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Abstract

Experimentation is at the heart of scientific inquiry. In the behavioral and neural sciences, where 

only a limited number of observations can often be made, it is ideal to design an experiment that 

leads to the rapid accumulation of information about the phenomenon under study. Adaptive 

experimentation has the potential to accelerate scientific progress by maximizing inferential gain 

in such research settings. To date, most adaptive experiments have relied on myopic, one-step-

ahead strategies in which the stimulus on each trial is selected to maximize inference on the next 

trial only. A lingering question in the field has been how much additional benefit would be gained 

by optimizing beyond the next trial. A range of technical challenges has prevented this important 

question from being addressed adequately. The present study applies dynamic programming (DP), 

a technique applicable for such full-horizon, “global” optimization, to model-based perceptual 

threshold estimation, a domain that has been a major beneficiary of adaptive methods. The results 

provide insight into conditions that will benefit from optimizing beyond the next trial. Implications 

for the use of adaptive methods in cognitive science are discussed.

Keywords

cognitive modeling; Bayesian inference; adaptive experiments; dynamic programming; perceptual 
threshold measurement

Experimentation in the behavioral and neural sciences involves the process of presenting 

stimuli to observers and measuring their responses (e.g., categorization, response time, brain 

activity), with the goal of inferring the structural and functional properties of the underlying 

process. The quality of the inferences that can be drawn depends on the quality of the data 

collected. High-quality data, and thus better inference, can be obtained by improving the 
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informativeness of measurement (Myung & Pitt, 2009). This is a constant issue in the 

discipline, where the signal-to-noise ratio in the data can be poor.

One means of improving measurement is by using adaptive data collection methods, in 

which the course of the experiment is tailored to each participant as a function of how that 

participant has responded in preceding trials. Developed under the general rubric of optimal 

experimental design, methods of adaptive design optimization (ADO; also known as 

adaptive measurement, adaptive estimation, and active learning) maximize the efficiency of 

statistical inference across successive observations. ADO, which is commonly formulated 

within the Bayesian inference framework, finds an optimal stimulus for the next trial based 

on observations from past trials. Optimization can be applied to any type of inference, 

whether it be testing a hypothesis or estimating certain quantities (e.g., model parameters), 

and the use of ADO in experimentation is growing in behavioral research (Cavagnaro, 

Gonzalez, Myung, & Pitt, 2013; DiMattina & Zhang, 2011; Klein, 2001; Kontsevich & 

Tyler, 1999; Lesmes, Jeon, Lu, & Dosher, 2006; Rafferty, Zaharia, & Griffiths, 2014; Remus 

& Collins, 2008; Watson & Pell, 1983).

One simple form of ADO, popularized in psychophysics, is the staircase procedure, which 

adjusts stimuli incrementally (e.g., increasing or decreasing stimulus intensity by 

predetermined units) based on the observer’s response (e.g., detecting or failing to detect a 

stimulus). Staircase procedures with various down-up rules have been proposed and their 

properties have been systematically studied (Dixon & Mood, 1948; Kaernbach, 1991; Levitt, 

1971). Other approaches to ADO have used rigorous, statistical criteria for determining 

when to alter the next stimulus (Hall, 1981; Taylor & Creelman, 1967), and precisely how 

much to alter it (Kontsevich & Tyler, 1999; Watson & Pelli, 1983). Perhaps the most 

advanced form of ADO is one that integrates Bayesian sequential inference with information 

theory to achieve the maximum accrual of information about the unknown quantity being 

inferred. On each trial, every stimulus in the experimental design is evaluated on its potential 

informativeness given the data already collected and the objective of the experiment (e.g., 

parameter estimation). The stimulus that is predicted to provide the largest gain in 

information is used on the next trial (Cavagnaro, Pitt, Myung, & Kujala, 2010; Kontsevich & 

Tyler, 1999; Kujala & Lukka, 2006).

By design, adaptive methods involve sequential decision-making. Common among the above 

approaches is that they consider only the dependency between adjacent trials, operating 

under the assumption that accumulated information over the course of the entire experiment 

is optimized by choosing the stimulus that is expected to elicit the most information on the 

next trial. Intuitively, because this one-step-ahead optimization ignores the consequence of 

each choice for trials beyond the next step, it is reasonable to believe that taking such 

consequences into account might further improve the accuracy of inference. Despite 

intermittent explorations of two-step-ahead optimization (Kelareva, Mewing, Turpin, & 

Wirth, 2010; King-Smith, Grigsby, Vingrys, Benes, & Supowit, 1994; Pelli, 1987), this 

conjecture has not been systematically examined, making it a long-standing and unresolved 

issue in the field.
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Researchers, in fact, have studied theoretical properties of adaptive estimation and shown 

that one-step-ahead optimization is asymptotically optimal, meaning that it can be as 

efficient as methods of any look-ahead abilities under a schedule of sufficiently many trials 

(Chaudhuri & Mykland, 1995; Kujala, 2016; Wynn, 1970). However, in situations where 

only a limited number of trials can be administered in practice (e.g., time or cost 

constraints), these theoretical results do not answer the question of how many trials are 

necessary for one-step-ahead optimization to achieve a desired level of precision for a 

certain inference problem. Likewise, the question of how much additional benefit would be 

gained, if any, by optimizing beyond the next trial is difficult to address until the method is 

actually implemented for a particular problem.

The purpose of the present paper is to explore the application of dynamic programming 
(DP), a technique that can be used for planning far ahead into the future, to adaptive 

behavioral experiments for model-based inference. With the help of DP, the present study 

implemented multiple-steps-ahead optimization and examined its performance in a 

commonly encountered, particular context. The estimation of perceptual thresholds was 

chosen as a testbed for the investigation, along with a fully Bayesian implementation of the 

threshold model. Threshold estimation has been a building block in many assessments of the 

health and functioning of sensory systems in clinical and research settings, making the 

performance and utility of adaptive estimation procedures of considerable interest (Klein, 

2001; Leek, 2001).

We perform a simulation study to explore how multiple look-ahead depths (1–100 trials) 

affect parameter inference. The effect of look-ahead depths is examined under two different 

constraints concerning stimulus choice: One represents a common practice of threshold 

estimation as well as the problem analyzed by the current theories of asymptotic optimality, 

and the other induces a condition that would benefit from increased look-ahead depths. 

Implications of results for the use of adaptive methods in general cases, and further 

connections between these results and existing theories, will be discussed.

Dynamic Programming

Since the seminal work by Richard Bellman in the 1950’s (Bellman, 1957), dynamic 

programming has referred to a variety of methods that take advantage of recursive local 

structure in a sequential decision problem to find a globally optimal solution. DP has been 

applied to a wide range of problems that involve making decisions across varying time 

horizons, including operations research, automatic control, artificial intelligence, and 

economics (Bertsekas, 2012; Judd, 1998; Powell, 2011; Sutton & Barto, 1998).

Most DP applications can be conceptualized as shortest-path problems. Consider the 

network of nodes shown in Figure 1. Nodes represent certain states that one should go 

through in the process of solving a problem, such as navigating between cities. Edges 

connecting the nodes represent possible transitions from one state to another, made by the 

problem solver. At any state during the task (e.g., C1–C3), the solver needs to make a 

decision that determines a transition to the next state (D1–D2). The decision should be made 
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carefully because each resulting transition is associated with a cost (e.g., travel time), 

represented by the numbers on the edges of the network.

Suppose that one tries to find the path from the initial state A to the goal state E that incurs 

the smallest global cost (e.g., elapsed time) caused by all required transitions. One approach 

to finding the shortest path is to loop over all possible paths and map all associated global 

costs to identify the smallest one. Such a brute-force method is rarely viable because the 

number of required operations (i.e., determining all costs) grows exponentially as the 

number of decision stages increases, making brute-force computation impractical. With DP, 

in contrast, the number of required operations increases only linearly.

DP achieves a solution by exploiting the problem’s recursive structure in the following 

fashion. It begins in the last stage, either state D1 or D2, where no decision needs to be made 

because there is only one transition for each. The costs associated with states in this stage 

(i.e., 5 for D1 and 2 for D2) are stored in a table. At the second-to-last stage (i.e., C1–C3), the 

optimal decision that leads to the smallest global cost can be made with the stored 

knowledge of possible consequences in the next stage (D). For example, at state C1, one can 

evaluate two alternative transitions, C1→D1 versus C1→D2, by computing their eventual 

costs: 3+5=8 for C1→D1→E and 9+2=11 for C1→D2→E. Obviously, the optimal choice is 

C1→D1 because its global cost is smaller (8 as opposed to 11). In the same way, one can 

determine optimal decisions at each of the remaining possible states in the stage, C2 and C3, 

by comparing the eventual costs of alternative transitions from each. The optimal costs and 

transitions corresponding to each state are stored. Going one step backward (B1–B3), the 

optimal decision can be made, again, by utilizing globally optimal decisions at the 

subsequent stage (C) stored from the previous computation. The results are recorded in the 

same fashion. By carrying accumulated knowledge backward through the transition 

sequence in this manner, a system of sequential decisions is established (i.e., a table of 

optimal decisions and associated global costs at each state). To solve a shortest-path problem 

from any starting state, one simply follows optimal decisions referenced in the system as 

moving forward across stages, the process of which is called forward evaluation (global cost 

of 19 if starting from A; green line in Figure 1).

One may wonder what would be the solution to the shortest-path problem if the one-step-

ahead strategy in conventional adaptive experimentation were applied across all transitions. 

The path generated by seeking the smallest local cost at every transition is shown in red in 

Figure 1, and it does not result in the smallest possible global cost (25 vs. 19).

The procedure of working backward to find the shortest path is known as backward 
induction (Bellman, 1957). Backward induction requires two fundamental assumptions. One 

is that as long as a certain state is reached, the globally optimal decision at that state will not 

be affected by the previous path of transitions. The other is that the global cost of a decision 

at any state must be defined as a function of the local cost due to a transition to an 

immediate, subsequent state and the global cost associated with that (subsequent) state. Put 

another way, the problem must be decomposable into a form in which a local cost of a 

transition and a global cost after it constitute a new global cost at a greater depth. Under 
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these conditions, global optimization can be broken down into recurring local optimization 

problems, as illustrated in the example.

In the above example, note that the solver goes through all possible states to compute and 

store their respective optimal decisions and global costs. This algorithm is known as exact 
DP or exact backward induction. For many problems in practice, however, exact DP 

becomes computationally infeasible when the space of all possible states is large (i.e., high-

dimensional). To overcome this hurdle, either probabilistic methods (estimating globally 

optimal costs by sampling paths of states and decisions) or deterministic methods 

(approximating the state space with simpler representations) are employed. The collection of 

various such techniques has been developed under the rubric of approximate DP (Bertsekas, 

2012; Powell, 2011).

Statistical inference in adaptive experimentation can be implemented as a dynamic program 

in which the goal is to maximize the total inferential gain over all trials, or a set of trials of 

any length. We performed simulations to observe whether and how much savings are 

achieved in perceptual threshold estimation when DP is used and the length of the look-

ahead horizon is varied.

Using DP for Threshold Estimation

In cognitive science, DP has been proposed as a model of ideal, sequential decision-making 

behavior (Busemeyer & Pleskac, 2009; Lee, Zhang, Munro, & Steyvers, 2011), but its use 

for fully Bayesian inference of a probabilistic process model (i.e., sequentially updating the 

entire posterior distribution on each observation) has yet to be explored. Such use of DP 

presents unique computational challenges to overcome, and its implementation for the 

inference of even a very simple model (e.g., with a single parameter) can be highly 

nontrivial. The reason for this is that the posterior distributions of a model parameter 

represent the states of knowledge that a DP algorithm should go through across multiple 

stages (i.e., experimental trials), and the possible posterior distributions grow exponentially 

to a computationally intractable level as data accumulate. Specifically, a major challenge 

that must be overcome in DP implementation is how to characterize all possible posterior 

distributions, which would emerge from each new potential observation, on an approximate 

state space of a manageable size. To describe the problem and our solution to it in context, 

we begin with a brief introduction to model-based perceptual threshold estimation. Readers 

wishing to skip the details of implementation should turn to the section “Simulation 

Experiments.”

Perceptual thresholds are often measured by having participants make one of two response 

alternatives (e.g., did you see a flash of light?) after presentation of a stimulus at a given 

level (e.g., intensity). For the underlying threshold to be measured, it can be treated as the 

location parameter of an S-shaped psychometric function that is to be estimated under 

Bayesian inference. The commonly used log-Weibull psychometric function (Watson & 

Pelli, 1983) has the form
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(1)

which returns the probability of correct detection Ψθ(d) with the input of stimulus intensity 

d given that the underlying threshold is θ. In this particular function, the upper limit (due to 

attention lapse), lower limit (due to guessing), and slope of the function are given some 

assumed values (.98, .5, and 1.5, respectively). Given a stimulus in each trial, a participant’s 

binary response is assumed to be generated from a Bernoulli distribution with its parameter 

(probability of success) governed by the psychometric function. To estimate θ, a diffusely 

dispersed distribution (conventionally, uniform or Gaussian with a large variance) is set as a 

prior belief about θ, and receives Bayesian updating to provide a posterior distribution given 

the observation of responses.

Let us observe the correspondence between this problem of threshold estimation and the 

shortest-path problem described earlier. In threshold estimation, the knowledge states that 

the estimation process should go through across successive trials (stages) are the posterior 

distributions of the threshold θ after observing responses in each trial. The decision to make 

before each trial is the choice of a stimulus to present from a predefined stimulus space 

(usually a discretized continuum of intensities). After observing a response to the chosen 

stimulus, the posterior of θ is updated, or a transition to the next state is made. The reward 
of each transition, rather than the cost in the shortest-path problem, is the improved quality 

of the resulting posterior (e.g., the degree to which the distribution is concentrated on a 

value) relative to that of the previous state. What one wants to optimize globally at the end 

of a measurement session is the quality of the final posterior distribution relative to the prior 

initially set at the start of the measurement session.

A notable difference unique to threshold estimation is that the transition is not determined 

solely by the choice of a decision alternative but also depends on the participant’s response 

which can only be predicted probabilistically. Key to the application of DP, however, is a 

consistent metric for the reward (or cost) of a transition that is assigned to the current, given 

state, not whether the transition is made deterministically to a single state, or 

probabilistically to one of multiple states in the next stage. What is computed and stored in 

each step of backward induction is the global reward and optimal decision based on such a 

metric. Information theory (Cover & Thomas, 2006) provides a theoretically sound metric 

for the quality of Bayesian updating given probabilistic observations.

Within information theory, the amount of knowledge one can expect to gain upon the next 
trial by using a certain stimulus is quantified by the expected information gain associated 

with that stimulus choice. Formally, the expected information gain after the next trial is

(2)

where Ht(Θ), defined by , 

denotes the entropy of the knowledge state Θ (posterior distribution of thresholds) upon trial 
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t, and the second term  is the conditional entropy 

of the next state given potential observation Yt+1 made with stimulus dt+1 in trial t+1. Here, 

the prediction of Yt+1 is made by the posterior predictive distribution given all previous 

observations up to the current trial t, or . As 

such, the quantity measures an expected decrease in entropy (or uncertainty) about the 

estimated parameter after the next trial.

One-trial-ahead optimization finds the stimulus that maximizes the above metric that 

represents the improved quality of a posterior distribution that would be achieved 

immediately after the next trial (e.g., the Psi method by Kontsevich & Tyler, 1999).1 To go 

beyond one-trial-ahead optimization, one must consider expected information gain after 

presenting a sequence of multiple stimuli ahead of the current trial. The expected 

information gain after k additional trials is expressed as

(3)

where the second term, defined as , is the conditional 

entropy of Θ given a sequence of potential observations  ahead made with 

stimulus choices . Expecting that the measurement session will be finished 

after k trials, k-trial-ahead optimization prescribes that one should select the stimulus 

for the next trial which comes first in the sequence  that maximizes the 

expected information gain defined above.

As with the shortest-path problem, one can work backward to maximize the expected 

information gain over multiple trials. Backward induction applies because, at any given 

state, there is a predetermined rule for computing transition rewards (i.e., expected 

information gain) and the additivity of local rewards (Equation 2) towards a global reward 

(Equation 3) holds.2 For each of all possible states in the second-to-last trial, or trial t+k−1, 

the optimal stimulus  for the last trial can be found using one-trial-ahead optimization. 

Repeat this for all possible states in trial t+k−1 and store the corresponding optimal stimuli 

and expected information gains in a table. Then, going one trial backward, for each of 

possible states in trial t+k−2, find the optimal stimulus  using the fact that, whatever 

transition to the next state is made, the maximized expected information gain from that state 

on can be looked up from the table previously filled. This means that the required 

computation is no more expensive than one-trial-ahead optimization because the algorithm 

needs to loop over stimulus choices only for the next trial and choices in the future are 

already reflected in the results in the look-up table. By repeating this procedure until the 

current trial t is reached, the optimal stimulus  in trial t+1 can be found.

1In information theory, this measure of expected information gain is regarded as the mutual information between the variable being 
inferred and the data to be added (Cover & Thomas, 2006). In the present context, maximizing the mutual information is equivalent to 
minimizing the conditional entropy of the inferred variable.
2The global expected information gain in Equation 3 can be written as the sum of expected information gains from each of 
consecutive state transitions in the future.
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In fact, the idea of applying DP by means of backward induction to parameter estimation of 

statistical models was introduced early in statistics (DeGroot, 1962), but actual 

implementations of the procedure have been limited to shallow look-ahead depths 

(maximum 4) for simple models. A distinctive computational challenge has been that, unlike 

the shortest-path or other sequential decision-making problems, the space of possible states 

(i.e., all possible posterior distributions) is not preset to a manageable size but increases 

exponentially as observations accumulate over trials. If a low-dimensional sufficient statistic 

exists to summarize posterior distributions, the state space may be discretized and 

represented on a grid (Brockwell & Kadane, 2003). However, sufficient statistics do not 

always exist, and this is the case for threshold estimation.

In overcoming the challenge, the current implementation adopted constrained backward 
induction (Müller, Berry, Grieve, Smith, & Krams, 2007), in which the state space is 

approximated by a low-dimensional statistic that can adequately describe posterior 

distributions. While the basic concept of this approach is solid, it is not in the form of a 

straightforward recipe, and therefore requires a problem-specific treatment. A key 

characteristic of the posterior distributions arising from model-based threshold estimation is 

their highly asymmetric tail thicknesses, especially in early trials. In an effort to find 

succinct yet adequate representations of these distributions, which are clearly not among 

standard parametric families (e.g., Gaussian), we created a model formulated by the 

weighted sum of a Gaussian probability density and a sigmoid function of the form

(4)

where c is a normalizing constant, and the four parameters μ, σ, δ and η determine the 

location, dispersion, degree of asymmetry, and direction of asymmetry of the distribution, 

respectively. To elaborate further, the second term is a cumulative distribution function of a 

logistic distribution whose mean and variance are matched to those of the Gaussian 

distribution in the first term (μ and σ2), and its contribution to the distribution’s asymmetric 

shape is controlled by the parameter δ, a positive value introducing some asymmetry (0 for 

no asymmetry). The parameter η takes either 1 or −1, making the distribution heavy on the 

right or left tail, respectively. The space of these parameters was represented on a grid and 

treated as the state space for backward induction.

As there is no formulaic way to guarantee the adequacy of the approximation, we assessed 

its performance in three different ways. First, we checked the modeled distributions’ visual 

fit to actual posterior distributions generated from simulated experiments, in which 

responses were sampled both randomly and from psychometric functions, and found a close 

fit in all cases. Second, because backward induction with no approximation (i.e., exact DP) 

is possible up to three-trial-ahead optimization, it can serve as a benchmark. We therefore 

compared the accuracy of threshold estimation between two implementations of backward 

induction with and without approximation. We found identical results beyond a meaningful 

level of precision. Last, to confirm the adequacy of the grid resolution of the discretized state 
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space, we examined the performance of a series of threshold estimation sessions in which 

the grid resolution of approximate DP was increased gradually, and found estimation results 

converge before reaching the resolution set for the study. Refer to the Supplementary 

Material for further detail about the backward induction and forward evaluation algorithms 

for threshold estimation.3

Simulation Experiments

Different look-ahead depths for perceptual threshold estimation were evaluated in two 

conditions. The first, unconstrained, condition assumed a simple, conventional procedure in 

which any of the preset spectrum of stimuli on the studied physical dimension (e.g., visual 

contrast, luminance intensity) could be selected in each measurement trial with no restriction 

on their order of presentation. In the second, order-constrained, condition, dependencies on 

stimulus choice were imposed across the experiment. Once a stimulus was presented from 

one of ten equally spaced bins, future stimuli could be chosen only from the same bin or 

bins lower on the continuum (i.e., weaker stimuli) in subsequent trials.

Creation of the order-constrained condition was motivated by a consideration of the 

dependencies involved in planning multiple trials ahead in some disciplines, such as clinical 

trials in drug development or intervention research in medicine─a decision in one stage, for 

instance, renders continuation of dosage trials, transition to the next test phase, or 

termination of the whole process. By necessity, these domains have drawn on longer-horizon 

optimization methods (Berry, 2006; Carlin, Kadane, & Gelfand, 1998; Collins, Murphy, & 

Strecher, 2007). The requirement on stimulus choice in the order-constrained condition 

should also create a strong sequential dependency across decision-making trials, possibly 

accentuating the effect of further-ahead optimization. Our hope was that comparison of this 

with the unconstrained condition could help determine the principle behind the performance 

of optimizing beyond the next trial. Although such an order constraint is rarely used when 

measuring auditory and visual thresholds, its use is commonplace in taste and odor studies 

(ASTM E679-04, 2011; Tucker & Mattes, 2013).

In the unconstrained and order-constrained conditions, simulated threshold estimation 

sessions were conducted in which the look-ahead depth of stimulus optimization was 

manipulated. First, conventional, one-trial-ahead optimization served as a baseline against 

which algorithms with longer look-ahead distances were compared.4 Second, assuming that 

a measurement session is scheduled to finish in a fixed number of trials, full-horizon 
optimization was implemented. Using the procedure of k-trial-ahead optimization described 

earlier, the algorithm starts with the look-ahead depth k made equal to the total number of 

trials in the experiment (100), and then, over the course of the session, decreases the depth 

incrementally to match the remaining number of trials. Last, algorithms for intermediate-
horizon optimization were included to assess the relationship between horizon depth and any 

improvement in inference. Given a look-ahead depth k less than the total number of trials, 

3Computer code for our implemented DP algorithm and simulation is available upon request from Woojae Kim at 
woojae.kim@howard.edu.
4One-trial-ahead optimization was implemented using the Psi method (Kontsevich & Tyler, 1999) with threshold and stimulus spaces 
sampled in approximately 0.6 dB steps.
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this algorithm starts with k-trial-ahead optimization and maintains it until the number of 

remaining trials is reduced to k. After that point, the look-ahead depth is decreased 

incrementally to match the number of remaining trials. Intermediate values of k were 5, 20, 

and 50.

In all simulations, the data-generating structure was the log-Weibull psychometric function 

shown in Equation 1. In each measurement session, the true, underlying threshold was 

sampled from a uniform prior distribution of log intensities ranging from −60 to −0.9 dB. In 

each trial of a session, an optimal stimulus was determined by the algorithm of the given 

look-ahead depth from the range of log intensities −66 to −0.2 dB discretized in 

approximately 0.5 dB steps. Then, a response to it was generated by Bernoulli sampling 

from the assumed psychometric function value at the optimal stimulus. In each simulation 

condition, 100,000 independent replications of measurement sessions, each consisting of 

100 trials, were made with underlying thresholds drawn from the uniform distribution. We 

also performed a sensitivity analysis of sampling densities on parameter (threshold of the 

psychometric function in Equation 1, not of the approximation model in Equation 4) and 

stimulus spaces, and found that convergence of estimation performance occurs before 

reaching the densities employed to generate the results presented in this paper.

Results

To examine how efficiently the threshold is estimated over measurement trials, estimation 

error was quantified by the root mean squared error (RMSE) defined by

(5)

where  is the estimate of the threshold for a simulated session, which was obtained as the 

posterior mean after observing trial t’s outcome, θTRUE is the true, underlying threshold for 

that session. The expectation is assumed to be over all underlying thresholds and replicated 

sessions, and hence was replaced by the sample mean over 100,000 simulated sessions. 

Smaller values indicate greater accuracy of threshold estimation.

Figure 2 shows the error in threshold estimation observed under the two constraint 

conditions (left and right panels) with different optimization depths (curves in each panel). 

When stimulus selection was unconstrained, no benefit was provided by looking further 

ahead than one trial. The gray curve in Figure 2a shows the RMSEs (y-axis) over 100 trials 

(x-axis) incurred by one-trial-ahead optimization. The estimation error drops quickly with 

observations in the first 20 to 30 trials, but after that, the rate of error reduction slows greatly 

as more data are collected. If the longer look-ahead horizons in the other conditions 

improved inference, those curves should be below this one. That just the opposite is found 

over the majority of trials for all but the 5-trial-ahead condition (i.e., they are above the gray 

curve) gives the wrong impression that inference was generally worse, except in the last few 

trials where the curves converged to values close to each other. For proper interpretation of 

these results, however, it is necessary to understand the goals of these algorithms.
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The reason for the banana-shaped pattern, where the curves diverge in the center but 

converge at the endpoints, is due to the different goals of the one-trial versus multi-trial-

ahead optimization. In DP applications with long look-ahead horizons, a drop in 

performance during the early stages is not a surprise but a common phenomenon. This is 

because the algorithm is designed to seek longer-term gains rather than the highest 

immediate gains. Hence, the performance of farther-ahead optimization must be duly 

evaluated after many decision stages have passed. In particular, in the case of a finite-

horizon problem like the current one (i.e., with a fixed number of decision stages), it must be 

assessed when the session is close to its end and the longer-term gains are harvested by 

decreasing the look-ahead depth. This means that even if looking further ahead than one trial 

were not necessary in the unconstrained condition, or one-trial-ahead optimization were 

sufficient to achieve the highest possible reduction of error, longer-horizon optimization 

should exhibit the same level of performance at the end of a session, but not necessarily in 

the middle of it. Indeed, the gap between their RMSEs and those of the one-trial-ahead 

algorithm is negligible when the session ends, meaning that looking ahead beyond the next 

trial offers no benefit.5

The reason why this gap is not completely reduced to zero after 100 scheduled trials is due 

to approximation error in the DP algorithms. Recursive computing over many stages with 

approximate terms (e.g., approximate states in the current implementation), which is often 

the nature of DP applications, causes approximation error to propagate continually over the 

stages, resulting in performance degradation below the theoretically highest level (Gaggero, 

Gnecco & Sanguineti, 2013). For this reason, using DP with the deepest possible horizon 

may not automatically improve inference, and this is evident in our application of DP in the 

unconstrained condition. As can be seen at the last trial in the results graph, error 

propagation increases as the look-ahead horizon (20, 50, 100 trials) increases. On the other 

hand, shorter horizons make the algorithms converge to the one-trial-ahead optimization, as 

shown by the one- and five-trial-ahead algorithms being nearly indistinguishable.

One may wonder whether the efficiency of threshold estimation might be improved if the 

approximation errors in multi-trial-ahead optimization were eliminated. If there were truly 

some benefit, it might be exhibited even in two- or three-trial-ahead optimization though the 

effect could be small. To address this suspicion, we performed the unconstrained, exact form 

of backward induction (cf., constrained backward induction in Müller et al., 2007) in which 

no approximation to the state space was made up to depths of three trials. The results were 

indistinguishable from the one-trial-ahead optimization. In addition, comparisons were also 

made with the two- and three-trial-ahead algorithms based on approximated states (i.e., 

current DP implementation). All RMSE curves were on top of one another. The fact that the 

performance of the currently implemented DP algorithm was identical to that of the exact 

DP algorithm also served as an independent check of the adequacy of implementation.

5This observation is not because of the number of trials (100) being large enough for the error to converge to a certain level. We 
performed the same simulation with total scheduled trials of 50, 150 and 200, and found that optimization strategies with varied initial 
horizon depths exhibit the same banana-shaped patterns of error reduction.
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The above results demonstrate that, contrary to intuition, looking further ahead in stimulus 

optimization provides no benefit for threshold estimation in the unconstrained condition, 

meaning that the commonly used one-trial-ahead optimization is not only sufficient, but 

optimal. The same conclusion, however, was not drawn when a strong sequential 

dependency was introduced to stimulus selection. Figure 2b shows the RMSEs of the five 

different, look-ahead algorithms under the measurement procedure that constrained the order 

of stimulus presentation, and as can be seen, differences in final error levels are evident. The 

one-trial-ahead curve drops rapidly for the first 20 trials, but then struggles to decrease 

thereafter. By contrast, the algorithms that look further ahead start with greater error during 

the initial 15 trials, trailing behind those algorithms with shorter horizons. Soon after this 

point (no later than trial 30), the benefits of looking further ahead start to accrue, with the 

curves of the longer-horizon conditions dipping below the 1-trial condition. These benefits 

continue to increase across trials for the longer-horizon conditions (20, 50, 100), so that by 

the end of the experiment, RMSE has been reduced to about 50% (2 dB) of that in the 1-trial 

condition. There seems to be a limit to the benefit of looking further ahead, as indicated by 

negligible difference between the 20- and 50-trial-ahead and full-horizon algorithms at the 

last trial.

Overall, as the look-ahead depth increases, the RMSE reduction is slower initially, but 

persists longer, resulting in considerably lower error by trial 100. This pay-off in seeking 

long-term gains by holding back from immediate gains is a clear distinction from what was 

observed in the unconstrained condition, and comes about by a shift in the stimulus selection 

strategy. Under the order constraint, selecting stimuli that provide immediate gains without 

considering the consequences of that decision for stimulus choices in future trials quickly 

leaves the algorithm with a severely limited range of stimuli to choose from. In contrast, 

algorithms with greater look-ahead vision avoid falling into this trap by being more 

conservative in selecting stimuli, with look-ahead depth modulating how conservative the 

algorithm behaves; the longer the horizon, the more conservative the choice of stimuli. Note 

that none of these strategies, including the 100-trial, yields a final RMSE as low as that in 

the unconstrained condition in the left graph (1.74 vs. 1.36 dB). This is because the 

constraint itself imposes a cost in estimation by restricting stimulus choice.

Discussion

Adaptive methods are used in behavioral experiments to maximize scientific inference with 

the goal of improving measurement precision and accelerating knowledge acquisition. To 

date, they have achieved this goal by optimizing inference on the next trial. A lingering 

question has been whether additional benefit would be gained by optimizing beyond the next 

trial. Dynamic programming (DP), a tool that can be used for planning into the future, is 

well suited to this problem because it provides a means of solving the otherwise intractable 

computation involved in multi-trial-ahead optimization. In short, it is a “smart” means of 

assessing the quality of each next trial by considering the quality of possible subsequent 

trials.

A technique that enables one to look into the future when conducting an experiment is truly 

appealing. However, given the nontriviality of its implementation, one would rightly wonder 
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whether it is really necessary. It is entirely possible that one-trial-ahead, myopic 

optimization is sufficient for the given problem, or looking further ahead, even far into the 

future, might offer no appreciable benefit to justify using DP. Because it is generally not 

possible to know the answer to this question in advance in a laboratory setting, researchers 

are faced with the dilemma of not knowing which to use unless the two are compared. The 

present demonstration of the performance of multi-trial-ahead optimization in the 

unconstrained condition resolves this issue in the domain of perceptual threshold estimation: 

Looking further ahead than one trial in selecting stimuli has no additional benefit.

Until now, practitioners measuring thresholds in the clinic or laboratory had to acknowledge 

the unresolved issue surrounding the optimality of their adaptive method (e.g., King-Smith 

et al., 1994; Kontsevich & Tyler, 1999; Lesmes, Lu, Baek, & Albright, 2010). The present 

results enable practitioners to be confident that the conventional, one-trial-ahead method is 

not just sufficient, but optimal as long as there are no sequential dependencies.

Because our main interest in this study was in the effect of look-ahead depth on the 

performance of adaptive experiments, we made the simplifying assumption that the data-

generating process is identical to the theoretical model. The behavior of multi-trial-ahead 

optimization under a misspecified model will need to be investigated to understand the full 

consequences when used in empirical settings (e.g., a model of non-stationary adaptation 

simulates the generating process). Ultimately, considering that all models are 

approximations, what needs to be decided is whether the benefits obtained by the use of 

sequentially global optimization overshadow any losses incurred by the use of an 

approximate model or the approximation error in the method. This will be a domain-specific 

problem.

Application to Other Contexts

It is reasonable to wonder how well the results would generalize to other model-based 

experimental settings. As we note above, the methodology does not permit theoretical proofs 

to answer this question, but insight into when use of DP could be productive can be gained 

by considering why the current results are produced. Generally, the problem of adaptive 

estimation of a statistical model is defined as selecting, in each trial of an experiment, a 

design for the next trial (dt+1; e.g., the next stimulus to present) that maximizes the 

employed reward function (e.g., expected information gain after the next trial) given the 

current knowledge of the model parameter θ (e.g., posterior distribution) as an input. This 

problem statement, in fact, contains two hidden premises: (a) Given the current knowledge 

state, the next design is fully determined by maximizing the same reward function on the 

same domain of possible designs throughout all trials, and is not affected by any other 

conditions specific to a particular trajectory of data in the previous trials; and (b) once the 

design dt+1 is chosen, the model’s prediction of yt+1 depends only on θ, being independent 

of design choices and resulting data in the previous trials, or symbolically,

(6)
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The unconstrained threshold estimation in the current study satisfies both of these conditions 

but the constrained estimation violates the first one due to the additional decision criterion 

concerning previous stimulus choices. Current theories of asymptotic optimality (Chaudhuri 

& Mykland, 1995; Kujala, 2016; Wynn, 1970) are restricted to adaptive estimation problems 

in which the above conditions are met.6

Suspecting that, in the case of unconstrained threshold estimation, what asymptotic theories 

take as “sufficiently many” trials after which the optimality of one-trial-ahead optimization 

is in effect may be a very small number, we performed yet another simulation in which full-

horizon optimization was applied with the total scheduled trials ranging from 2 to 15. To 

detect small differences, 500,000 independent sessions with full-horizon or one-trial-ahead 

optimization were run for each session length (2 to 15). The results confirmed our suspicion. 

We found that the full-horizon method has an infinitesimal edge over the one-trial-ahead 

optimization, but only up to a session length of 9. The RMSE differences in dB units (one-

trial-ahead minus full-horizon; estimated standard error of the difference in parentheses) for 

session lengths 5 to 9 were 0.0926 (0.0176), 0.0671 (0.0172), 0.0624 (0.0166), 0.0816 

(0.0160), and 0.0186 (0.0153), respectively. Despite small effects, it is unlikely that we 

obtained this sequence of outcomes by chance since they are, by design, independent of each 

other. Beyond the length of 9, however, whether due to the convergence of the two methods 

or the approximation error in DP, full-horizon optimization did not outperform one-trial-

ahead optimization.

These results with very short yet full look-ahead horizons contribute to our understanding of 

the optimality of one-trial-ahead optimization in two ways. First, the advantage of multiple-

trial-ahead optimization with finite horizons does exist and can be demonstrated with the 

help of DP, the specifics of which cannot be predicted by asymptotic theories. Second, 

although the benefit exists, in the case of unconstrained threshold estimation, it is a 

negligible amount and quickly overshadowed by one-trial-ahead optimization after a small 

number of trials. These additional data combined with our main findings prompt us to 

conjecture that if the experimental environment is similar to unconstrained threshold 

estimation, looking further than one trial in adaptive estimation would provide no 

appreciable benefit. This will be the case for many modeling problems in cognitive science, 

as they are mechanically similar to the situation studied here. For example, models of 

attention, categorization, and decision making usually have a simple parametric form and 

involve a small number of parameters. The dimensionality of the experimental design in 

which the models are evaluated is relatively low, and the sampling error in data can be high, 

requiring a large number of trials to achieve adequate precision of inference. Interestingly, 

this includes the item response theory (IRT) models assumed in computerized adaptive 

6Without resort to a formal proof, it is intuitive to see why asymptotic optimality holds. At a certain point in time during a long 
experiment, there are always distributed beliefs about the underlying parameter setting (posterior distribution in Bayesian inference), 
which induces the globally optimal sequence of designs for the remaining trials to cover a certain range of designs (i.e., uncertainty in 
estimation is reflected in design choices in the sequence). That the number of remaining trials is sufficiently large means that the 
optimal sequence encompasses this range of designs densely so that at least one element of it equals, or is indistinguishably close to, 
the myopically optimal design at that time point. Add to this the fact that, under the conditions stated in the main text (i.e., given the 
reward function and knowledge of the parameter(s), the current design choice and its consequence is independent of those in the 
previous trials), the optimality of the design sequence is not affected by the ordering of its elements. Therefore, the design close to the 
myopically optimal design can always come first in the globally optimal sequence, making one-trial-ahead optimization perform no 
worse than full-horizon optimization.
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testing (CAT). While backward induction has been applied to the problem of pass-fail CAT 

or adaptive mastery testing with states approximated by number-correct scores (Lewis & 

Sheenan, 1990; Vos & Glas, 2010), multistage-ahead optimization of item-level CAT for 

ability parameter inference has not been investigated due to computational intractability.

In contrast to the unconstrained condition, the order-constrained condition involves making 

stimulus selections that are governed by choices of preceding stimuli, preventing the 

selection from being based solely on the expected information gain criterion. Any candidate 

stimulus outside the constraint will force expected information gain to be zero, overriding 

the actual value that would be used if there were no such constraint. With the constraint in 

place, there exists a bad choice of a stimulus, the quality of which cannot be seen under one-

trial-ahead optimization, but can cause an adverse effect on estimation in the long run 

because it severely restricts the range of stimulus choices later on.7

The application of DP under sequential dependency is not limited to an order constraint on 

stimuli, but can apply to settings in which the dependency of participant responses across 

trials itself is the subject of study and built into the models. Examples of models that should 

benefit from DP include models of learning and dynamic decision making. Processing 

models in these areas are usually first-order Markovian models in which a participant’s 

latent state keeps being updated with each new observation and the model’s prediction 

depends on the most recent state (Busemeyer & Pleskac, 2009; Busemeyer & Stout, 2002; 

Chechile & Sloboda, 2014; Falmagne, 1993; Fries, 1997). These models, by construction, 

require not only the knowledge of model parameters but also the design choices and 

participant responses in preceding trials in order to give the predicted probability of data in 

the next trial (i.e., they violate the condition in Equation 6). To estimate the parameters of 

these models, it would be advantageous to look far ahead in optimizing the designs 

sequentially.

In summary, the current study demonstrates a multi-step-ahead adaptive method in action, 

the results of which are not predicted by an asymptotic theory alone, in a problem domain of 

considerable significance (psychometric function estimation). The results suggest that when 

there are dependencies of a certain form between trials, efficiency and precision in 

experimentation can be improved by looking beyond the next trial to identify the next 

optimal stimulus to present.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

7In certain cases, if not an order constraint, an additional constraint on stimulus selection can be incorporated into the reward function 
itself. For example, if time to be spent on each trial in response to a chosen stimulus can be predicted by a model, expected 
information gain divided by that expected time may be adopted as a reward function to find a stimulus that would result in the 
maximum expected information per unit time. It has been proved that one-trial-ahead optimization is also asymptotically optimal 
under this type of a reward function (Kujala, 2016).
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Figure 1. 
Network depicting the shortest-path problem. Nodes represent locations (e.g, cities), and the 

numbers adjacent to the arrows, or directional edges, connecting the nodes represent the cost 

(distance) of moving from one node to another. The red line from A to E is the path (global 

cost of 25) taken when using one-step-ahead optimization, a strategy in which the next node 

that is chosen is always the least costly. The green line denotes the shortest path from A to E 

(global cost of 19), and can be identified through backward induction by looking beyond the 

next node to consider the costs of future transitions between nodes.
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Figure 2. 
Performance of the five different look-ahead horizons when stimulus choice was 

unconstrained (a) and order-constrained (b) across trials. Each graph shows threshold 

estimation error (RMSE) as a function of trial number in the experiment. The depth of the 

horizon had no effect on final error levels in the unconstrained condition, whereas estimates 

were reduced by up to 2 dB in the constrained condition when the look-ahead horizon was 

the length of the experiment (100 trials). Precision bands are not included in the graphs 

because standard errors of the values are infinitesimal due to the large sample size 

(100,000). RMSE = root mean squared error.
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