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Tuberculosis (TB) still represents an important issue for public health in underdeveloped countries, but the use of antitumor
necrosis factor agents (anti-TNF) for the treatment of inflammatory rheumatic disorders has reopened the problem also in
countries with low TB incidence, due to the increased risk of TB reactivation in subjects with latent tuberculosis infection
(LTBI). Over the last 5 years, several non-anti-TNF-targeted biologics have been licensed for the treatment of rheumatoid
arthritis, ankylosing spondylitis, and psoriatic arthritis. We reviewed the epidemiology of TB, the role of different cytokines and
of the immune system cells involved in the immune response against TB infection, the methods to detect LTBI, and the risk of
TB reactivation in patients exposed to non-anti-TNF-targeted biologics. Given the limited role exerted by the cytokines different
from TNF, as expected, data from controlled trials, national registries of biologics, and postmarketing surveillance show that the
risk of TB reactivation in patients receiving non-anti-TNF-targeted biologics is negligible, hence raising the question whether
the screening procedures for LTBI would be necessary.

1. Introduction

Antitumor necrosis factor-targeted agents (anti-TNFs)
infliximab and etanercept were licensed around 20 years
ago, and over the following years, other anti-TNFs such as
adalimumab, golimumab, and certolizumab pegol were
approved. These drugs have changed the natural history of
inflammatory rheumatic disorders including rheumatoid
arthritis (RA), ankylosing spondylitis (AS), and psoriatic
arthritis (PsA), with good control of symptoms and arrest
or lowering of the disease progression. Nevertheless, it has
long been recognized that the anti-TNFs are associated with
increased risk of reactivation of latent tuberculosis infection
(LTBI) [1–4].

In recent years, non-anti-TNF-targeted biologics, includ-
ing anti-interleukin- (IL-) 1 anakinra (ANK), IL-6 inhibitor
tocilizumab (TCZ), anti-CD20 rituximab (RTX), anti-CD28
abatacept (ABA), anti-IL-12 and IL-23 (UTK), and anti IL-
17 secukinumab (SCK), were licensed for the treatment of
RA (ANK, TCZ, RTX, and ABA), AS (UTK), and PsA
(UTK and SCK). Since the use of ANK in RA is actually
very limited due to its lower efficacy as compared with that
of other biologics, data on TB risk associated with this
biologic, previously discussed elsewhere [5], were not
included in this manuscript.

The aim of this paper was to assess the tuberculosis (TB)
risk in patients with rheumatic diseases receiving non-anti-
TNF-targeted biologics. Moreover, the epidemiology of TB
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and the role of different cytokines (TNF-α, IL-6, IL-17, IL-12,
and IL-23) in immune response against Mycobacterium
tuberculosis (MTb) were reviewed.

2. Methods

A systematic review of the literature using PubMed database
was performed to identify English-language articles related to
all clinical trials and data from postmarketing surveillance
and from national registries of currently employed non-
anti-TNF-targeted biologics for rheumatic diseases to iden-
tify all cases of TB complicating the underlying rheumatic
disease course. Data were extracted from phase II- and III-
randomized controlled trials of at least a 12-week duration,
their extension phase studies, and from prospective, open-
label studies focused on the efficacy and safety of each drug.
In addition, available data from biologic national registries,
national healthcare databases, and postmarketing surveil-
lance surveys were included. Reviews andmeta-analyses were
excluded. In the absence of data from registries and postmar-
keting surveillance, single-case reports of TB occurrence
during the treatment with the most recent biologics were
included. The following drugs were investigated: TCZ, RTX,
ABA, UTK, and SCK. The research was performed by cross-
ing the single drug with the following key terms: epidemiol-
ogy, TNF-α, IL-6, IL-17, IL-12, IL-23, latent tuberculosis
infection, tuberculosis, infections, comorbidities, and safety.
The number of publications, the type of trial, the number of
enrolled patients, the number of TB cases, and, when
possible, the setting where TB cases occurred were recorded
for each biologic. Moreover, the most relevant literature on
TB epidemiology, immune mechanisms against TB infection,
and methods to detect LTBI was reviewed. The literature
review was extended to December 31, 2016.

3. Results

3.1. Epidemiology of TB in Different Countries. TB is still a
leading cause of morbidity and mortality in the world [6],
accounting for about 10.4 million new cases and 1.4 million
deaths annually. Of note, more than two thirds of the global
TB burden is reported in Africa and Asia, and in absolute
terms, six countries accounted for 60% of the new cases:
India, Indonesia, China, Nigeria, Pakistan, and South Africa.
The poorest and socially excluded groups own the largest
burden of disease emphasizing the need to invest on the
management of the social determinants of health through
poverty reduction measures and targeted interventions on
high-risk populations.

The spread of multidrug-resistance TB requires special
attention [7] and highlights the need to foster research on
TB diagnostics, new drugs, and vaccines [8]. Although
many advances have been made in the fight against TB over
the last twenty years, a lot is still needed to achieve global
elimination [8–11].

3.2. Role of Different Cytokines (TNF-α, IL-1, IL-6, IL-17, IL-
12, and IL-23) in Immune Response against MTb. Although
many components of the host immune response against

MTb are known, the specific biomarkers and mechanisms
underlying protective immunity remain obscure [8, 12, 13].
In addition to host and environmental factors, the genetic
variation in MTb also plays a role in the clinical phenotypes
of TB [14]. However, little is known about the interaction
between human and MTb genetic diversity, and it has been
argued that new paradigms and new conceptual frameworks
are required to better understand and ultimately better
control TB globally [15].

Upon MTb infection, active TB develops in some
patients, whereas others contain the initial infection, and
the disease is considered latent (asymptomatic). Among those
latently infected, 5 to 10% will progress to active TB. Current
understanding suggests that in subject with LTBI, which are
estimated to be one fourth of the world’s population [16],
the infection is controlled by an active host immune system,
whereas in patients with active TB, there is an uncontrolled
bacterial growth due to an ineffective immune response
which relies on the cooperation between innate and adaptive
immunity. Until recently, LTBI was thought to represent a
uniform state. However, it has become clear that LTBI has
to be considered as a broad spectrum of infection states that
differ by the degree of the pathogen replication, host resis-
tance, and inflammation [17–19]. Although the immune sys-
tem controls the infection, this control does not necessarily
lead to sterilization. Once MTb is in the macrophages, the
protective immune response against mycobacteria is depen-
dent on the interaction between these host cells and CD4+ T
cells. T cell-mediated immune response begins after the dis-
semination of MTb to the lymph nodes [20, 21]. Here, the
antigen-specific T cells proliferate and then migrate to the
infected lungs where they are found, together with other
leukocytes, as part of the granulomas. Several distinct types
of T helper (Th) cells (Th1, Th2, Th17, and regulatory T cells)
are present at the site of infection.

The main Th1 cytokines are interferon-γ (IFN-γ), IL-12,
and TNF-α. IFN-γ is mainly produced by the CD4 T cells
whereas IL-12 and TNF-α by the antigen presenting cells
(APCs). Th1 cells play an essential role in MTb control
through the IFN-γ secretion enhancing the macrophage
microbicidal mechanisms because they activate signaling
pathways that include the inducible nitric oxide synthase
(iNOS) pathway [22] and induce the process of acidification
and maturation of phagosomes and autophagy [23–26]. IFN-γ
is crucial for the defense against MTb. Individuals with muta-
tions in the IL-12/IFN-γ axis develop disseminated infection
caused by BCG or nontuberculous species of mycobacteria [27].

Th17 cells are characterized by production of IL-17A/F
and IL-22, have strong proinflammatory capacities, and play
a significant role in mucosal immunity. In animal models of
TB, the presence of Th17 cells was associated with protection,
and removal of IL-17-producing cells enhanced recruitment
of Th1 cells to the lung [28]. IL-17 has been shown to have
a protective immunity against hypervirulent MTb strains
[29]. In addition, the magnitude of the Th17 response was
found to be important, since mice repeatedly exposed to
MTb and BCG developed strong IL-23-induced Th17 cell
responses that became pathogenic rather than protective,
with an IL-17/macrophage inflammatory protein-2- (MIP-2-)
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dependent influx of neutrophils and induction of lung
pathology rather than containment of infection [30].

The crossregulation of Th1 and Th17 populations seems
to be crucial for protection against MTb to reduce the
inflammation-induced damage [31]. It has been shown that
IFN-γ inhibits the production of IL-17 by CD4+ T cells,
reducing the survival of neutrophils and the accumulation
of these cells in infected lungs contributing to a diminution
of the inflammation [32]. These data suggest that IFN-γ
appears to limit the population IL-17-producing cells.

Despite the important role of IFN-γ, IL-12, and IL-17 in
the fight against MTb, several studies based on the knockout
mice model have shown that also TNF-α, granulocyte-mac-
rophage colony-stimulating factor (GM-CSF), IL-1, and
IL-6 are crucial components of MTb control growth [33].

In particular, TNF-α has been associated with the
maintenance of granuloma integrity, and changes in its levels
have been correlated with disease susceptibility both in
experimental models and in human patients [34–37]. In fact,
TNF-α acts synergistically with IFN-γ to stimulate the pro-
duction of nitric oxide (NO) by macrophages and influences
the expression of chemokines, such as CCL5, CCL9,
CXCL10, and CCL2, which induce migration to and mainte-
nance of immune cells in the infection site [38].

IL-1β is essential for host resistance to MTb, as shown in
the murine model in which IL-1β decreases MTb replication
activating the innate antimicrobial activity through the
recruitment of TNF, upregulation of cell surface TNFR
expression, and caspase-3 activation [39]. Moreover, IL-1β
contributes to the host protection against MTb through the
induction of PGE2 synthesis regulating in this way also its
own production. In particular, PGE2 decreases type I IFN
response [40] which is increased in active TB [41] and it is
a down modulator of IL-1 secretion in addition to other
cytokines required for effective MTb clearance (i.e., IL-12
and TNF-α [42, 43]).

IL-6 has both pro- and anti-inflammatory properties
and it is involved in the Th17 and Th22 cell differentiation
both important for antimycobacterial activity [44, 31]. It is
produced early during mycobacterial infection and is
involved in macrophage and cytotoxic T-cell differentia-
tion [45]. Lethal TB has been described in IL-6-deficient
mutant mice [46].

As summarized in Figure 1, immune protection against
TB depends on several immune components. Here, we
analyzed mainly the crossregulation of Th1 and Th17 popu-
lations and the production of TNF-α, IL-12, IL-1, and IL-6 as
important players in TB control.

3.3. Review of Methods to Detect LTBI: Sensitivity, Specificity,
Confounding Factors, and Limits. From an operational point
of view, LTBI is defined as a state of persistent immune
response to MTb antigens detected either by the tuberculin
skin test (TST) or by IGRA without evidence of clinically
manifested tuberculosis. Therefore, LTBI subjects carry an
increased risk of progression to TB which is augmented in
LTBI individuals with immune impairment as HIV coinfec-
tion [47] or therapies with TNF-α inhibitors [1, 3, 48, 49]
or other immune regulators used for inflammatory diseases

and transplantation [50] or compromised immunity due to
noncommunicable diseases, such as type 2 diabetes [51, 52].

The TST and IGRA tests are based on immunological
sensitization to mycobacterial antigens. TST response is
quantified by the skin induration resulting from intradermal
injection of purified protein derivative (PPD), a crude mix-
ture of antigens, many of which are shared by MTb,M. bovis,
Bacillus Calmette et Guérin (BCG) and several species of
environmental mycobacteria. Blood-based IGRA, including
QuantiFERON TB Gold In-Tube (Qiagen; QFT-GIT) and
T-SPOT.TB (Oxford Immunotec), measures in vitro IFN-γ
production upon antigen stimulation of the whole blood by
enzyme-linked immunosorbent assay (ELISA) or peripheral
blood mononuclear cells (PBMC) by enzyme-linked immu-
nospot (ELISPOT) assay, respectively [53]. The specificity
of these assays is due to the stimulation with peptides
spanning MTb antigens ESAT-6, CFP-10, and TB7.7 for
QFT-GIT that are restricted to a region of the MTb genome
deleted fromM. bovis Bacillus Calmette et Guerin and which
is not present in most environmental mycobacteria [54–57].

Advantages of IGRA are due to the fact that they require
only a single laboratory test with negative and positive
controls and only one visit. Moreover, the in vitro tests may
distinguish true negative responses from anergy [53].
Recently, an updated version of the QFT-GIT has been
launched [58]. The QuantiFERON TB Plus includes an addi-
tional antigen tube to QFT-GIT, which contains peptides
that are intended to specifically induce a CD8 T-cell response
in addition to the CD4 T-cell response [59] detected with the
original QFT-GIT assay [59, 60]. The new CD8-specific pep-
tides have been added to increase the sensitivity of the test
because it has been shown that MTb-specific CD8+ T cells
are mainly associated to active TB [61–66]; that, if detected
in LTBI, they are associated with a recent exposure to MTb
[67]; and that they decline after anti-TB treatment [64, 68].
The first data on performance of QuantiFERON TB Plus
were reported recently [69–72].

A new promising test for LTBI detection is the C-Tb [73]
which is a skin test measuring the hypersensitivity to recom-
binant ESAT-6 and CFP-10 proteins following intradermal
administration. The authors claim that it combines the
strengths and advantages of TST and IGRA technologies,
the ease of use and low cost of TST, and a high-specificity
analogous to IGRAs. Another test, based on Rv3615c
encoded outside the RD1 region, has been shown to have
potential as a new T-cell-based immunodiagnostic [74, 75].

Beside the advantages, TST and IGRAs present limita-
tions. They are characterized by low accuracy in immune-
compromised patients and cannot distinguish between LTBI
and active TB disease [53]. The latter is a major issue in TB-
endemic areas and leads to poor predictive value for develop-
ment of TB in persons with LTBI [53, 75, 76]. Therefore, it is
crucial to find biomarkers that can differentiate between
active and quiescent bacterial replication in persons with
LTBI or host markers that identify those with LTBI who are
at risk of developing active disease [62, 77–84].

3.4. Non-Anti-TNF-Targeted Biologics for RA. Table 1 sum-
marized the current licensed biologics for the treatment of
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inflammatory disorders and their action on cells and cyto-
kines of immune response.

3.4.1. Tocilizumab. TCZ is a recombinant, humanised,
monoclonal, anti-IL-6 receptor antibody competing for
both the membrane-bound and soluble forms of human
IL-6 receptor with inhibition of the binding of IL-6 to its
receptors and its proinflammatory activity. The drug, both
for intravenous or subcutaneous administration, is currently
approved combined or in monotherapy for the treatment of
rheumatoid arthritis (RA). The literature search disclosed
30 clinical trials of 15,485 patients with RA with a clinical
observation ranging from 14 weeks to 5 years [85–114].
Notably, in 19 studies, LTBI screening procedures and
TB reactivation prophylaxis were not included in the pro-
tocol as an inclusion criteria [85–104]. Overall, no TB
cases were observed, though the 24-week duration of most
studies may have led to underestimate the occurrence of

active TB. However, also in the long-term trial, active TB
cases did not occur [102, 109–114]. Equally, no TB cases
were recorded in the only one registry of 302 RA patients
treated with TCZ [115].

In a postmarketing Japanese surveillance [116], 4 cases
of active TB were observed in 3881 patients. TB occurred
after with an interval ranging from 24 days to 4 months
after the beginning of TCZ therapy, with an incidence of
0.22/100/year, which is lower than the reported incidence
of 15/100/year in Japan [117].

In the real life, 8 patients receiving TCZ and developing
active TB were reported [118], but all cases were observed
in countries at high TB risk, including Thailand, Spain, South
Africa, Peru, Singapore, Brazil, and Mexico.

To summarize, data on a large number of TCZ
exposed from clinical trials indicate a very low or absent
risk of TB reactivation. Sporadic cases reported from the
daily clinical practice occurred in high TB risk countries,
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Figure 1: Schematic representation of the immune cells involved in Mycobacterium tuberculosis infection. Distinct types of T helper (Th)
cells as Th1, Th2, Th17, and regulatory T cells (Treg) are present at the site of Mycobacterium tuberculosis (MTb) infection. These cells
exert their functions mainly through soluble factors. In particular, Th1 cells producing IFN-γ play an essential role in MTb clearance
enhancing the macrophage microbicidal mechanisms through the activation of the iNOS pathway and the induction of phagosomes
acidification, maturation, and autophagy. Moreover, tumor necrosis factor- (TNF-) α, produced by antigen presenting cells (APCs) after
MTb stimulation, acts synergically with IFN-γ thus contributing to MTb control. APCs produce also interleukin- (IL-) 12 and IL-1β that
are essential for resistance to MTb. Moreover, IL-23 produced by APC induces the differentiation of Th17 cells producing IL-17, IL-17F,
IL-6, and TNF-α. Th17 cells are associated with MTb protection; however, when Th17 cell responses became pathogenic rather than
protective, Th1 cells are induced to stop these dangerous effects. Finally, the role of Th2, Treg, and B-cell subsets in human disease still
remains controversial and needs further elucidations.

4 Mediators of Inflammation



thus raising the concern of a primary TB infection rather
than LTBI reactivation.

3.4.2. Rituximab. RTX is a chimeric mouse-human monoclo-
nal antibody that selectively depletes the CD20+ peripheral
B-cell subpopulation via multiple mechanisms, including
antibody-dependent cellular toxicity, complement-mediated
lysis, and induction of apoptosis [119]. RTX obtained the
FDA approval for the treatment of RA in 2006 at the stan-
dardized dosage of 2 infusions of 1000mg each at a 2-week
interval with retreatment after 6 months. As expected, due
to its B-lymphocytes-targeted action, no cases of active TB
were recorded in 9 RCTs of RTX in a total number of 3623
patients with RA [120–128] and in 9 open-label studies in
1191 patients with the same disease [129–137]. An analysis
of 3194 RA patients recruited in 8 RCTs and 2 long-term
open-label extension trials followed for 9.5 years and receiv-
ing up to 17 RTX courses disclosed 2 cases of active pulmo-
nary TB [138]. Data on the demographic and clinical

features of these 2 patients, concomitant therapies, additional
risk factors for TB, and the country of origin are not avail-
able. Previously, in a survey from the Infectious Diseases
Society of America, members of the Emerging Infections
Network, 3 cases of active TB were reported in patients
treated with RTX, but no further description of these patients
is available [139]. Recently, a nationwide retrospective cohort
study from Taiwan, a country at high TB risk, reported 2
cases of active TB in 763 patients with RA treated with
RTX [140]. These 2 patients had a history of previous anti-
TNF treatment, and active TB occurred after 8 and 10 years
of RTX therapy.

Another case of TB knee arthritis in a 42-year-old woman
patient receiving RTX has been published [141]. This patient
was not screened for LTBI and she was living in Cambodia, a
country at high TB risk.

Confirming the low risk of TB reactivation, no cases of
active TB were observed in 1303 RA patients included in
the French AIR registry who had received at least 2 RTX

Table 1: Immune cells and factors involved in the immunity against tuberculosis. List of some of the biological drugs used in the treatment of
rheumatological disorders that inhibit immune paths.

Cytokine
Producing cell

type
Role in tuberculosis

Biological drug inhibiting
this path

References

IFN-γ T lymphocytes, NK

(1) Activates iNOS pathway
(2) Induces the process of acidification and maturation

of phagosomes
(3) Induces autophagy
(4) Inhibits IL-17 production

[22, 23–26, 32]

TNF-α
T lymphocytes,
macrophages

(1) Maintain of granuloma integrity
(2) Changes in TNF-α levels have been correlated with

disease susceptibility
(3) Acts synergistically with IFN-γ to stimulate the

production of NO by macrophages
(4) Influences the expression of chemokines

Infliximab, etanercept,
adalimumab, abatacept

[34–38]

IL-12
Macrophages,
dendritic cells

(1) Individuals with mutations in the IL-12/IFN-γ axis
develop disseminated infection caused by BCG or
nontuberculous species of mycobacteria

(2) Important for MTb clearance

Ustekinumab [27, 42, 43]

IL-23
Macrophages,
dendritic cells

(1) Mice repeatedly exposed to MTb and BCG
developed strong IL-23-induced Th17 cell pathogenic
responses

Ustekinumab [30]

IL-6
T lymphocytes,
macrophages

(1) Pro- and anti-inflammatory properties
(2) Involved in the Th17 and Th22 cell differentiation
(3) Early produced during mycobacterial infection
(4) Involved in macrophage and cytotoxic T-cell

differentiation
(5) IL-6-deficient mice develops lethal TB

Tocilizumab [31, 44–46]

IL-17 CD4 T cells

(1) Has protective immunity against hyper-virulent
MTb strains

(2) Removal of IL-17-producing cells enhanced
recruitment of Th1 cells to the lung

(3) Has pathogenic role of Th17 cells during chronic
infection with MTb or BCG in mice

Secukinumab [28–30]

IL-1β Macrophages

(1) Decreases MTb replication activating the innate
antimicrobial activity

(2) Induces PGE2 synthesis that leads to a decrease
of type I IFN response

Anakinra

IFN: interferon; TNF: tumor necrosis factor; IL: interleukin; NK: natural killer; iNOS: inducible nitric oxide synthase; NO: nitric oxide; BCG: Bacillus
Calmette-Guérin; MTb: Mycobacterium tuberculosis; Th: T helper; PGE2: Prostaglandin E2.
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courses [142], in 370 patients with different autoimmune dis-
eases in the GRAID registry from Germany [143], in 234 in
Greece [144], while 1 TB case was recorded in 2484 RTX-
exposed RA patients in the German GERINIS registry [145].

The low or absent risk of TB reactivation associated with
RTX administration has been confirmed by two other studies
on 56 RA patients at high TB risk [146] and on patients
previously treated for active TB [142, 147, 148].

In conclusion, in patients with rheumatic diseases
receiving RTX, the TB risk is negligible, and according
to the Rituximab Consensus Expert Committee [149], the
screening procedures for LTBI before therapy starting
seem unnecessary.

3.4.3. Abatacept. ABA is a soluble fully human fusion protein
blocking the activation of T cells by binding with costimula-
tory proteins present on APCs (CD80/86 on APCs and CD28
on T cells) [150]. The drug has been approved for the treat-
ment of RA and it is administered intravenously every 4
weeks at the dose of 10mg/Kg or subcutaneously at a weekly
dose of 125mg.

Though the reduced expression of CD8/CD28 T cells
exerted by ABA may reduce the immune response against
TB infection [151], only 1 case of presumptive active TB
was registered in 17 trials of ABA administered either
intravenously or subcutaneously in 8539 patients with RA
[150, 152–167]. The reported TB case was described in the
3-year-extension phase of the AIM study [168]. An ABA-
exposed 39-year-old woman was diagnosed as having TB
because she was responsive to TB therapy, but bronchial
lavage and biopsy were negative. Two more cases of active
TB were observed in the 5- and 7-year long-term extension
phases of the same trial [169, 170].

Data from real-life practice showed no TB cases in 682
patients included in the ORA French registry [171], and
no single case description of TB in patients treated with
ABA is reported.

More recently, no TB cases occurred in 231 ABA-
exposed patients who were enrolled in a Japanese multicentre
registry [172].

To conclude, active TB in ABA-exposed patients is a rare
event and, far apart, less frequent than that in the general
population, thus suggesting the screening procedures for
LTBI as unnecessary.

3.5. Non-Anti-TNF-Targeted Biologics for PsA and AS

3.5.1. Ustekinumab. UTK is a fully human monoclonal anti-
body directed against the p40 subunit common to IL-12 and
IL-23, thereby blocking the interaction of IL-12 and IL-23
with their cell surface receptors [173]. Consequently, the
inflammatory pathways Th1 IL-12 and Th17 IL-23 depen-
dent, which are strongly implicated in the pathogenesis of
psoriasis and PsA, are inhibited [174]. Based upon 1 phase
II [175] and 2 large phase III trials [176, 177] enrolling a total
of 1073 patients, UTK was approved for the treatment of
PsA. Beyond its efficacy, UTK demonstrated an excellent
safety profile with respect to overall infections. No cases of
active TB were recorded in the 3 trials both in a short-term

period and after 2 years of treatment [178]. Moreover, in a
subanalysis of 5 trials of UTK in psoriasis and PsA, no cases
of active TB developed in 167 patients positive for LTBI
[179]. Confirming the absence of TB reactivation risk, data
from the Psoriasis Longitudinal Assessment and Registry
(PSOLAR), including 3474 patients with psoriasis and PsA
receivingUTK, indicate the absence of TB cases over amedian
follow-up of 1.60 years [180]. Therefore, UTK may ensure an
effective and safe treatment in LTBI-positive PsA patients.

3.5.2. Secukinumab. The results of efficacy and safety from 3
controlled trials of PsA [181–183] and 2 trials of AS
[184, 185], respectively, enrolling a total number 1045 and
620 patients, led to the approval of SCK, a fully humanmono-
clonal antibody targeting and neutralizing IL-17A, for the
treatment of the two rheumatic disorders. No cases of TB
reactivation were recorded, and the same resulted from a
pooled safety analysis of 10 studies of SCK in psoriasis [186].

SCK has been recently marketed and data from real-life
clinical practice are lacking. However, its mechanism of
action and the safety results from clinical studies indicate that
the drug is safe with respect to TB reactivation and may rep-
resent a good therapeutic option in patients with PsA and AS
who are at increased risk of TB.

4. Discussion

Over time, in developed countries, TB has been characterized
by a fluctuating epidemiology with a peak in the 18th and
19th centuries and a progressive reduction of incidence over
the 20th century [187]. A resurgence of the disease was
recorded after the introduction of anti-TNF-α-targeted
therapies for the treatment of RA, PsA, and AS. Indeed,
TNF-α blocking negatively interferes with the TB granuloma
formation and maintenance and the growth of MTb, thus
facilitating the reactivation of TB [4]. The problem was
reduced after the adoption of screening procedures to detect
LTBI; however, an increased risk of TB reactivation in anti-
TNF-exposed patients is still currently observed [4].

During the last 10 years, new inflammatory pathways
sustained by CD20 and CD28 lymphocytes and cytokines
other than TNF-α, including IL-6, IL-12, IL-23, and IL-17,
have been discovered with consequent development of
biologics directed against these new targets.

Theoretically, these new targeted therapies, acting on
cells of cytokines scarcely or not involved in the immune
response against the TB infection, would be safer than
anti-TNFs in LTBI-positive patients with RA, PsA, and AS.
As expected, in our review, we found reassuring data con-
cerning the risk of TB reactivation associated with TCZ,
RTX, and ABA in patients with RA and with UTK and
SCK in those with PsA and AS, respectively. Indeed, only
sporadic cases of active TB, not exceeding the frequency of
the disease in general population, were reported in TCZ-,
RTX-, and ABA-exposed patients with RA, and no cases
were associated with UTK and SCK in patients with PsA
and AS (Table 2). In our opinion, these data greatly influence
the management of patients with RA, PsA, and AS requiring
biologic therapies. Indeed, LTBI positivity represents an
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important variable for choosing the first-line biologic therapy.
Current recommendations suggest anti-TNFs as the first-line
therapy for RA [188, 189], but TB reactivation risk should be
taken into account by clinicians, and in the case of LTBI
diagnosis, a non-anti-TNF-α-targeted biologic would proba-
bly represent the best choice in terms of efficacy and safety.
Other variables should guide the choice among TCZ, ABA,
and RTX, including the need for monotherapy, anticitrulli-
nated protein antibodies positivity, and preferred administra-
tion route by the patient [190].

The 2015 updated Group for Research and Assess-
ment of Psoriasis and Psoriatic Arthritis (GRAPPA) rec-
ommendations for the treatment of PsA and psoriasis
include UTK (SEK was not approved at the time of pub-
lication) among the biological therapies and consider several
variables driving the choice toward an anti-TNF-α as first-
line therapy [191]. However, among the considered variables,
the authors did not include the possibility of patients with a
diagnosis of LTBI. As previously stated in this paper, based
on the absence of evidence of an increased TB reactivation
risk in patients with PsA receiving UTK or SCK, we suggest
to use these non-anti-TNF-targeted biologics as first-line
therapy in PsA patients with LTBI.

The same is true for AS treatment. Despite the recent
SCK approval, current guidelines recommend anti-TNF as
the only choice to treat AS patients with active disease [192,
193] independently on LTBI screening procedures. Nowa-
days, in our opinion, considering the efficacy and safety of
IL-17 inhibition, AS patients with positive LTBI tests should
be treated with SCK as first-line biologic.

5. Conclusion

The availability of non-anti-TNF-targeted biologics has wid-
ened the therapeutic strategies in patients with RA, PsA, and
AS, allowing optimization in the biologic choice of function
of several clinical variables. Among these, the TB reactivation
risk should be assessed in all patients, and in case of positive
results, non-anti-TNF-α-targeted biologics for RA, UTK, or
SCK for PsA, and SCK for AS represent the safest option.
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