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Abstract

Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and 

prevention therapies in Alzheimer’s Disease. The Alzheimer’s Disease DREAM Challenge was 

designed as a computational crowdsourced project to benchmark the current state-of-the-art in 

predicting cognitive outcomes in Alzheimer’s Disease based on high-dimensional, publicly 

available genetic and structural imaging data. This meta-analysis failed to identify a meaningful 

predictor developed from either data modality, suggesting that alternate approaches should be 

considered for to prediction of cognitive performance.

2. Background

The Alzheimer’s Disease DREAM Challenge (http://dx.doi.org/10.7303/syn2290704) was 

designed to provide an unbiased assessment of current capabilities for estimation of 

cognition and prediction of cognitive decline using genetic and imaging data from public 

data resources using a crowd-sourced approach. The ability to predict rate of cognitive 

decline – both prior to and following diagnosis – is essential to effective trial design for the 

development of therapies for Alzheimer’s Disease (AD) prevention and treatment. Major 

collaborative efforts in the field are assessing the association of genetic loci with AD 

diagnosis and the application of structural imaging for development of early biomarkers of 

diagnosis, but the utility of these approaches to estimate cognition or predict cognitive 

decline is not well established. This project was designed under the advisement of a panel of 

experts in the field to evaluate whether these questions could be meaningfully addressed 
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with current methodologies given existing public data sources. To ensure that these 

questions were tested across a broad spectrum of the latest analytical approaches, the study 

was designed as a crowdsourced, community-based challenge in which participants were 

invited to address one or more of the following three problems: (1) The prediction of 

cognitive decline over time based on genetic data. (2) The prediction of resilience to 

cognitive decline in individuals with elevated amyloid burden based on genetic data. (3) The 

estimation of cognitive state based on structural magnetic resonance (MR) imaging data.

3. Results

3.1 Study design and data harmonization

To ensure that predictors were detecting true biological variation rather than study-specific 

technical variation, this project required inclusion of data from multiple study sources. 

While genetic and imaging data have been generated within many rich longitudinal cohorts 

across the field, the procurement and harmonization of these data sets was a non-trivial 

problem that required solutions to overcome political, ethical, and technical barriers. For 

example, the generation of whole genome sequencing data across multiple AD cohorts 

within the NIH-funded AD sequencing project has resulted in a powerful resource for 

genetic analysis in the field but longitudinal information on cognitive traits is not readily 

available in those datasets. Despite limitations on data accessibility, multiple relevant data 

sources were identified and used in this project including: the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI)(1), the Rush Alzheimer’s Disease Center Religious Orders 

Study(2) and Memory and Aging Project (MAP)(3) and the European AddNeuroMed(4) 

study, which is part of InnoMed, a precursor to the Innovative Medicines Initiative. Data 

selection and processing was performed based on data availability across these three 

datasets. As such, cognition was defined using Mini Mental State Examination (MMSE) 

scores(5), genetic data was provided based on imputation across array-based genotype data, 

and structural MR imaging data was reprocessed in each cohort using a common processing 

pipeline. Genetic and imaging data was supplemented with a limited set of covariates 

including diagnosis, initial MMSE score, age at the initial examination, years of education, 

gender, and APOE haplotype. Participants were provided with data from ADNI to train 

algorithms over a four-month period and, to ensure that participation was not limited by 

access to compute resources, they were offered use of the IBM z-Enterprise cloud to perform 

analyses. The challenge generated significant interest with 527 individuals from around the 

world registered to participate. A leaderboard displayed accuracy of submissions throughout 

the duration of the challenge: 1,157 submissions were made for problem 1,478 submissions 

for problem 2, and 434 submissions for problem 3. Thirty-two teams submitted final results 

that were scored based on prediction/estimation of blinded outcomes within ROS/MAP for 

genetic predictions and AddNeuroMed for imaging-based estimations (Figure 1).

3.2 Genetic prediction of cognitive decline

The first challenge question assessed the ability of current methods to predict change in 

cognitive examination performance based on genetic data. High prediction accuracy would 

signal the potential for noninvasive biomarkers of cognition to have a major clinical impact 

on early AD diagnosis and prevention. Previous efforts to develop predictors of change in 
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cognitive function have not succeeded in providing robust and replicable models(6–8). 

Genetic variation has been demonstrated to influence AD status: rare genetic mutations at 

several loci are implicated in familial forms of early-onset disease(9) while common 

variation contributes 33% to variance in sporadic AD and 22 loci have been implicated by 

large-scale genetic association analyses(10, 11). However, with the exception of the APOE4 

haplotype, there has been little success in transforming these genetic associations into 

meaningful clinical predictions of cognitive decline. For this purpose, participants were 

challenged to predict 2-year changes in MMSE scores based on genotypes imputed from 

SNP array data. Participants trained their algorithms with 767 ADNI samples and the 

algorithms’ predictions were evaluated on a test set of 1,175 ROS/MAP samples with 

blinded outcome measures. The algorithm with the best predictive performance at the 

midpoint of the challenge did not contain any genetic features beyond APOE haplotype. 

Since the goal of this subchallenge was to assess genetic contribution to prediction of 

cognitive decline, this top-ranked algorithm was openly shared across teams as an interim 

baseline upon which to incorporate additional genetic predictors (http://dx.doi.org/10.7303/

syn2838779). Eighteen teams submitted final predictions. The majority of methods 

performed significantly better than a permutation-based random model prediction (Figure 

2a). A cluster of six methods performed significantly better than the others (including the 

interim baseline model) but were statistically indistinguishable amongst themselves (Figure 

2d). Of these, the prediction with the best overall score (team GuanLab_umich from the 

University of Michigan) achieved a Pearson correlation of 0.382 and a Spearman correlation 

of 0.433 (the overall score was a rank-based combination of these two measures of 

performance; see online Supplement and Supplementary Methods: http://dx.doi.org/

10.7303/syn3383106). However, no significant contribution of genetics beyond APOE 
haplotype to predictive performance was observed across any of the submissions. Given the 

small sample size, no conclusions can be inferred from this analysis regarding the existence 

of genetic loci associated with cognitive decline. Rather, these observations suggest that 

predictors of cognitive decline developed based on genetic data will not be useful within the 

clinical setting.

3.3 Genetic prediction of cognitive resilience

The second question challenged participants to identify genetic predictors that could 

distinguish individuals who exhibit resilience to AD pathology as defined by minimal 

change in cognitive function despite evidence of amyloid deposition(12, 13). Identification 

of genetic signatures predictive of cognitive resilience would aid in the elucidation of 

mechanisms that may confer resilience, providing a powerful tool to help advance AD 

prevention strategies and treatment development. Eleven teams submitted predictions of 

resilience based on a training set derived from 176 ADNI subjects. Evaluations were made 

using data derived from 257 individuals from the ROS/MAP data. Despite using the largest 

such public dataset assembled to date, participants were unable to develop algorithms with 

predictive performances significantly better than random (see Figure 2b, online Supplement 

and Supplementary Methods in Synapse: http://dx.doi.org/10.7303/syn3383106). While it is 

likely that the study was underpowered due to small sample size and trait heterogeneity, this 

result suggest that information about cognitive resilience is not easily discoverable from 

SNP analysis.
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3.4 Structural imaging-based estimation of cognition

The third question challenged participants to estimate cognitive state using structural brain 

image data (Figure 1, lower panel). Brain imaging has emerged as a powerful method for 

monitoring neurodegeneration and there is great enthusiasm in the field to make use of 

images for diagnosis and prediction. There have been many attempts in the past to correlate 

changes in brain shape with disease progression and/or diagnosis, conventionally using 

measures of volume for a given brain region(14, 15). More detailed shape measures of image 

features including cortical thickness, curvature, and depth have also been found to be 

relevant to a variety of neurological conditions(16). Participants were challenged to estimate 

MMSE scores based on structural brain images, or shape information derived from these 

images. Participants trained algorithms using ADNI data (N=628) and were evaluated using 

AddNeuromed data (N=182) for which they were blind to outcome measures. To engage as 

many participants as possible from both within and beyond the neuroimaging community, 

the data were provided both as raw MR images and as tables containing shape measures 

(volume, thickness, area, curvature, depth, etc.) for every labeled brain region. Thirteen 

teams submitted estimates for final evaluation and all teams performed better than a random 

model (see online Supplement and Supplementary Methods in Synapse: http://dx.doi.org/

10.7303/syn3383106). Three teams performed significantly better than the others (teams 

GuanLab_umich from the University of Michigan, ADDT from the Karolinska Institute and 

Pythia from the University of Pennsylvania) (Figure 2c) but were statistically 

indistinguishable from one another and tied for top average rank (Figure 2e). The algorithm 

that generated the best absolute mean combined rank (Team GuanLab_umich) achieved a 

concordance correlation coefficient of 0.569 and Pearson’s correlation of 0.573 (the overall 

score was a rank-based combination of these two measures of performance). The most 

common features that contributed heavily to the MMSE estimates across the algorithms 

were hippocampal volume and entorhinal thickness, corroborating prior work(17–19). The 

top three teams also found that inclusion of shape measures of the entorhinal cortex 

(volume, curvature, surface area, travel and geodesic depth) improved overall estimation. 

Other features that contributed to predictions within the top three teams’ results included 

volume of inferior lateral ventricle and amygdala (see online Supplement and 

Supplementary Methods in Synapse: http://dx.doi.org/10.7303/syn3383106). These results 

validate an established relationship between structural imaging data and cognition. However, 

the correlative performance of these estimators was low suggesting that their application in 

the clinical setting may not be sufficient to inform patient care.

4. Discussion

The AD DREAM Challenge provided a formalized assessment of the ability to develop 

meaningful predictions of cognitive performance from public genetic or imaging data using 

contemporary state-of-the-art predictive algorithms. Predictive performance across all three 

of the subchallenges was modest and most methods performed roughly equivalently. Given 

this uniform performance, we do not expect that the presented results are a failure of current 

modeling methodologies. A more likely explanation is that the data used to address these 

questions were inadequate to support these tasks. We also note that the majority of research 

teams that participated in this challenge did not have expertise in the field of AD. Although 
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the few teams that did posses this knowledge did not do better than the others, there remains 

the possibility that performance would have been improved by the inclusion of more domain 

experts.

4.1 Use of genetic information for cognitive prediction

The modest performance observed in the subchallenges focused on genetic analysis 

demonstrated that contemporary algorithms were not able to leverage genetic signal to make 

useful predictions for cognition. These results support the prevailing expectation that genetic 

variants of moderate to high frequency will not support viable biomarker development in 

AD (9–11). Although heritability estimates and linkage studies have demonstrated that there 

is a considerable estimated genetic contribution to AD onset and progression (11, 20, 21), 

evidence both within the AD field and across other complex disease (22) traits has indicated 

that this overall genetic contribution is the aggregated compilation of a large number of loci 

with small – independent or epistatic – effects. Historically, this type of signal is difficult to 

capture in predictive models and unlikely to be useful in a diagnostic setting (23). 

Furthermore, cognition is highly influenced by a host of non-genetic factors relating to 

lifestyle choices and accumulated exposures that were not represented across all of these 

datasets and, in fact, are not fully captured in most cohorts (24–27). Non-genetic 

contributions to cognitive performance may themselves provide an important base for 

successful predictions. Within the context of genetic analysis, the absence of these factors 

from models confounds the ability to detect real genetic signal and impacts the ability to 

accurately model state-specific genetic contributions. As such, future inquiry into the use of 

genetic testing for prediction of cognitive performance and AD risk assessment may be 

better served by focusing on the contribution of rare genetic variation. Recently discovered 

disease-associated rare variants have larger effect sizes than common variants and confer 2 

to 5 fold greater risk or protection in carriers relative to the general population (28–30). 

Ongoing large-scale sequencing analyses will identify additional associated rare risk 

variants. In sufficient numbers, the aggregate prevalence would support the development of a 

genetic diagnostic containing a library of rare variants.

4.2 Use of structural imaging data for cognitive estimation

While the inexpensive and noninvasive nature of genetic testing makes this approach 

amenable to population-level disease screening, the resource-intensive nature of image-

based testing is better positioned for careful evaluation of high-risk individuals. As such, 

these approaches are needed to provide a higher confidence estimate of cognitive 

performance. Although a variety of methods developed within the context of this challenge 

were able to successfully estimate cognition, none of these methods were sufficiently 

accurate to merit clinical consideration. These observations support previous work in the 

field (17, 19) and highlight the imperfect relationship between brain structure and function. 

Newer imaging modalities that focus on brain function and/or pathology – such as FDG-

PET (31) or tau imaging (32)– may prove more successful for assessing cognitive 

dysfunction.
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4.3 Effective performance of meta-analysis across diverse cohorts

A major consideration for any meta-analysis is the issue of appropriate harmonization of 

data across disparate sources. Despite leveraging several of the most deeply phenotyped 

cohorts in the field, this challenge limited analysis to those traits that were in common across 

cohorts. Although this approach to data harmonization is standard practice for meta-analyses 

(10), it greatly reduced the depth of the information available for modeling and influenced 

the selection of cognitive measures for use as prediction outcomes. Because each cohort had 

performed a battery of study-specific tests, this greatly limited the ability for finer grained 

assessment across cognitive processes. A more sensible approach for future analyses may be 

to focus effort on more sophisticated methods to calibrate disparate cognitive phenotypes 

across cohorts (33). Another undesirable consequence of the focus on traits measured in 

common was the inability to incorporate into model development the full spectrum of non-

genetic and non-imaging factors that are known to influence cognitive performance (24–27). 

This suggests the need for development of alternate approaches for integrating 

heterogeneous data and/or assessing replication across cohorts. Alternatively, smaller scale 

analyses that prioritize phenotypic depth over sample size may afford a more refined view of 

disease.

In summary, this challenge demonstrated that predictions of cognitive performance 

developed from genetic or structural imaging data were modest across a diverse set of 

contemporary modeling methods. Future efforts to identify clinically relevant predictors of 

cognition will benefit from a focus on alternate data sources as well as methods that work to 

incorporate greater phenotypic complexity.
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Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd 
and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer 
Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development 
LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis 
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical 
Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. 
Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). 
The grantee organization is the Northern California Institute for Research and Education, and the study is 
coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data 
are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. This research was 
also supported by NIH grants P30 AG010129 and K01 AG030514.

The Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago

Data collection was supported through funding by NIA grants P30AG10161, R01AG15819, R01AG17917, 
R01AG30146, R01AG36836, U01AG32984, and U01AG46152, the Illinois Department of Public Health, and the 
Translational Genomics Research Institute.

European AddNeuroMed study

The AddNeuroMed data are from a public-private partnership supported by EFPIA companies, SMEs and the EU 
under the FP6 programme. Clinical leads responsible for data collection are Iwona Kłoszewska (Lodz), Simon 
Lovestone (London), Patrizia Mecocci (Perugia), Hilkka Soininen (Kuopio), Magda Tsolaki (Thessaloniki), and 
Bruno Vellas (Toulouse).
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Systematic Review

Extensive literature searches using PubMed establish this as the largest study to date 

using demographic, clinical, imaging and genetic data to predict cognitive decline and the 

first major instance of crowdsourcing analysis in AD.

Interpretation

Over 500 scientists worldwide in the analytical portion of the Challenge, demonstrating 

the viability of crowdsourced approaches in AD research. Unfortunately, we were unable 

to detect meaningful predictors of either cognitive decline or resilience through this 

effort.

Future Directions

This experiment in crowdsourcing AD analyses is an invaluable first-of-its-kind 

contribution that provides a snapshot of both the strengths and limitations in big data 

analytics in AD research. The relative inaccessibility and heterogeneity across data 

sources severely limits formalized integration. Mandates on data sharing, considerations 

of standardized data collection, and mechanisms to integrate heterogeneous data are 

necessary to address these issues. We anticipate that this work will initiate those 

discussions across the community.
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Fig. 1. Challenge overview
The top schematic summarizes the three challenge questions on the left column, the training 

data in the middle, and the test data on the right, including numbers of subjects. The symbols 

represent sources of data (demographic, ROS/MAP genetic, and ADNI or ANM brain 

images and shape information). The bottom panel provides example brain image labels and 

shape information provided to the participants for question 3. Anatomical labels for left 

cortical regions are shown on the left and just a couple of the cortical surface shape 

measures are shown on the right (travel depth on top and mean curvature below), for both 

uninflated and inflated surfaces (top and bottom rows, respectively).

Allen et al. Page 14

Alzheimers Dement. Author manuscript; available in PMC 2017 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Performance evaluation results
Panels a, b, and c report the p-values (in negative log10 scale) for intersection union tests 

investigating which teams performed better than random for questions 1, 2, and 3, 

respectively. Explicitly, for question 1 (panel a) we tested the null hypothesis that at least 

one of the four correlation coefficients (namely, Pearson/clinical, Pearson/clinical + genetics, 

Spearman/clinical, Spearman/clinical + genetics) is equal to zero, against the alternative that 

all four correlation coefficients are larger than zero. Adopting a 0.05 significance level, 26 

out of the 32 submissions were statistically better than random, after Bonferroni multiple 

testing correction for 32 tests (submissions crossing the black vertical line). For question 2 
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(panel b), we tested the null hypothesis that balanced accuracy = 0.5 or AUC = 0.5, against 

the alternative that balanced accuracy > 0.5 and AUC > 0.5. In this case, no model 

performed significantly better than random and, therefore, no best performer was declared. 

For question 3 (panel c), we tested the null hypothesis that Pearson’s correlation (COR) or 

Lin’s concordance correlation coefficient (CCC) are equal to zero, against the alternative 

that both COR and CCC are larger than zero. Adopting a 0.05 significance level, all 23 

submissions were statistically better than random, after Bonferroni correction. For all three 

questions, the p-values were computed from an empirical null distribution based on 10,000 

permutations. Panels d and e report the bootstrapped assessment of ranks for questions 1 and 

3, respectively. Samples were resampled with replacement from the original data (true 

outcome and team’s predictions), and the ranks of the different teams were re-assessed in 

each of 100,000 re-samplings. Submissions were sorted according to the median of their 

bootstrapped average ranking distributions. The black horizontal line represents the posterior 

odds cutoff from the Bayesian analysis. Teams above the black line are statistically tied to 

the top ranked model, according to a posterior odds threshold of 3.
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