated direction of propagation for sustained waves. (d) Histogram of the estimated 

speed for sustained waves.
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TABLE I

Wave propagation and EGG parameters across subjects

Subject Wave Direction (degrees) Wave Speed (mm/s) Sustained Waves (%) % 2–4 cpm

1 - M 186 ± 27 3.2 ± 0.9 53* 99.4

2 - F 156 ± 29 4.8 ± 1.6 57* 100

3 - F 185 ± 40 3.4 ± 1.3 43* 98.9

4 - M 173 ± 35 3.6 ± 1.4 32* 98.9

5 - M 182 ± 48 3.8 ± 1.6 34* 96.6

6 - F 131 ± 48 3.2 ± 1.3 33* 96.6

7 - M 224 ± 44 4.0 ± 1.3 36* 98.9

8 - M 211 ± 35 3.9 ± 1.4 36* 100

Average 181 ± 29 3.7 ± 0.5 41 ± 10 98.7 ± 1.4

*
p-value < 10−4

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 December 09.


	Abstract
	I. Introduction
	II. Methodology
	A. Spatial Sampling
	B. Surface Laplacian
	C. Wave Estimation

	III. Experimental Methods
	A. Model
	B. Experimental Protocol
	C. Data Preprocessing

	IV. Results
	A. Simulated Data
	B. Experimental Data

	V. Discussion
	VI. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	TABLE I

