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Experimental evidence of Willis coupling in a
one-dimensional effective material element
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The primary objective of acoustic metamaterial research is to design subwavelength systems

that behave as effective materials with novel acoustical properties. One such property

couples the stress–strain and the momentum–velocity relations. This response is analogous

to bianisotropy in electromagnetism, is absent from common materials, and is often referred

to as Willis coupling after J.R., Willis, who first described it in the context of the dynamic

response of heterogeneous elastic media. This work presents two principal results: first,

experimental and theoretical demonstrations, illustrating that Willis properties are required

to obtain physically meaningful effective material properties resulting solely from local

behaviour of an asymmetric one-dimensional isolated element and, second, an experimental

procedure to extract the effective material properties from a one-dimensional isolated

element. The measured material properties are in very good agreement with theoretical

predictions and thus provide improved understanding of the physical mechanisms leading to

Willis coupling in acoustic metamaterials.
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T
he primary objective of acoustic metamaterial (AMM)
research is to design subwavelength systems that behave
as effective materials and display novel acoustical

properties1–3. Examples of such novel properties include zero
or negative dynamic mass density4 and bulk modulus5, chirality6

and a more general material response that couples strain and
momentum fields, as well as stress and velocity fields7,8. The latter
response was initially described by Willis9 and is therefore often
referred to as Willis coupling. This behaviour may also be
described as acoustic bianisotropy due to its mathematical
similarities to bianisotropy in electromagnetism8,10. Although
the initial theoretical description of Willis coupling was provided
several decades ago, acoustic and elastic wave phenomena
associated with the behaviour has received little attention until
recently. One-dimensional constitutive relations with local Willis
coupling may be written in the form11,12

m ¼ rvþ ~c
@e
@t
; ð1Þ

� p ¼ keþc
@v
@t
; ð2Þ

where m is the momentum density (kg m� 2 s� 1), v is the particle
velocity (m s� 1), p is the acoustic pressure (Pa), e is the volume
strain (dimensionless) and the material properties are the mass
density r (kg m� 3), bulk modulus k (Pa) and Willis coupling
coefficients c and ~c (Pa s2 m� 1). In general, these equations
contain spatial and temporal convolutions7–9.

Reciprocal Willis coupling results from two different physical
phenomena: local coupling associated with microstructural
asymmetry and nonlocal coupling associated with finite phase
change across a unit cell and multiple scattering between spatially
separated heterogeneities12–18. When constitutive relations for
lossless media are written in the form of equations (1) and (2),
the local and non-local contributions to Willis coupling
manifest as the real and imaginary parts, respectively, of the
coupling coefficients. Further, passivity requires that c ¼ ~c�

(refs 12,15,16). However, in lossy periodic media, both the real
and imaginary parts of the coupling coefficient contain
contributions from both local and nonlocal effects. Thus, for
lossy systems it becomes difficult to distinguish between the two
contributors to Willis coupling, but becomes easier when non-
local effects are rendered negligible by considering an acoustically
small metamaterial element that is isolated rather than part of an
ensemble of mutually interacting elements. Under these
conditions and with a properly designed experiment, coupling
due to nonlocal effects may be neglected and the Willis coupling
coefficients must be equal to each other, that is ~c ¼ c, by
reciprocity12. However, the extracted properties will only apply to
the sample under study.

It is important to note that Willis constitutive relations do not
uniquely describe the scattering from an effective material in the
absence of a source distribution10,15. In other words, it is possible
to represent a material response resulting from subwavelength
heterogeneities and non-local effects with constitutive relations
that are not of the form provided in equations (1) and (2).
However, recent analogous work in electromagnetics
demonstrated that neglecting bianisotropy in the effective
material properties results in parameters that violate the
principles of causality and passivity12,19.

Previous theoretical work has shown that Willis coupling is
absent in typical materials (c ¼ ~c ¼ 0) and, although various
theoretical models have predicted the existence of Willis coupling,
experimental observation of Willis coupling has only recently
been reported in the work by Koo et al.20. Their work
demonstrated a meta-atom consisting of concentric rectangular

prisms with membranes of tunable thicknesses. Using coupled
mode theory, a periodic system of meta-atoms was shown to
predict the existence of acoustic bianisotropy. The structure
proposed by Koo et al.20 is innovative and was experimentally
shown to display behavior associated with acoustic bianisotropy
for an isolated unit cell and metasurface. Their results provide a
valuable confirmation of theoretical predictions going back to the
work of Willis9. However, Koo et al.20 focused primarily on the
utilization of acoustic bianisotropy for the control of acoustic
waves. As a result, several aspects of Willis coupling that are of
fundamental importance to understanding the physical
phenomenon and its importance in AMM, such as the
importance of including these coupling parameters, to predict
and/or measure effective properties that are causal and passive,
were not explored but are addressed here.

The study is structured as follows. First, a simple theoretical
homogenization method is presented to provide insight into the
physical origins of local coupling and to inform the design of an
elementary effective material element that demonstrates local
Willis coupling. Although the results of this model are not new,
the derivation is unique and helps elucidate the physical
mechanisms of Willis coupling. An extraction algorithm is then
presented which makes use of reflection and transmission data.
The algorithm is a generalization of the method published by
Fokin et al.21 and is similar to a procedure developed and used
for electromagnetic materials22. An experimental apparatus
used for a material property measurement is then described and
a simple asymmetric effective material element is proposed.
The need for the generalized extraction algorithm derived in
this study when analysing the asymmetric effective material
element is demonstrated by first using the conventional
extraction method of Fokin et al.21, which provides effective
properties that depend on direction and violate passivity.
Finally, the effective mass density, bulk modulus and Willis
coupling coefficient estimates for the effective material element are
shown to be in good agreement with a supplementary theoretical
prediction and are consistent with physical restrictions based on
passivity. The simplicity of the proposed effective material element
and the theoretical derivations presented in this study clearly
demonstrate the fundamental nature of Willis coupling and the
necessity of including this parameter when describing the response
of a broad class of AMM.

Results
Material properties from expansions by averages. Material
properties are macroscopic descriptors of overall microscopic
behaviour and must therefore represent the microscale physics. In
this work, microscale refers to material structure that is deeply
subwavelength and macroscale refers to behaviour and properties
associated with the overall response. For example, the mass
density of a material is a representation of the relationship
between the macroscopic average of the microscopic momentum
density of a representative material element and its average
velocity (another macroscopic measure of a microscopic quan-
tity). As material properties represent relationships between
averaged quantities (for example, momentum density and velo-
city), they are necessarily approximations of the microscopic
physics. In this study, the material properties of a potentially
heterogeneous element are determined using a continuum
approximation and volume averaging techniques. This theoretical
analysis provides a physical understanding of Willis materials and
suggests a method by which an effective material element may be
designed to exhibit significant Willis coupling.

The average momentum density and the average volume strain
of a representative material element may be expressed
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mathematically as

mh i ¼ 1
O

Z
O

mðx0Þdx0 ¼ 1
O

Z
O

rðx0Þvðx0Þdx0; ð3Þ

eh i ¼ 1
O

Z
O

eðx0Þdx0 ¼ � 1
O

Z
O

k� 1ðx0Þpðx0Þdx0; ð4Þ

where h � i denotes a spatial average over the domain O of
the element and x0 is the position. Although the integrands
of equations (3) and (4) depend greatly on the details of
the (possibly discontinuous) microstructure, they may be
approximated as continuous and analytic if all length scales of
interest are much larger than the largest length scale of the
microstructure23. As shown in Supplementary Note 1, analytic
functions may be expanded in terms of their volume averages and
the volume averages of their derivatives. In addition, the volume
average of an analytic function may be expanded in terms of the
function itself and its derivatives evaluated at a given point. Using
these two results, the expressions in equations (3) and (4) may be
expanded and written as

mðxÞ ¼ hrivðxÞþ Dx2

3
@r
@x

� �
@

@x
vðxÞþO ðkDxÞ3

� �
; ð5Þ

eðxÞ ¼ � hk� 1ipðxÞ� Dx2

3
@ðk� 1Þ
@x

� �
@

@x
pðxÞþO ðkDxÞ3

� �
;

ð6Þ
for a one-dimensional heterogeneous element, where 2Dx is the
length of the material element, x is the position of the center of
the element and k is the largest acoustic wavenumber of interest
or spatial frequency within or around the element. It should
be noted that in deriving these expressions the acoustic fields
were restricted to being smoothly varying functions of position
or kDxoo1, which represents the limit applicable to
metamaterials1–3. In addition, the constituent material
properties were restricted to smooth functions of position.
Although not necessary from a homogenization standpoint, this
last restriction allows the results to be given in a form more
amenable to physical interpretation. These equations may then be
combined with the expression for the conservation of linear
momentum, � qp/qx¼ qm/qt (correct to O[(kDx)2]) and the
definition of strain rate, qe/qt¼ qv/qx, to yield constitutive
relations for the heterogeneous medium in the form of the Willis
equations:

m ¼ reff vþ ~ceff @e
@t
þO ðkDxÞ3

� �
; ð7Þ

� p ¼ keff eþceff @v
@t
þO ðkDxÞ3

� �
; ð8Þ

where

reff ¼ rh i; ð9Þ

keff ¼ 1
k� 1h i ; ð10Þ

~ceff ¼ Dx2

3
@r
@x

� �
¼ ceff þO ðkDxÞ2

� �
; ð11Þ

ceff ¼ � Dx2

3
hri
hk� 1i

@ðk� 1Þ
@x

� �
; ð12Þ

and the x dependence of the field variables (m, p and e) has been
suppressed for convenience. As suggested by the notation, one
may identify the quantities in equations (9)–(12) as the effective

material properties based on a perfect knowledge of the
microstructure of the heterogeneous medium. A full derivation
of equations (7)–(12) is presented in Supplementary Note 2
where it is shown that c ¼ ~c for lossless ideal gases with linear
disturbances. The predictions of the effective material properties
given in equations (9)–(12) provide physical insight as to how a
strongly coupled material element may be designed. It is worth
noting that the expressions for ceff and ~ceff both depend on the
average gradient of the microstructural material properties,
reinforcing the idea that material asymmetry leads to local
Willis coupling. Thus, the effective material element described
below has been designed to have a large average gradient of mass
density.

In practice, equations (9)–(12) do not provide a useful method
to predict the effective material properties of a system. The
reasons for this are, first, constituent material properties rarely
vary smoothly in an effective material element and, second,
metamaterial elements often make use of resonant inclusions with
hidden degrees of freedom that can not be accounted for in the
expansions used above. A more practical approach consists of
assuming an appropriate set of constitutive relations and
determining the effective material properties through the
relations of the volume-averaged field quantities. If a
purely mechanical system is known to possess microstructural
asymmetry, then equations (1) and (2) may be used. By noting
that the net force per unit volume acting on an effective material
element is hfi¼ qhmi/qt, the volume averaged constitutive
equations may be written as

hf i ¼ reff @v
@t

� �
þ ~ceff @2e

@t2

� �
; ð13Þ

� hpi ¼ keff eh iþceff @v
@t

� �
; ð14Þ

and thus the material properties may be determined by

reff ¼ fh i
@v=@th i

����
e¼0

; ð15Þ

~ceff ¼ fh i
@2e=@t2h i

����
v¼0

; ð16Þ

keff ¼ � ph i
eh i

����
v¼0

and ð17Þ

ceff ¼ � ph i
@v=@th i

����
e¼0

: ð18Þ

As the above relationships only require knowledge of the motion
and pressure on the boundaries of a vanishingly small element,
equations (15)–(18) are especially well suited for experimental
methods, which generally do not have access to the internal fields
of an element. The fact that effective material properties may be
inferred only from knowledge of the boundaries of a small,
isolated material element is the principle that underlies the
experimental extraction method described below.

Experimental extraction of Willis properties. An experimental
method of extracting effective material properties from effective
material elements is required to verify the existence of Willis
coupling and to validate the above theoretical predictions.
Fokin et al.21 demonstrated that the frequency-dependent
complex-valued (lossy) mass density and bulk modulus may
be extracted using the reflection and transmission coefficients
measured from a one-dimensional effective material element.
Their method assumes that standard material properties (mass
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density and bulk modulus) fully describe the effective material
element being measured. Although not obvious, a tacit
assumption in using this approach is that the structure to be
measured is symmetric about its centroid. A simple, if extreme,
example that shows that systems without this symmetry may have
different reflection coefficients is a finite rigid slab backed by a
finite layer of vacuum. The transmission coefficient is equal to
zero regardless of the side of incidence, but the phase of the
reflection coefficient differs by 180�. In the symmetric case, the
acoustic pressure reflection and transmission coefficients are the
same regardless of the orientation of the effective material
element with respect to the incident acoustic wave. However, it is
shown below that if one does not take Willis coupling into
account in the material extraction procedure, nonphysical lossy
parameters will be measured for AMM with asymmetric
microstructure.

To eliminate this error, one can generalize the approach of
Fokin et al.21 by assuming that the reflection coefficient depends
on the incident wave propagation direction. This is achieved by
measuring the reflection and transmission coefficients, R and T,
respectively, of a finite length one-dimensional effective material
element in a background medium together with the reflection
coefficient of the same effective material element in the reversed,
or backwards, orientation, RB (the subscript B refers to the
backward orientation). It is noteworthy that the transmission
coefficient in both orientations is the same, TB¼T, when the
effective material element is reciprocal.

A schematic of the situation under consideration is presented
in Fig. 1 where the pressure field decomposed into forward and
backward-propagating waves are represented by pi; k0 and Z0 are
the wavenumber and characteristic impedance of the background
medium, respectively; and k, Z and W are the wavenumber,
characteristic impedance and asymmetry coefficient, respectively,
of the sample under evaluation. The effective material element
parameters k, Z and W are related to angular frequency o,
effective density r, bulk modulus k and Willis coupling
coefficient c, by k ¼ o

ffiffiffiffiffiffiffiffi
r=k

p
, Z ¼ ffiffiffiffiffiffi

rk
p

and W ¼ oc=
ffiffiffiffiffiffi
rk
p

.
In Willis media, Z and W are components of the specific acoustic
impedance, Z�sp ¼ Zð� 1þ iWÞ (assuming e� iot time depen-
dence). For a lossless Willis medium in the absence of non-local
effects, Z and W are purely real. The fact that the specific acoustic
impedance is always complex and changes phase angle with
direction in media with asymmetric features is not commonly
discussed or acknowledged in acoustics and necessitates the
fundamental investigation and experimental validation this work
provides. However, lossless periodic media with asymmetric unit
cells have been shown to have complex Bloch impedances24,25

and Kutsenko et al.26 recently demonstrated that this same form
relates to Willis coupling. It should be noted that specific acoustic
impedances relate volume averaged quantities and do not depend

on the location of a unit cell boundary, whereas Bloch
impedances relate the fields at the boundaries of a unit cell and
do depend on the boundary locations27.

Using the results of Supplementary Note 3 and the scattering
coefficients R¼ [p1(0)/p0(0)]p5¼ 0, RB¼ [p4(0)/p5(0)]p0¼ 0 and
T¼ [p4(L)/p0(0)]p5¼ 0¼ [p1(0)/p5(L)]p0¼ 0 (using the notation of
Fig. 1), the effective characteristic impedance, wavenumber and
asymmetry coefficient may be written as

Z ¼ Z0r
ð1�RÞð1�RBÞ�T2

; ð19Þ

k ¼ i logðxÞ
L

þ 2pm
L

; ð20Þ

and W ¼ � RB�R
ir

; ð21Þ

respectively, where r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�RRBþT2Þ2� 4T2

q
and

x¼ (1�RRBþT2þ r)/2T. The sign of W is positive in the quasi-
static limit and at higher frequencies the sign is determined by
requiring W be a continuous function of frequency. The material
properties are then found using the expressions k¼Zo/k, r¼Zk/o
and c ¼WZ=o. As this analysis assumes reciprocity and that non-
local coupling is negligible, the extracted values of ~c are equivalent
to the values of c. Although the reflection-transmission measure-
ment does return boundary fields, for samples sufficiently small
relative to a wavelength these fields may be used to approximate
average fields and provide meaningful effective properties to
describe the sample under study.

Description of effective Willis material element. To
demonstrate Willis coupling, a plane wave tube-based experiment
was used to determine the reflection and transmission coefficients
of a one-dimensional asymmetric effective material element
using both forward and backward orientations. Details of
the experiment may be found in the Methods section.
The 30 mm-diameter effective material element consisted of a
0.125 mm-thick membrane fabricated from DuPont Kapton FPC
uniformly stretched across the sample holder, a 5.9 mm-thick
air cavity and a 0.45 mm-thick perforated sheet of electrical
insulating paper (Copaco) with 3.1 mm-diameter perforations
yielding a surface void fraction of approximately 24%.
The material properties of the Kapton FPC provided by the
manufacturer are Young’s modulus E¼ 2.758 GPa, Poisson’s ratio

k0, Z0

x = 0 x = L

p0 p2

p3

p4

p5p1

k0, Z0k, Z, W

Figure 1 | Schematic of a three-medium reflection–transmission problem.

The middle layer is assumed to be a Willis material with wavenumber k,

characteristic impedance Z and asymmetry coefficient W. The materials

on the left and right are a uniform background medium with wavenumber

k0 and characteristic impedance Z0. The pressures p0, p2 and p4

represent right-propagating waves and the pressures p1, p3 and p5 represent

left-propagating waves.

Membrane
mass Mm

Air masses
in holes Mh

External force

km

Fm

xm ka

xh

Fh

External force

1 cm

a b
Bending
stiffness

Air cavity

Figure 2 | Photograph and mechanical schematic of the effective material

element. A photograph of the assembled element is shown second from

the bottom of (a) along with membrane and perforated paper samples and

a US 1-cent coin for scale. The membrane is 0.125 mm thick and the paper

is 0.45 mm thick with 3.1 mm-diameter circular holes. The membrane and

the paper are separated by a 5.9 mm-thick air cavity using an aluminum

holder. The mechanical schematic shown in b describes the behaviour of

the effective material element in the long-wavelength limit as a membrane

with a mass Mm and bending stiffness km, an air cavity with stiffness ka and

air masses in the holes of a plate with mass Mh.
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n¼ 0.34 and mass density r¼ 1,420 kg m� 3. Figure 2 provides a
photo of the effective material element and its long-wavelength
lumped-element mechanical schematic, which is described below.

Owing to the relative simplicity of the effective metamaterial
element, an analytical model may be developed to supplement the
experimental results. It is well known that for sufficiently long
wavelengths continuous dynamic elements may be well repre-
sented by lumped mechanical elements (such as springs and
masses)28–30, as demonstrated in Fig. 2 for the effective material
element considered here. The values of the spring constants and
masses used to model the effective material element as defined in
Fig. 2 may be determined using the material properties and
dimensions of the membrane, air cavity and air-filled holes in the
perforated sheet. The work of Bongard et al.31 provides a detailed
model for the membrane mass Mm¼ 1.8830rmhS and stiffness
km¼ a4/(192SD), where rm is the membrane density, h is the
membrane thickness, a is the membrane radius, S¼ pa2 is the
surface area and D¼ Eh3/12(1� n2) is the bending modulus31.
For the membrane considered here, these become Mm¼ 0.23 g
and km¼ 27.1 kN m� 1 with D¼ 5.08� 10� 4 Pa m3. Although
the Bongard model of a membrane provides reasonable results
(see, for example, Fig. 5 below), it does not account for pre-stress
in the membrane or for losses in the system. The degree of
agreement between model prediction and element behaviour can
only be as good as the inputs to the model, and as the effects of
the membrane tension and losses on the values of Mm and km are
not known, an alternative approach to determining these
parameters is to infer them from the measured data. The real
and imaginary parts of Mm and km may be inferred from
measurements of the effective mass density and then used for
comparison with the other effective properties, as discussed more
fully below. The movement of air in the holes in the perforated
paper dominate the response of that component of the
asymmetric element at low frequencies. The perforated paper
may therefore be modeled as the mass of the air in the holes plus
the added mass of the entrained fluid near them. The expression
for the effective mass of this component of the effective material
element is Mh¼ rairS(hþDh)¼ 5.5� 10� 3 g, where rair is
the mass density of air and Dh¼ 16a/3p is end correction to
account for the entrained air29. Finally, in the long wavelength
limit, the air cavity is dominated by its compressibility and may
be modeled as a spring with stiffness ka¼ Sraircair

2 ¼ 16.8 kN m� 1,
where cair is the sound speed in air, which is assumed to be
346 m s� 1 (ref. 29).

The kinematics of the lumped-element model for the effective
material element may be solved given an applied set of forces on
the boundaries. Using this relationship between the kinematics

and the dynamics of the effective material element with
equations (15)–(18) yields a theoretical prediction of the effective
properties:

reff ¼ � km

o2V
þ MmþMh

V
; ð22Þ

keff ¼ L
4S
ðkmþ 4kaÞ�

o2L
4S
ðMmþMhÞ ð23Þ

and ceff ¼ ~ceff ¼ km

o22S
� Mm�Mh

2S
: ð24Þ

A full derivation of these properties is given in Supplementary
Note 4.

Measurement of Willis coupling. Before analysing this
asymmetric effective material element in terms of Willis material
properties, it is motivational to first analyse the effective material
element in terms of standard material properties that neglect
Willis coupling. The experimental extraction technique of Fokin
et al.21 may be used to perform this analysis21, which is
equivalent to the extraction technique described above with RB

set equal to R. Using R as the reflection coefficient leads to the
forward estimates of the effective properties, and using RB as the
reflection coefficient leads to the backward estimates of the
effective properties. The definitions of the forward and backward
orientations for the effective material element considered here are
given in Fig. 3.

As seen in Fig. 4, the two orientations of the effective material
element yield noticeably different effective properties. The bulk
modulus, in particular, shows remarkably different overall trends
for both the real and imaginary parts for the different
orientations. The bulk modulus in the backward orientation is
nearly constant for the frequency range considered here,
whereas in the forward orientation the bulk modulus decreases
approximately linearly as a function of increasing frequency from
1,000 Hz to B1,400 Hz. For the forward orientation, the real part
levels out around 150 kPa for higher frequencies, and the
imaginary part continues to decrease. It is worth noting, in
particular, that the imaginary part of the bulk modulus changes
sign at B1,758 Hz. This is inconsistent with the requirements of
reciprocity and passivity12. The imaginary part of the bulk
modulus in the backward orientation also changes sign at this
frequency, though the magnitudes are close enough to zero that
this may be experimental error. This demonstration of unphysical
material properties through the breaking of passivity is typical of
published effective material properties where microstructural
asymmetry is present but not accounted for21,32,33. The
inconsistent and unphysical nature of the effective property
estimates obtained by neglecting the effects of Willis coupling
strongly suggests the need to account for Willis coupling when
analyzing this effective material element.

The three experimentally inferred effective properties and the
nondimensional asymmetry coefficient W are presented in Fig. 5,
along with the prediction associated with the simple model
described above using the Bongard model to approximate the
behaviour of the membrane (labelled ‘Analytical membrane’) and
including the measured effective density to infer the membrane
properties (labelled ‘Inferred membrane’). The values of Mm and
the real part of km for the ‘Inferred membrane’ approach are
determined by fitting the predicted effective mass density in
equation (22) to the real part of the effective density calculated
from the experimental data at f¼ 1 kHz and at the density
zero-crossing, which occurs at B1,713 Hz. The imaginary
part of km is determined by fitting the model to the imaginary
part of the effective density calculated from the experimental

Membrane Paper

MembranePaper

Source

Forward

Backward Anechoic
termination

Microphone
portsa

b

Figure 3 | Schematic of the experimental apparatus with the effective

material element in the forward and backward orientations. The

apparatus consists of a plane wave tube with a built-in source on one side,

two microphone ports before and two microphone ports after the test

section that contains the metamaterial element and an anechoic

termination. The effective material element is placed in the test section in

either the forward (membrane-air-paper) or backward (paper-air-

membrane) orientation as indicated by a,b, respectively.
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data at 1 kHz and observing that the the imaginary part of
the density nearly follows an o� 7/2 dependence. For these
fits, the model parameters become Mm¼ 0.16 g and km¼ [19.3
� i1.5(f/1,000)� 3/2] kN m� 1, where the frequency f is in Hz.
The losses associated with the bending of the membrane
dominate the losses of the heterogeneous element and may be
treated as the only lossy component, as the other primary
contributor to loss is the viscous loss associated with air flow
through the perforated plate, which is estimated to contribute less
than 1% of the losses of the membrane.

For all four quantities shown in Fig. 5, the ‘Inferred membrane’
predicted and measurement-extracted effective properties exhibit

very similar behavior. The predicted and extracted effective
density values are very similar at all frequencies shown despite the
model only being fit at two frequencies. The real part of the
density is nearly � 80 kg m� 3 near 1,000 Hz, increases smoothly
to 0 around 1,713 Hz and continues on to positive values. The
imaginary part of the effective density is about 9 kg m� 3 at
1,000 Hz and decreases with frequency. The imaginary parts of
the stiffness are negative and relatively close to zero (greater than
� 50 kPa) for the entire frequency range inspected, whereas the
real parts are positive and around 150 kPa. The measurement
data show relatively minor variations that do not appear in the
model predictions. The oscillations occur roughly every 330 Hz,
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Figure 4 | Extracted material properties of the effective material element when neglecting Willis coupling. The effective density is shown in a and the

bulk modulus is shown in b. Results are provided for both the forward and backward measurement configurations. The real and imaginary parts for the

forward configuration are indicated by blue circles and red squares, respectively, whereas the green triangles and magenta inverted triangles indicate the
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which corresponds to a wavelength in air of about 1.0 m or 1.3
impedance tube lengths and is therefore likely to be the result of a
resonance due to the absence of an anechoic termination at the
source end of the impedance tube. These variations also appear to
a lesser extent in the extracted values of c and W. The real parts
of the Willis coupling coefficient are about 0.2 Pa s2m� 1 at
1,000 Hz and decay smoothly as a function of frequency and
display a zero-crossing at B1,773 Hz. The imaginary parts are
about � 0.5 Pa s2 m� 1 at 1,000 Hz and rise asymptotically
towards 0. The real part of the asymmetry coefficient W is
nearly zero for frequencies less than about 1,720 Hz and then
decreases nearly linearly to � 0.25 by 2,000 Hz, whereas the
imaginary part is about � 0.4 at 1,000 Hz, increases slowly to
about � 0.2 by 1,720 Hz and then shows a rapid increase
approaching 0 with increasing frequency.

Discussion
The values of W presented in Fig. 5 clearly demonstrate that
Willis coupling must be accounted for when calculating the
effective specific acoustic impedance of this effective metamaterial
element. For example, at 2 kHz the specific acoustic impedance in
the forward direction is predicted to be Z¼ (1.2� i0.26)
kPa s m� 1 and in the backward direction is predicted to be
ZB¼ (� 1.1� i0.33) kPa s m� 1, which has a phase B29� greater
than �Z. Figure 6 presents a plot of the specific acoustic
impedance in the forward and backward directions as a function
of frequency. Throughout the frequency range presented, the
magnitude or the phase of the specific acoustic impedance
depends noticeably on the direction of propagation. Bradley25

observed a similar directional dependence of Bloch impedances in
a periodic waveguide with asymmetric unit cells, although he did
not interpret the behaviour of the periodically arranged elements
in the waveguide as an effective material and so did not attribute
this phenomenon to Willis coupling. Notably, the splitting of the
impedance in Fig. 6 above B1,720 Hz is very similar to the
splitting shown in the lowest band depicted in Fig. 8 of ref. 25.
The agreement of the two theoretical predictions with the
experimentally obtained effective properties then strongly
suggests that this system exhibits non-trivial Willis coupling.

Thus, despite the fact that Willis coupling may be termed a
higher-order effect, it is clearly important when subwavelength
asymmetry is present.

A few brief comments should be made on the interpretation of
the effective behaviour of this simple effective material element as
material properties. The first is in regards to element size and the
validity of the effective medium approximation using boundary
fields. One of the primary requirements of using homogenization
methods to approximate a heterogeneous structure as an
effective material is that the wavelength in the medium be much
larger than a representative effective material element, or kLoo1.
The predicted and measured effective wavenumber multiplied by
the effective material element length are shown in Fig. 6, as well
as for the background medium (air). All of the values of kL and
k0L are o1 throughout the frequency range of interest and are
much o1 near the density zero-crossing around 1,730 Hz.
Therefore, the effective wavelength is sufficiently long to consider
the sample as an effective isolated material element with
negligible non-local effects. For this case, volume averaged
properties may be determined from the measured boundary
fields. In addition, in this limit the constitutive relations may be
written without convolutions.

The second important comment about this measurement and
model is in regards to the inability to determine the response of
an infinite array of effective material elements from the
measurement of a single effective material element. As the
measurement was made on a single effective metamaterial
element, any multiple-scattering interactions that would take
place in a material composed of large numbers of these elements
are clearly omitted by both the model and measurement
presented here. Thus, it is likely to be that placing two or more
of these effective material elements in series would lead to a
different set of effective properties, which is contrary to the
concept of a material. Indeed, it has been shown that many unit
cells are necessary for a periodic system to be correctly considered
a material34. On the other hand, if several of these effective
material elements were dispersed randomly within some matrix
as inclusions and spaced far enough apart such that multiple
scattering effects may be neglected, the macroscopic material
properties of this metamaterial would be determined by an

0

2

4

0

90

Frequency (Hz)

|Zsp| (kPa s m–1)

Zsp (deg)

Forward

Backward

1,000 1,500 2,0001,000 1,500 2,000
0

0.5

1
a b

c

Frequency (Hz)

keffL

Imaginary
Measurement
Analytical membrane
Inferred membrane

Real
Inferred membrane

Analytical membrane
Measurement

Background

–90

Figure 6 | Measured and predicted effective wavenumber and specific acoustic impedance. The effective wavenumber is shown in a, whereas the

magnitude of the effective specific acoustic impedance and the associated phase in the forward and backward orientations is shown in b,c, respectively. The

labelling of the line styles in a also hold for b,c. There appears to be a critical frequency, which is about 1,720 Hz. The effective wavenumber is almost

entirely imaginary below this critical frequency and is almost entirely real above the critical frequency. The magnitude of the specific acoustic impedance is

different for the two orientations below the critical frequency, but converge at a minimum value and increase nearly identically above the critical frequency.
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average of the matrix properties and the effective inclusion
material properties35. Then, in the sense of an isolated inclusion,
the properties derived above may be treated as the effective
material properties.

Finally, by comparing with effective properties extracted with
conventional methods, the modified procedure accounting for
Willis coupling was demonstrated to return physically
meaningful effective properties. Traditional properties
determined from a single reflection and transmission can only
describe an effective material element in that exact measurement
condition, and generally, one or more of the properties will not
satisfy passivity and/or reciprocity restrictions. However, the
modified procedure returned properties, which describe both
orientations and satisfy physical restrictions for macroscopic
parameters.

This study demonstrates experimentally and theoretically the
need to account for local Willis coupling when determining
physically meaningful material properties in one-dimensional
asymmetric metamaterials. The results show that neglecting to
account for Willis coupling leads to measured effective properties
that depend on the orientation of the sample and are non-causal
and non-passive. This paper also presents an experimental
method to determine effective local Willis material properties of
one-dimensional metamaterials. This experimental method has
been demonstrated and compared with theoretical predictions
with good agreement.

Methods
Plane-wave tube experiment. A custom aluminum sample holder (shown in
Fig. 2) was used to position two thin sheets of material around a 5.9 mm
(±0.2 mm) cavity of air between the main tube and the extension tube of a BSWA
model SW477 impedance tube. Both the main tube and the extension tube have
two microphone ports. The extension tube was terminated with a conical foam

insert to minimize end reflections. The absorption coefficient of this termination
was measured to be above 0.9 for the frequencies of interest (1–2 kHz). The input
signal was a swept sine waveform with start and stop frequencies of 1,000 and
2,000 Hz, and a total duration of 5.12 s, resulting in a spectral resolution of
0.195 Hz. Coherent time-domain averaging of 20 waveforms was used to improve
the signal-to-noise ratio. Both excitation and acquisition were achieved using a
DataPhysics Quattro and the associated software SignalCalc. The acoustic pressure
signals were measured at each port of the impedance tube using a single PCB
Model 130E21 6.3 mm (1/4 inch) pressure microphone. Transfer functions between
each measured acoustic pressure signal and the drive signal were then calculated.
A single sensor technique was used to eliminate the need for a sensor cross-
calibration procedure36. For frequencies between 1 and 2 kHz, the measured
coherence between the drive voltage signal and the microphone output signals was
greater than 0.9985, implying a high signal-to-noise ratio and a linear system.

Scattering coefficients. The scattering coefficients were obtained using standard
techniques36. Using the notation introduced in Fig. 1, we may define the ratios
A¼ p1(0)/p0(0), B¼ p4(L)/p0(0) and C¼ p5(L)/p0(0). In the limit that the
terminations are anechoic, the ratios A and B are the scattering coefficients R and
T, respectively, and C¼ 0. The effective material element was then removed and
replaced in the backward orientation (see Fig. 3), such that c! �c, and the
reflection and transmission coefficients were measured again. The scattering
parameters were then determined using the relations

R ¼ A�BBC
1�CCB

; ð25Þ

TB ¼
BB �ACB

1�CCB
; ð26Þ

T ¼ B�ABC
1�CCB

ð27Þ

and RB ¼
AB�BCB

1�CCB
; ð28Þ

where the B denotes the backward orientation. It is noteworthy that for reciprocal
systems, TB¼T. This fact was verified for the measurements discussed in the
Results section, as shown in Fig. 7, which presents the experimentally determined
scattering parameters R, RB, T and TB as a function of frequency. In addition, for a
lossless sample, |R|¼ |RB| and the phases of the two reflection coefficients always
differ for an asymmetric sample.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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