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Trypanosoma cruzi is the causal agent of Chagas’ disease which affects millions of people around the world mostly in Central and
South America. T. cruzi expresses a wide variety of proteins on its surface membrane which has an important role in the biology
of these parasites. Surface molecules of the parasites are the result of the environment to which the parasites are exposed during
their life cycle. Hence, T. cruzi displays several modifications when they move from one host to another. Due to the complexity of
this parasite’s cell surface, this review presents some membrane proteins organized as large families, as they are the most abundant
and/or relevant throughout the T. cruzimembrane.

1. Introduction

Trypanosoma cruzi is a protozoan causative of Chagas’ dis-
ease, a pathology characterized by two phases: acute and
chronic; both could be asymptomatic. The acute phase is
present during the first weeks of infection and the chronic
phase includes an indeterminate asymptomatic form and
a chronic inflammation associated with myocarditis, heart
failure, andmegaviscera (megaesophagus and/ormegacolon)
[1, 2]. T. cruzi has infected millions of people in the world,
mostly in Central and South America; the infection could be
via triatomine insect vector, congenital transmission, organ
transplantation, or blood transfusion [3, 4]. The life cycle
of T. cruzi comprises several morphological transforma-
tions involving both mammalian and insect hosts, where
three different major developmental stages are identified:
epimastigotes, trypomastigotes, and amastigotes (Figure 1)
[5, 6]. The developmental stages of T. cruzi alternate between
noninfective and infective forms. Epimastigote and amastig-
ote are noninfective but replicative stages in the gut of the
insect vector and inside the mammalian cell, respectively.
Trypomastigote stage is infective but nonreplicative and can

be also considered as two different developmental stages:
the bloodstream trypomastigotes, found in the blood of the
vertebrate host, and themetacyclic trypomastigotes, found in
the rectum of the insect vector [6–9]. If one considers that
the cycle starts with insect sucking the blood of mammalian
host infected with the bloodstream trypomastigotes, the
ingested trypomastigotes transform into epimastigotes inside
the insect stomach and replicate intensely in themidgut. After
that, metacyclic trypomastigotes arise from epimastigotes in
the hindgut of the insect host which are eliminated with the
faeces [6, 10]. When the insect vector takes a blood meal
from a new noninfected host it subsequently defecates in
the area near the puncture wound. The infection usually
takes place through direct inoculation of excreted metacyclic
trypomastigote which forms into the lesioned skin caused by
the insect vector bite. Once inside the mammalian host, the
metacyclic trypomastigote forms invade the host cells at the
inoculation site and transform into the replicative amastigote
form. Upon completion of a replicative cycle as intracellular
amastigotes, they transform back into bloodstream trypo-
mastigote forms which burst the eukaryotic cell host and are
capable of infecting other cells or travel into the bloodstream
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Figure 1: The different stages of Trypanosoma cruzi. The image
depicted the amastigote, epimastigote, and trypomastigote stages
fromT. cruzi and theirmembrane domains: nucleus (N); kinetoplast
(K); flagellum (F); flagellar pocket (FP); and cell body (CB).

[11]. The phenotypic and genotypic diversity of T. cruzi are
well recognized. T. cruzi is partitioned into six discrete typing
units (DTUs), TcI–TcVI. For a comprehensive review see
[12, 13]. Despite the fact that many T. cruzi isolates have been
described through the years, CL Brener was the reference
organism used in the “Trypanosoma cruzi Genome Project.”
CL Brener is a clone derived from CL strain belonging to
Tc VI lineage and has been thoroughly studied and well
characterized [14–16]. The CL Brener genome sequence is
now available and became the T. cruzi genome reference
for other sequencing projects [13, 14, 17]. Moreover, new
T. cruzi isolates are still being reported and features such
as some of their surface membrane proteins are regularly
compared with the CL Brener genome [17–20]. Although
T. cruzi has several morphological transformations through
its complex life cycle, studies on surface proteins have been
mainly focused on the different stages through the infection
process (Figure 1) [21–23]. Membrane proteins have been
shown to play an important role in the biology of T. cruzi,
including the interaction between parasite and host [2, 22,
24–28]. Scientists have made efforts to unravel the gaps
on the structure and functions of these surface membrane
proteins. However, despite their importance, the information
is currently scattered. The aim of this review is to outline the
families of surface membrane proteins from T. cruzi which
are the most abundant and/or relevant during its life cycle
(Table 1).

2. Mucin Family

Trypanosoma cruzi is covered by a dense layer of mucin-
type molecules. Mucins are the major T. cruzi surface gly-
coproteins and their sugar residues are able to interact with
mammalian cells [26, 63]. These proteins are characteristic
and widely distributed over the cell body, flagellum, and flag-
ellar pocket of the different developmental forms (Figure 1)
[64]. Mucins play a key role in the parasite protection as

well as in the infectivity and modulation of the host immune
response throughout the T. cruzi life cycle [25, 30, 60, 65, 66].
Based on sequence comparisons, T. cruzi mucins have been
split into two gene families, termed TcMUC and TcSMUG
(Figure 2, Table 1) [30, 67]. TcMUC expression seems to be
restricted to the mammal-dwelling stages; these proteins are
divided into three groups based on their central domains:
TcMUC I to III [67, 68]. TcMUC I and II proteins are
distributed on the amastigote and the bloodstream trypo-
mastigote surface. TcMUC I is the major component in
the amastigote form, whereas TcMUC II is predominant
in membrane lipid rafts of the trypomastigote stage [31].
TcMUC I proteins show internal tandem repeats on their
structure with a T

8
KP

2
amino acid (aa) consensus sequence

which are suitable targets for the O-glycosylation pathway
in T. cruzi, flanked by an N-terminal signal peptide and
a C-terminal glycosylphosphatidylinositol- (GPI-) anchor
signal [30, 69]. TcMUC II genes encode proteins that share
similar N- and C-termini with TcMUC I but without the
T
8
KP

2
motifs, although their central regions are still rich

enough in threonine, serine, and proline residues [29, 70].
The single gene product of the TcMUC III group is termed
trypomastigote small surface antigen (TSSA) and has been
identified as a mucin-like glycoprotein (tGPI-mucins) [71].
TSSA are displayed on the surface of the trypomastigote
forms of Trypanosoma cruzi and they are expressed in vivo as
a ∼20-kDa protein during the mammal-derived stages [72–
74].

The second mucin family TcSMUG encodes for very
small open reading frame containing a putative signal peptide
at theN-terminus and aGPI-anchor signal in theC-terminus.
This protein family is divided into two groups: small (S) and
large (L) according to their encoded mRNA size [67, 71, 75].
The S group encodes for 35–50 kDa mucins N-glycosylated
(Gp35/50 mucins) and they are the major acceptors of sialic
acid on the parasite surface by parasite trans-sialidases in
T. cruzi. This S group is found in the epimastigote and
metacyclic trypomastigote forms [32, 33]. TcSMUG L group,
in contrast, encodes for mucin-type glycoconjugates which
are not sialic acid acceptors and they are only present in
the surface of the epimastigote stage [34, 76]. Furthermore,
depending on the origin of the encoding allele, TcSMUG
L products contain one or two additional N-glycosylation
signals between theN-terminal region and the threonine-rich
region [34].

3. Trans-Sialidase Superfamily

Trypanosoma cruzi trans-sialidases (TS) genes are a large
superfamily, which includes 1,430 gene members, including
693 pseudogenes [14, 60]. Similar to mucins, TS are dis-
tributed along the cell body, flagellum, and flagellar pocket
of T. cruzi [31, 77]. The TS superfamily is divided into
four groups: Groups I to IV (Table 1) [78]. Their sequence
similarity and functional properties were used as criteria
for classification (Figure 3). Importantly, Group I comprises
proteins with trans-sialidase (TS) and/or neuraminidase
activities [79]. The TS activity involves the transfer of sialic
acid from host glycoconjugates to mainly the parasite mucins
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Figure 2: Mucin family. Schematic representation of mature proteins of mucin families TcMUC, found in bloodstream trypomastigotes,
and TcSMUG, found in epimastigotes and metacyclic trypomastigotes. Signal peptide (∗); protein fingerprints (white boxes); hypervariable
region (---); threonine-rich region (black boxes) and glycosylphosphatidylinositol- (GPI-) anchor signal (shadowed boxes). Image based on
Buscaglia and Frasch [30, 60].
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Figure 3: Trans-sialidase (TS) superfamily. Schematic representation of the four different groups of trans-sialidases (TS) from Trypanosoma
cruzi. Characteristic motifs SXDXGTW and VTVXNVXLYNR for TS are depicted as black and shadowed boxes, respectively. The
glycosylphosphatidylinositol- (GPI-) anchor signal in the C-terminus position is shown as grey boxes. Tandem repeats (TR) of 12 amino
acid residues [DS

2
AH(S/G)TPSTP(A/V)] are detected in SAPA and TCNA (TR12 inside an open box). Nine amino acid residue repeats

[DK
2
ESESGDSE] are identified in TSA-1 (TR9 inside an open box). A characteristic epitope [TPQRKT

2
EDRPQ] is present in FL-160 (E12

inside an open box). The pentapeptide [EPKSA] is found once into subfamily I of Group IV (TR5 inside an open box) whereas, in subfamily
II, EPKSA is repeatedly present (TRV5 inside an open box indicating the number of repeats). Image based on Colli and Schenkman [61, 62].

present in the plasma membrane of trypomastigotes [80–
82]. On the other hand, neuraminidase activity occurs when
nonsuitable acceptormolecules for sialic acid are present, and
then sialic acid is transferred to water [83]. Trypanosomes
are unable to synthesize the monosaccharide sialic acid;
they need to scavenge it from the infected host using these
TS activities. Therefore the sialylation process in T. cruzi

is crucial for its viability and propagation into the host
[84–87]. Moreover, neuraminidase activity was proposed to
be involved in the removal of sialic acid from parasites
and/or host-cell molecules which is required for parasite
internalization [84, 88]. TS Group I members are as follows:
TCNA (neuraminidase), SAPA (shed acute-phase antigen),
and TS-epi (Figure 3) [36, 37, 61]. SAPA and TCNA enzymes
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have active trans-sialidase and neuraminidase activities and
are expressed during bloodstream trypomastigote stage [38].
Both enzymes are very close related; when compared they
have 84% homology at the aa level. SAPA and TCNA have
two main regions: an N-terminal catalytic region and a C-
terminal extension, which repeats 12 amino acids (SAPA
repeats) in tandem with the consensus sequence: D-S-S-A-
H-[S/G]-T-P-S-T-P-[A/V] [89]. SAPA has only 14 tandem
repeats compared to 44 for TCNA. The presence of SAPA
repeats increases the half-life of the protein in the blood
[90]. Both SAPA and TCNA proteins are anchored by
glycosylphosphatidylinositol (GPI) to the parasite plasma
membrane and can be found in serum from deeply infected
mammals [38, 82]. Recently, Lantos and coworkers have
shown that domains for mucins and TS are separated by
about 150 nm, indicating that mucins do not pass through
a TS-rich area for sialylation [31]. Moreover, they proposed
a mechanism for the shedding of trans-sialidase into the
extracellular space and/or bloodstream via microvesicles,
where the phosphatidylinositol-phospholipase-C activity is
actually not present in bloodstream trypomastigote stage [31].
TS-epi, the third member of Group I, is an active trans-
sialidase expressed in the insect dwelling epimastigote format
the stationary phase and is different from the TS expressed of
the blood trypomastigotes. TS-epi lacks SAPA repeats and is
not anchored to the membrane by GPI; instead it is predicted
that anchoring to the membrane is due to the presence of a
transmembrane domain followed by a hydrophilic section in
the C-terminus [39].That last featuremay explain whyTS-epi
is minimally secreted into the medium [91].

TS Group II comprises members of the GP85 surface
glycoproteins: ASP-1, ASP-2, TSA-1, Tc85, SA85, GP82, and
GP90. They all have been implicated in host-cell attachment
and invasion [62, 92–94]. These proteins have complete
or degenerate Asp box motifs (SxDxGxTW); the VTVxN-
VxLYNR motif characteristic of all TS members; and a
signal sequence for cleavage/addition of GPI anchor at the
C-terminal region (Figure 3) [60, 62, 95]. ASP-1, ASP-2,
and TSA-1 are targets of T. cruzi-specific CD8+ cytotoxic
T lymphocytes and they induce strong antibody responses
in infected mice and humans [40, 41, 96, 97]. ASP-1 and
ASP-2 are amastigote surface proteins, whereas TSA-1 is a
trypomastigote surface antigen [40, 41]. SA85 glycoproteins
are expressed by amastigote and bloodstream trypomastigote
forms. However, only the amastigote form expresses the
mannose-binding protein ligand which seems to be involved
in the opsonization of the parasite enhancing its infection
capability [98–100]. The Tc85 molecule is an 85 kDa glyco-
protein and is found abundantly in bloodstream trypomastig-
otes. Tc85 is identified as a ligand capable of binding to
different host receptor molecules (cytokeratin 18, fibronectin,
and laminin) located on the cell surface of either monocytes,
neutrophils, or fibroblasts [42, 92, 101, 102]. Furthermore,
GP82 and GP90 are glycoproteins expressed on the surface
of the metacyclic trypomastigote form [46, 103], and they are
found mainly at the plasma membrane with opposite roles
in mammalian cell invasion [33, 46]. GP82 is able to activate
a Ca2+ signaling pathway in host cells following parasite
adhesion, which is required for T. cruzi internalization [101,

104–106]. GP82 binds less efficiently to HeLa cells compared
to GP90, but it is capable of triggering the Ca2+ signal
in that host cell [105]. GP82 is also the signaling receptor
that mediates protein tyrosine phosphorylation, which is
necessary for host-cell invasion [106]. On the other hand,
GP90 is a metacyclic stage-specific glycoprotein defined by
its reactivity with monoclonal antibodies 1G7 and 5E7 [46].
GP90 expressed by metacyclic forms lacks any enzymatic
activity [47]. GP90 is also present in themammalian stages of
T. cruzi (bloodstream trypomastigote and amastigotes stages)
and has the antiphagocytic effect mediated by the removal
of sugar residues necessary for parasite internalization. This
surface glycoprotein appears to have glycosidase activity and
downregulates host-cell invasion probably due to the fact
that GP90 binds to mammalian cells in a receptor-mediated
manner without triggering the Ca2+ signal-inducing activity
[10, 47].

TS Group III is formed by surface proteins present in
mammal-dwelling blood trypomastigotes which include the
following: CRP, FL160, CEA, and TESA [48]. These proteins
are recognized by sera from patients with Chagas’ disease
and they are able to inhibit the classical and the alternative
pathways of complement activation, which could be a pro-
tection from lysis by the host in the trypomastigote form [48,
62, 95, 107–109]. TESA (trypomastigote excretory-secretory
antigens) is distributed on the cell surface membrane of T.
cruzi [107, 110] whereas CRP, FL160, and CEA are flagellum-
associated membrane proteins [111–113]. Interestingly, the
sequence of FL-160 contains an epitope which molecularly
mimics a nervous tissue antigen from the mammalian host
[114].

Finally, TS Group IV is composed of genes encoding
trypomastigote surface antigens whose biological function is
still unknown. This group is included in the TS superfamily
because it contains the conserved motif VTVxNVxLYNR,
which is shared by all known TSmembers [10, 37, 54, 61, 115].
However, the B5 peptide fromTsTc13 protein, a representative
of Group IV, has been shown to be highly antigenic and is
present in the infective metacyclic trypomastigote form [49].

4. TcGP63 Family

Trypanosomes and Leishmania species express a family of cell
surface-localized, zinc-dependent metalloproteases, which
are also termed as GP63 proteins, major surface proteases,
or leishmanolysins. Metallopeptidase activities have been
described in trypanosomatids [116–118], but only the so-
called GP63 from Leishmania spp. has been thoroughly
characterized. Trypanosoma cruzi possesses GP63-like genes
(TcGP63) and they are differentially regulated, which suggests
its functional importance at multiple stages in the parasite
life cycle [52, 119, 120]. The TcGP63 family has at least
two groups of proteins: TcGP63-I and TcGP63-II (Figure 4,
Table 1) [50]. It has been estimated that TcGP63-I has low
(5–10) gene copies, whereasTcGP63-II has 62 gene copies into
the T. cruzi genome [50, 51]. The TcGP63-I group is present
in the three life-stages of T. cruzi. These proteins present
metallopeptidase activity and are bound to the protozoan’s
membrane by a C-terminal glycosylphosphatidylinositol-
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Tcgp63-I

Tcgp63-Ia

Tcgp63-Ib

Tcgp63-II

Zn-BM

Zn-BM

Zn-BM

Figure 4: The TcGP63 family. The TcGP63 family consists of cell surface-localized, zinc-dependent metalloproteases also known as T. cruzi
GP63-like proteins.This family has at least two groups: TcGP63-I andTcGP63-II. TcGP63-Imembers have two potential N-glycosylation sites,
whereas TcGP63-II members have three [50]. The glycosylphosphatidylinositol- (GPI-) anchor signal in the C-terminus position is depicted
as grey boxes; it is absent in the TcGP63-II members. Predicted N-glycosylation sites are shown in black boxes. Zn-BM: zinc-binding motifs
[VXAHEX

2
HA] associated with metalloprotease activity.

(GPI-) anchor signal [50]. Two isoforms are known of
TcGP63-I in T. cruzi: a glycosylated and a nonglycosylated
isoform.The 61 kDa glycosylated isoform is present in similar
levels in both epimastigote and amastigote forms and is
irregularly expressed on the surface membranes (cell body
and flagellum) of the epimastigote. The second isoform is
a 55 kDa TcGP63 nonglycosylated protein, which is located
intracellularly near the kinetoplast and the flagellar pocket
of the metacyclic trypomastigote [52]. TcGP63-II does not
have GPI-anchor signal; instead its C-terminal sequence is
replaced by a charged region containing three Asp and four
Arg residues [50, 52].

5. Amastin Family

The amastin family is a group of transmembrane glycopro-
teins, which consists of small proteins of about 180 amino
acids. Phylogenetic analysis of trypanosomatid amastins has
defined four subfamilies named 𝛼-, 𝛽-, 𝛾-, and 𝛿-amastins,
with distinct genomic organization as well as patterns of
expression during the cell cycle of trypanosomatid [121, 122].
The Trypanosoma cruzi genome possesses two distinct sub-
families: 𝛽- and 𝛿-amastins (Table 1), which have predicted
the occurrence of four transmembrane regions (Figure 5)
[53]. Genes encoding for the 𝛽1- and 𝛽2-amastin, belonging
to the 𝛽- subfamily, are localized in the chromosome 32 of
T. cruzi, whereas 𝛿-amastin and 𝛿-ama40/50 loci are found
on chromosomes 34 and 26, respectively. 𝛽1- and 𝛿-amastins
are clearly located at the cell surface. Interestingly, 𝛽2-
amastin shows a disperse distribution within the cytoplasm
in addition to their surface localization [53]. The exact
biological function of amastin is still unknown; however, as
transmembrane proteins, amastins could play a role in proton
or ion traffic across the membrane [123, 124]. Transcript
levels of 𝛿-amastins are upregulated in amastigotes from
different T. cruzi strains, while 𝛽-amastin transcripts are
more abundant in epimastigotes than in amastigotes or
trypomastigotes; therefore 𝛽-amastins may be involved in
the parasite adaptation to the insect vector [121, 125, 126].
Interestingly, Cruz and coworkers showed that 𝛿-amastin
plays a crucial role in the differentiation of T. cruzi; therefore
it is a key molecule responsible for the parasite survival in the
intracellular cell stage [127].

6. TcTASV Family

TcTASV (Trypomastigote Alanine Serine Valine-rich pro-
tein) is a family that comprises 40 members in Trypanosoma
cruzi.They all have a C- and anN- terminus conserved with a
variable central core.This variable core is rich in Ala, Ser, and
Val residues, with a conservedGlu-Ala-Promotif. It also has a
high number of Ser and Thr susceptible to glycosylation and
a signal peptide and a consensus sequence for the addition
of a GPI anchor were predicted, suggesting that this family
can be located at the parasite surface and/or be secreted to
the milieu [54]. The TcTASV family is conserved across the
genomes of T. cruzi strains and, to date, no orthologues in
other trypanosomatids have been found [55].

TcTASV family was split into three subfamilies: A, B,
and C apoproteins, based on their predicted molecular
weights (18 kDa, 27 kDa, and 36 kDa, resp.) (Figure 1) [54].
Until now, only subfamilies A and C have been worked
thoroughly. Subfamily B has presented experimental hurdles
to overcome. Annotated genes identified as TcTASVs are
present in 5 chromosomes; almost all annotated subfamily C
on the chromosome 24 and a high proportion of subfamily
A on the chromosome 16. A peptide entirely conserved
in TcTASV-A is present in trypomastigote and amastig-
ote extract. However, only the expression of TcTASV-A in
bloodstream trypomastigotes was demonstrated, suggesting
that the TcTASV population could undergo developmental
regulation [54, 128]. The TcTASV-C subfamily is expressed
mainly in the trypomastigote stage as a phosphorylated,
heavily glycosylated protein with ca. 60 kDa. TcTASV-C is
attached to the parasite surface by a GPI anchor on the
cell body and flagellum, which may explain why it is shed
spontaneously into the medium and is in contact with the
immune system of the host during the course of the natural
infection. The superficial localization and secretory nature
of TcTASV-C suggest a possible role in the host-parasite
interactions [55].

7. Mucin-Associated Surface Proteins
(MASPs) Family

This family received its name because itsmembers are located
in close proximity of Trypanosoma cruzi mucins (TcMUC
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II); they are similar in structure, though not in sequence
[129, 130]. MASP members contain N- and C-terminal
conserved domains that encode a signal peptide and a GPI-
anchor addition site, respectively. MASP is GPI anchored
to the membrane and is preferentially expressed during the
trypomastigote (bloodstream) stage (Table 1). Moreover, the
central region is variable both in length (ranging 176–645 aa)
and in sequence; its sequence also contains a large repertoire
of repetitive motifs. Single aa residue repetitions are the
most common, and those containing glutamic acid are more
frequently being around 27% of the total of the identi-
fied repetitive motifs. Full-length MASP analysis revealed
at least four potential O-glycosylation sites per sequence,
70% of which correspond to threonines [130]. The MASP
expression was analyzed throughout the parasite life cycle
and it was identified that they are expressed simultaneously
in bloodstream trypomastigotes as well as in amastigotes
and epimastigotes [45, 128]. MASP molecules are the most
abundant antigens found on the surface of the infective
trypomastigote stage ofT. cruzi [130–133].Theoverexpression
of MASPs in the intracellular parasites prior to the division
of the amastigotes located in the plasma membrane suggests
that some of the proteins of this extensive family play a
major biological role in the survival and multiplication of
intracellular amastigotes [130, 134].

8. Cruzipain Family

Cruzipains are a papain-like cysteine proteases; cruzipain
is expressed as a complex mixture of isoforms in all the
Trypanosoma cruzi developmental stages (Figure 1) [135].
Despite the fact that cruzipain has high homology with
other members of the papain proteases superfamily, this
protein has a unique C-terminal region, which is retained
in the mature protein [136, 137]. Cruzipains are expressed
on all the body surface of epimastigotes and amastigotes.
In contrast, on the trypomastigote form, cruzipain has only
been present in the flagellar pocket region as well as within
the pocket [138]. A specific, irreversible enzyme inhibitors
for cruzipain GP57/51 was evaluated in heart muscle cells
infected with trypomastigotes and proved to interfere with
cell invasion and inhibit T. cruzi intracellular replication
[139, 140]. The above suggests that cruzipain plays a role in
the process of T. cruzi internalization into mammalian cells
[138–140]. Additionally, cruzipain not only is essential for
parasite survival but also generates a strong immune response
in infected individuals [138, 141].

9. Concluding Remarks

A tangled mechanism is necessary for a “successful” host-
pathogen interaction of Trypanosoma cruzi with its mam-
malian or insect host. The availability of the T. cruzi genome
sequence made it possible to gain new insights into the
parasite’s biology and allowed the development of new
powerful approaches to understand molecular pathogenesis
and host-parasite interaction [14]. Proteome analysis was
conducted in the different developmental stages ofT. cruzi; as
expected, surface proteins are part of the outstanding proteins

whichwere found differentially expressed among stages [128].
Another proteomic analysis has also been conducted in
different organelles, on a specific developmental stage, or
under certain stress conditions [8, 142–144]. Additionally,
new technologies are now available to facilitate genome edit-
ing inT. cruzi, such as theCre-recombinases and theCRISPR-
Cas9 system. These genetic manipulation strategies have
highly effective efficiency in different organisms and now
were successfully adapted to disrupt genes fromT. cruzi [145–
147]. Furthermore the CRISPR-Cas9 system was recently
used for endogenous tagging of proteins in T. cruzi which
proved that this system is not limited to loss-of-function and
made the localization/visualization of proteins from inside
the parasite possible [148]. These new molecular strategies
have now opened a new field of possibilities towards a more
comprehensive functional analysis of the parasite biology
and can be potentially used to move forward in the study
of surface proteins of T. cruzi. As we present here, several
studies show that surface membrane proteins are crucial for
adaptation, differentiation, and survival of the parasite during
its life cycle. Notably, some membrane protein families stand
out during the host-parasite infection process, which make
them potential targets to treat, or even prevent, the infection
process. Altogether, these recent advancements can positively
increase the current knowledge of host-parasite interactions
and will help to accelerate the discovery of effective drugs
against the Chagas disease. Despite all the research advances
on these protein families on T. cruzi membrane, efforts to
unravel their structure and function still have a long journey
to be undertaken.
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Memórias do Instituto Oswaldo Cruz, vol. 92, no. 6, pp. 859–862,
1997.

[17] P. B. Hamilton and J. R. Stevens, “15—Classification and phy-
logeny of Trypanosoma cruzi A2—Telleria, Jenny,” in American
Trypanosomiasis Chagas Disease, M. Tibayrenc, Ed., pp. 321–
344, Elsevier, London, 2nd edition, 2017.

[18] L. A. Shender, M. D. Lewis, D. Rejmanek, and J. A. K. Mazet,
“Molecular diversity of trypanosoma cruzi detected in the
vector triatoma protracta from california, USA,” PLoS Neglected
Tropical Diseases, vol. 10, no. 1, Article ID e0004291, 2016.

[19] R. Ruı́z-Sánchez, M. P. de León, V. Matta et al., “Trypanosoma
cruzi isolates fromMexican and Guatemalan acute and chronic
chagasic cardiopathy patients belong to Trypanosoma cruzi I,”
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