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The Himalayan Sherpas, a human population of Tibetan descent, are
highly adapted to life in the hypobaric hypoxia of high altitude.
Mechanisms involving enhanced tissue oxygen delivery in compari-
son to Lowlander populations have been postulated to play a role in
such adaptation. Whether differences in tissue oxygen utilization (i.e.,
metabolic adaptation) underpin this adaptation is not known, how-
ever. We sought to address this issue, applying parallel molecular,
biochemical, physiological, and genetic approaches to the study of
Sherpas and native Lowlanders, studied before and during exposure
to hypobaric hypoxia on a gradual ascent to Mount Everest Base
Camp (5,300 m). Compared with Lowlanders, Sherpas demonstrated
a lower capacity for fatty acid oxidation in skeletal muscle biopsies,
along with enhanced efficiency of oxygen utilization, improved mus-
cle energetics, and protection against oxidative stress. This adaptation
appeared to be related, in part, to a putatively advantageous allele
for the peroxisome proliferator-activated receptor A (PPARA) gene,
which was enriched in the Sherpas compared with the Lowlanders.
Our findings suggest that metabolic adaptations underpin human
evolution to life at high altitude, and could have an impact upon
our understanding of human diseases in which hypoxia is a feature.
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At high altitude, low barometric pressure is accompanied by a
fall in the partial pressure of inspired O2, resulting in

hypobaric hypoxia. The cellular response to hypoxia is orches-
trated by the hypoxia-inducible factor (HIF) transcription factors,
with HIF-1α and HIF-2α, respectively, mediating responses to
short-term and more sustained hypoxia (1). In normoxia, prolyl-
hydroxylases target HIFα subunits for destruction (2). Under low
O2 partial pressures, however, HIF-1α and HIF-2α are stabilized
and dimerize with the nuclear HIF-1β subunit. This dimer interacts
with hypoxia-response elements in promoter regions to increase
expression of specific genes, for example, encoding erythropoietin
(EPO) and vascular endothelial growth factor A (VEGFA) (3).
The Tibetan Plateau has an average altitude of some 4,500 m.

Humans were first present on the plateau ∼30,000 y ago, with the
earliest permanent settlements appearing 6,000–9,000 y ago (4), a
period sufficient to drive the natural selection of genetic variants
(and associated features) favoring survival and performance in
sustained hypoxia (5, 6). Evidence supports the selection of ge-
netic variants encoding components of the HIF pathway, such as
EPAS1 (encoding HIF-2α) (7) and EGLN1 [prolyl-hydroxylase-2
(PHD2)] (8) in Tibetan populations. One population, the Sherpas,
migrated from Tibet to eastern Nepal ∼500 y ago and exhibits
remarkable physical performance at extreme altitude (9).
Although the human adaptive response to hypoxia is incom-

pletely understood, mitigation against the fall in convective O2
delivery plays an important role. In Lowlanders, increased

ventilation and cardiac output, as well as the production of more
O2-carrying red blood cells, help to sustain O2 delivery and con-
tent (10, 11). Likewise, exhaled concentrations of nitric oxide
(NO), a key regulator of blood flow, are higher in Tibetans than
Lowlanders (12), as are circulating NO metabolites and limb
blood flow (13). The rise in red cell mass in response to hypobaric
hypoxia is not as great in Tibetans as in Lowlanders, however
(14, 15), suggesting that adaptation involves more than just in-
creased O2 delivery. In fact, acclimatization also involves alter-
ations in O2 use. In Lowlander muscle, mitochondrial density
declines with sustained exposure to extreme altitude (16–18),
whereas exposure to more moderate high altitude is associated
with a reprogramming of muscle metabolism (19) even without
altered mitochondrial density (20), including down-regulation of
electron transfer complexes (19) and tricarboxylic acid (TCA)
cycle enzymes (21), loss of fatty acid oxidation (FAO) capacity (19,
20), and improved oxidative phosphorylation (OXPHOS) cou-
pling efficiency (20). Sherpas have lower muscle mitochondrial
densities than unacclimatized Lowlanders (22), but little is known
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of their metabolic adaptation to hypoxia, or any genetic selection
that might underpin it. A role has been suggested for peroxisome
proliferator-activated receptor α (PPARα), a transcriptional
regulator of FAO in liver, heart, and muscle. HIF down-
regulates PPARα in some tissues (23), although there is evi-
dence for selection of variants in its encoding gene (PPARA) in
some Tibetan subgroups (8, 24). We hypothesized that meta-
bolic adaptation and PPARα, in particular, play a central role
in the Sherpa adaptation to hypobaric hypoxia.

Results and Discussion
Selection of PPARA Variants in Sherpas. Lowlander and Sherpa
subjects were participants of the research expedition, Xtreme
Everest 2 (25). The Lowlanders comprised 10 investigators se-
lected to operate the Mount Everest Base Camp (EBC) labo-
ratory. Sherpas (n = 15) were a gender-matched (73% male,
compared with 70% in Lowlanders) and age-matched (26.8 ±
1.2 y, compared with 28.0 ± 1.6 y in Lowlanders) group living in
Kathmandu and the Solukhumbu and Rolwaling valleys. No
subject ascended higher than 4,200 m in the 3 mo preceding the

trek, or above 2,500 m in the preceding 3 wk. In addition,
Sherpas presented evidence of sole Sherpa ancestry for two
generations (i.e., four Sherpa grandparents). The frequency of
putatively advantageous PPARA alleles (8) was higher in Sherpas
than Lowlanders (Fig. 1A and Table S1), with genotype fre-
quencies of the cohorts being significantly different at two single-
nucleotide polymorphisms (SNPs), rs6520015 and rs7292407
(P = 0.0091), although not at rs9627403. This finding reflected
patterns reported in some other Tibetan groups (26).

Muscle Hypoxia and Circulating NO Metabolites. Baseline testing, in-
cluding blood sampling, muscle biopsy sampling, high-resolution
respirometry of permeabilized muscle fibers, and oral glucose toler-
ance tests (OGTTs), took place in London (35 m) for Lowlanders
and in Kathmandu (1,300 m) for Sherpas (25). All subjects then
followed an identical ascent (Fig. 1B) from Kathmandu to EBC
(5,300 m), whereupon further testing took place at an early time point
(A1: 15–20 d postdeparture for Lowlanders, 11–12 d for Sherpas) and
a late time point (A2: 54–59 d postdeparture) for Lowlanders only. At
the time of sampling, both groups had passed through the acute phase
of hypoxic exposure (<24 h) (1) and had been sufficiently exposed to
chronic hypoxia for acclimatization to have occurred. Indeed, arterial
hemoglobin-O2 saturations were similarly low in both groups (Fig.
1C), whereas muscle expression of the HIF-target VEGFA increased
in all subjects (Fig. 1D), indicating a molecular response to hypoxia.
Following measurements at the early time point, the Lowlanders
remained at EBC for 2 mo to carry out research, presenting an op-
portunity to collect data pertaining to longer term metabolic accli-
matization. Interestingly, VEGFA expression was no longer elevated
by this time point, suggesting further acclimatization had occurred.
To our surprise, there were no differences in circulating

N-nitrosamine (RNNO), S-nitrosothiol, nitrate, or nitrite con-
centrations between Lowlanders and Sherpas at baseline (Fig. 1
E and F and Fig. S1). In Lowlanders, a transient increase in
plasma RNNO levels occurred upon arrival at EBC (P < 0.05)
but disappeared by the later time point (Fig. S1A). In Sherpas,
plasma nitrate levels fell at altitude (P < 0.05; Fig. 1E) and nitrite
levels increased (P < 0.05; Fig. 1F), whereas nitrite levels fell by
the later time point (P < 0.05) in Lowlanders. The absence of
large differences in NO metabolites between the groups at
baseline or at altitude suggested an adaptive phenotype in
Sherpas that is distinct from other Tibetan highlanders (13).

Lower FAO Capacity in Sherpas. Skeletal muscle biopsies revealed
marked differences in gene expression and FAO capacity between
Sherpas and Lowlanders. Expression of PPARA mRNA was 48%
lower in Sherpas than Lowlanders (P < 0.05; Fig. 2A); thus, the
putatively advantageous PPARA allele is associated with di-
minished expression. Correspondingly, expression of the PPARα
target CPT1B was 32% lower in Sherpas at baseline compared
with Lowlanders (P < 0.05; Fig. 2B). The PPARA gene contains
139 SNPs. One of the tagging SNPs reported by Simonson et al.
(8) is rs6520015; however, it appears to be a noncoding variant. It
is thus uncertain whether the SNP itself affects transcriptional
regulation or whether it tags a functional variant elsewhere,
modifying expression or mRNA stability. Ascent to EBC did not
alter PPARA expression in either group; however, despite this
finding, CPT1B expression decreased by 44% in Lowlanders (P <
0.05) but did not decrease further in Sherpas. This result suggests
that the Lowlander response to hypoxia involves decreased
PPARα transcriptional activity without changes in PPARA ex-
pression, similar to hypoxic rat skeletal muscle (27).
Gene expression changes do not necessarily reflect protein

levels or activity; therefore, we measured activity of the β-oxi-
dation enzyme 3-hydroxyacyl–CoA dehydrogenase, finding it to be
27% lower in Sherpas than Lowlanders at baseline (P < 0.05), and
not changing in either group following ascent (Fig. 2C). Moreover,
fatty acid oxidative phosphorylation capacity (FAOP) was mea-
sured as the oxygen flux in saponin-permeabilized muscle fibers
with octanoyl carnitine, malate, and ADP, using high-resolution
respirometry (28). FAOP was 34% lower in Sherpas than
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Fig. 1. Subject genetics, ascent profile, arterial blood O2 saturation, muscle
hypoxia, and circulating NO metabolites. (A) Genotypes of Lowlanders and
Sherpas at three PPARA SNPs. Subjects homozygous for the putatively ad-
vantageous allele are shown in black, heterozygous subjects are shown in
gray, and subjects homozygous for the nonadvantageous allele are shown in
white (digits in segments refer to the number of subjects with a specific
genotype). (B) Ascent profile, including timing of biopsies. A1, early-altitude
exposure; A2, late-altitude exposure; B, baseline; L, Lowlanders; S, Sherpas.
Arterial hemoglobin-O2 saturations (C), muscle VEGFA expression (D), and
plasma nitrogen oxides (E and F) in Lowlanders and Sherpas at baseline and
at early and late altitudes are shown. Mean ± SEM (n = 4–15). Sa, arterial
blood O2 saturation. †P ≤ 0.05, †††P ≤ 0.001 at B vs. A1 within cohort.
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Lowlanders at baseline (P < 0.01), and did not change in either
group following ascent (Fig. 2D and Fig. S2). Ex vivo measure-
ments may be particular to assay conditions used; therefore, we
also measured muscle metabolite levels to indicate changes in
metabolism in vivo. Total carnitine concentrations decreased in
Lowlanders with time spent at EBC (P < 0.05), although they
were not significantly different from total carnitine concentra-
tions in Sherpas at baseline (Fig. 2E). The ratio of long-chain
acylcarnitines to total carnitines, however, increased in Low-
landers with time at altitude (P < 0.05; Fig. 2F), suggesting in-
complete FAO results in accumulation of potentially harmful lipid
intermediates (29). In Sherpa muscle, however, the ratio of long-chain
acylcarnitines to total carnitines was lower than in Lowlanders at
baseline (P< 0.05), perhaps resulting from lower expression of CPT-1.
In further contrast to Lowlanders, the ratio of long-chain acylcarni-
tines to total carnitines remained low in Sherpa muscle at altitude.

TCA Cycle Regulation at High Altitude. We therefore sought to un-
derstand whether there were differences between the populations
in other aspects of mitochondrial metabolism. The TCA cycle
enzyme citrate synthase (CS) is a candidate marker of mito-
chondrial content in human muscle (30). At baseline, Sherpas had
26% lower muscle CS activity than Lowlanders (P < 0.05; Fig. 3A),
in agreement with findings of 17–33% lower mitochondrial vol-
ume density in Sherpa vastus lateralis compared with Lowlanders
(22). In accordance with lower CS activity, concentrations of
6- and 5-carbon intermediates downstream of CS (citrate, aconitate,
isocitrate, and α-ketoglutarate) were lower in Sherpas than Low-
landers (P < 0.001). However, concentrations of 4-carbon inter-
mediates (succinate, fumarate, malate, and oxaloacetate) were not
different (Fig. 3 B–I). This finding suggests an alternative strategy
to supply the TCA cycle with succinate. Intriguingly, recent

analysis of a large SNP dataset from low- and high-altitude–
adapted populations in the Americas and Asia (31) aimed to
identify pathways of convergent evolution, and highlighted fatty
acid ω-oxidation as the most significant cluster of overlapping
gene sets between high-altitude groups (32). ω-Oxidation is nor-
mally a minor pathway in vertebrates, becoming more important
when β-oxidation is defective (33); through successive cycles, it
oxidizes fatty acids to adipate and succinate in the endoplasmic
reticulum, after which succinate enters the mitochondria with
anaplerotic regulation of the TCA cycle (34).
Upon ascent to altitude, 6- and 5-carbon TCA cycle inter-

mediates increased in Sherpa muscle (P < 0.05; Fig. 3 B–E),
suggesting improved coupling of intermediary metabolism, TCA
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cycle, and oxidative phosphorylation. In Lowlanders, however,
citrate, aconitate, and isocitrate decreased at altitude (P < 0.05;
Fig. 3 B–D), despite no significant change in CS activity, perhaps
reflecting impairments upstream. Interestingly, α-ketoglutarate
concentrations were maintained in Lowlanders at altitude (Fig.
3E), despite decreased succinate downstream, which could be
explained by the fall in both α-ketoglutarate dehydrogenase and
isocitrate dehydrogenase, as reported previously in Lowlanders
following an identical ascent to EBC (21). α-Ketoglutarate plays
regulatory roles in hypoxia, including suppression of HIF stabi-
lization (35), but also supporting glutathione synthesis (36).
Taken together, these results indicate different TCA cycle reg-
ulation in Sherpas and Lowlanders. The replete TCA cycle of
Sherpas at altitude contrasts sharply with the depletion of TCA
cycle intermediates in Lowlanders, and suggests a coupling of
the TCA cycle in Sherpa muscle to its distinct intermediary
substrate metabolism.

Greater Mitochondrial Coupling Efficiency in Sherpas. To understand
further whether mitochondrial function differs between Sherpas and
Lowlanders, we used high-resolution respirometry to probe electron
transfer system (ETS) capacity and coupling efficiency in per-
meabilized muscle fibers. At baseline, there was no significant dif-
ference between the two groups in OXPHOS or ETS capacities with
either malate and glutamate (N-pathway through complex I) or suc-
cinate (S-pathway through complex II; Fig. 4 A and B and Fig. S3) as

a substrate, but Sherpas had a lower OXPHOS capacity with
malate, glutamate, and succinate combined to reconstitute
TCA cycle function (NS pathway; P < 0.01; Fig. 4C). There
were no early changes in either group upon ascent. By the later
time point, however, succinate-linked respiration had fallen in
Lowlanders (P < 0.05), consistent with previous findings of
decreased succinate dehydrogenase (complex II) levels in sub-
jects with sustained exposure at >5,300 m (21).
In addition, we measured muscle fiber respiration in the ab-

sence of ADP (LEAK) (i.e., O2 consumption without ADP
phosphorylation). Expressing LEAK relative to OXPHOS ca-
pacity, it is possible to calculate OXPHOS coupling efficiency (37,
38). At baseline, Sherpa muscle mitochondria had lower LEAK
respiration and greater coupling efficiency than Lowlander mi-
tochondria (P < 0.001; Fig. 4 D and E), indicating more efficient
use of O2. Upon ascent to EBC and with sustained time at alti-
tude, LEAK decreased in Lowlanders (P < 0.01), although it
remained higher than in Sherpas (Fig. 4D), and coupling efficiency
improved (P < 0.05; Fig. 4E). In Sherpas at altitude, LEAK
did not change, although coupling efficiency decreased (P < 0.01).
One possible explanation for these differences in coupling effi-
ciency might be the altered expression of uncoupling protein 3
(UCP3). UCP3 is a transcriptional target of PPARα, and lower
UCP3 levels at altitude might improve the efficiency of O2
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utilization. In previous studies, however, muscle UCP3 expression
increased with acute hypoxia (17, 39), which may offer some
protective benefit considering its possible role as an antioxidant
(39). Notably, however, UCP3 levels decreased with more sus-
tained exposure to extreme altitude (17). Here, UCP3 was up-
regulated in Sherpas at altitude in association with decreased
coupling efficiency (P < 0.05; Fig. 4F). However, UCP3 expression
also increased in Lowlanders in the short term (P < 0.01), in whom
there was decreased LEAK respiration. Moreover, UCP3 ex-
pression returned to baseline in Lowlanders with longer term ex-
posure with no further change in LEAK respiration. Overall, our
results indicate that Sherpa muscle mitochondria are characterized
by a lower OXPHOS capacity and greater, albeit declining, effi-
ciency, whereas the OXPHOS efficiency of Lowlanders improved
with acclimatization.

Glycolysis and Glucose Metabolism. Next, we investigated the ca-
pacity to derive cellular energy via glycolysis, which is increased in
hypoxic cells (40), because glycolysis may allow ATP levels to be
maintained when O2 is limited. Hexokinase activity was the same
in both groups at baseline, and did not change at altitude (Fig.
5A); however, lactate dehydrogenase activity was 48% higher in
Sherpa muscle than in Lowlanders (P < 0.05), indicating greater
capacity for anaerobic lactate production (Fig. 5B). Fasting blood
glucose was the same in Sherpas and Lowlanders at baseline, and
decreased upon ascent in Lowlanders (P < 0.01; Fig. 5C), who also
showed faster clearance of glucose during an OGTT (P < 0.001;
Fig. 5D) in agreement with previous reports (41). In Sherpas,
however, there was no indication of altered glucose homeostasis.
Meanwhile, over time at altitude, glycolytic intermediates increased
in Lowlander muscle (Fig. 5E), with increased glucose-6-phosphate/
fructose-6-phosphate and 2-phosphoglycerate/3-phosphoglycerate
(Table S2). In contrast, total glycolytic intermediates did not change
in Sherpa muscle, although 2-phosphoglycerate/3-phosphoglycerate
decreased. These findings might be explained to some extent by al-
tered HIF activities. Many genes encoding glycolytic enzymes are up-
regulated by HIF-1 (42), whereas hypoglycemia is seen in Chuvash
polycythemia (CP), an autosomal recessive disorder in which HIF
degradation is impaired (43). Taken together, our findings suggest an
increased reliance on glucose by Lowlanders under resting conditions
at altitude compared with Sherpas but a greater capacity for lactate
production in Sherpas, which may prove effective upon exertion.

Energetics and Oxidative Stress. Finally, to understand the implica-
tions of Sherpa metabolic adaptation, we investigated muscle en-
ergetics and redox homeostasis. At altitude, Lowlanders showed
progressive loss of muscle phosphocreatine (PCr; P < 0.001; Fig.
6A), indicating a loss of energetic reserve, which may relate to
down-regulation of muscle creatine kinase, as reported previously
(21). By contrast, in Sherpa muscle, PCr increased at altitude (P <
0.01). Similarly, Sherpa muscle ATP levels, which were lower than
in Lowlanders at baseline (P < 0.05), increased at altitude (P <
0.001; Fig. 6B), illustrating that Sherpa metabolism is better suited
to maintaining muscle energetics at altitude than Lowlander me-
tabolism either in the short term or following acclimatization.
Moreover, with short-term exposure, markers of oxidative stress
(reduced/oxidized glutathione and methionine sulfoxide) increased
in Lowlander muscle but not Sherpa muscle (Fig. 6 C and D),
indicating superior redox homeostasis in the Sherpas. Antioxidant
protection may represent another outcome of convergent evolu-
tion, having been reported in Andean subjects in association with
protection of fetal growth (44), whereas glutathione levels are
raised in CP, suggesting a possible role for HIF activation (45).

Conclusions
It has long been suspected that Sherpa people are better adapted
to life at high altitude than Lowlanders (46). Recent findings have
suggested a genetic basis to adaptation in populations around
the world (6), and we show here that Sherpas have a metabolic
adaptation associated with improved muscle energetics and
protection against oxidative stress. Genetic selection on the
PPARA gene is associated with decreased expression, and thus
lower fatty acid β-oxidation and improved mitochondrial cou-
pling compared with Lowlanders, with a possible compensatory
increase in fatty acid ω-oxidation. Sherpas also have a greater
capacity for lactate production. With acclimatization to alti-
tude, Lowlanders accumulate potentially harmful lipid inter-
mediates in muscle as a result of incomplete β-oxidation,
alongside depletion of TCA cycle intermediates, accumulation
of glycolytic intermediates, a loss of PCr despite improved
mitochondrial coupling, and a transient increase in oxidative
stress markers. In Sherpas, however, there are remarkably few
changes in intermediary metabolism at altitude but increased
TCA cycle intermediates and PCr and ATP levels, with no sign
of oxidative stress.
Genetic selection, by definition, requires an increased likeli-

hood of advantageous gene variants being passed on to offspring.
Hence selection might occur if the disadvantageous variant is
associated with poorer survival to reproductive age and beyond,
including greater fetal/neonatal mortality. Evidence supports
precisely such effects, with fetal growth at altitude being poorer
in Lowlander populations than in many native highlanders (47),
including Tibetans (48) and Sherpas (49). Likewise, gene vari-
ants may affect survival through childhood or fecundity/fertility
in the hypoxic environment. We cannot speculate on the mech-
anism by which PPARA variants prove advantageous; however,
PPAR isoforms are expressed in the placenta (50) and influence
female reproductive function (51). It would be of interest to seek
association of the PPARA variants with birth weight and mea-
sures of placentation in high-altitude natives and Lowlanders ex-
posed to hypoxia.
Our findings suggest a metabolic basis to Sherpa adaptation

that may permit the population to survive and perform at high
altitude. Such adaptations may also underpin the superior per-
formance of elite climbing Sherpas at extreme high altitude.

Materials and Methods
Subjects were selected from the participants of Xtreme Everest 2 (25). All
Lowlanders were born and lived below 1,000 m, were not descended from a
high-altitude–dwelling population, and were of European (Caucasian) origin.
Subjects gave written consent, and underwent medical screening. All protocols
were approved by the University College London Research Ethics Committee and
Nepal Health Research Council. Vastus lateralis biopsies were taken from the
midthigh, muscle fibers were prepared for respirometry (28), and respiration was
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Fig. 6. Muscle energetics and oxidative stress. PCr (A), ATP (B), oxidized/
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Met) (D), all expressed relative to Lowlanders at baseline, are shown. Mean ±
SEM (n = 8–14). ††P ≤ 0.01, †††P ≤ 0.001 at baseline vs. altitude within cohort.
△P ≤ 0.05 at altitude 1 vs. altitude 2 within cohort.
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measured using substrate-uncoupler-inhibitor titrations (Tables S3 and S4). En-
zyme activities were assayed as described elsewhere (27). RNA was extracted, and
Taqman assays were used to analyze gene expression (Table S5). For metab-
olite analysis, a methanol/chloroform extraction (52) was followed by liquid
chromatography mass spectrometry. OGTTs were carried out on fasted sub-
jects on the day after biopsies. Blood plasma NO metabolites were quantified
as described (53). Genomic DNA was isolated from whole blood, and PPARA
SNPs were genotyped using TaqMan assays for allelic discrimination (Applied
Biosystems; Table S1). To compare cohorts at baseline, an unpaired, two-tailed
Student’s t test was used (significance at P ≤ 0.05). Genotype frequencies were

compared using a χ2 test. To assess the effects of altitude, a one-way ANOVA
with repeated measures was used. Post hoc pairwise comparisons were carried
out with a Tukey correction.
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