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Rewards are known to influence neural activity associated with both
motor preparation and execution. This influence can be exerted
directly upon the primary motor (M1) and somatosensory (S1) cortical
areas via the projections from reward-sensitive dopaminergic neu-
rons of the midbrain ventral tegmental areas. However, the neuro-
physiological manifestation of reward-related signals in M1 and
S1 are not well understood. Particularly, it is unclear how the neurons
in these cortical areas multiplex their traditional functions related to
the control of spatial and temporal characteristics of movements with
the representation of rewards. To clarify this issue, we trained rhesus
monkeys to perform a center-out task in which arm movement
direction, reward timing, and magnitude were manipulated in-
dependently. Activity of several hundred cortical neurons was
simultaneously recorded using chronically implanted microelectrode
arrays. Many neurons (9–27%) in both M1 and S1 exhibited activity
related to reward anticipation. Additionally, neurons in these areas
responded to a mismatch between the reward amount given to the
monkeys and the amount they expected: A lower-than-expected re-
ward caused a transient increase in firing rate in 60–80% of the total
neuronal sample, whereas a larger-than-expected reward resulted in
a decreased firing rate in 20–35% of the neurons. Moreover, re-
sponses of M1 and S1 neurons to reward omission depended on
the direction of movements that led to those rewards. These obser-
vations suggest that sensorimotor cortical neurons corepresent
rewards and movement-related activity, presumably to enable
reward-based learning.
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Reward-based learning is a fundamental mechanism that al-
lows living organisms to survive in an ever-changing envi-

ronment. This type of learning facilitates behaviors and skills that
maximize reward (1). At the level of motor cortex, synaptic modi-
fications and formation of new synaptic connections that accompany
learning have been reported (2). The reinforcement component of
these plastic mechanisms is partly mediated by dopamine (DA), a
key neurotransmitter associated with reward (3–5). DA inputs to
cortical areas, including primary motor (M1) and somatosensory
(S1) areas, arise from the midbrain (6–8). Recent studies demon-
strating the presence of a higher concentration of DA receptors in
the forelimb over the hind-limb representation in rodent motor
cortex (9), and impairment of motor skill acquisition resulting from
blocking these DA receptors in the forelimb representation (10),
point to the role of DA receptors in learning skilled forelimb
movements. In agreement with this line of reasoning, animals with a
rich repertoire of skilled movements, such as monkeys and humans,
show a disproportionate increase in the density of DA receptors in
the cortical motor areas: M1, premotor, and supplementary motor
cortex (6, 11, 12).
Although evidence points to the involvement of M1 and

S1 circuitry in reward-related learning and plasticity (1, 13, 14), it
is still not well understood how M1 and S1 neurons process
both reward and motor information. A longstanding tradition in

neurophysiological investigations of M1 and S1 was to attribute
purely motor and sensory functions to these areas. Accordingly, the
majority of previous studies have focused on the relationship of
M1 and S1 spiking activity with such characteristics as movement
onset (15), movement direction (16, 17), limb kinematics (18, 19),
muscle force (20–22), temporal properties of movements (23, 24),
and progression of motor skill learning (25). Fewer studies have
examined nontraditional representations in M1 and S1, such as
spiking activity associated with rewards (26–31). Representation of
reward in M1 was provoked by several studies that, in addition to
motor-related neural activity, examined neuronal discharges in
these areas that represented motivation, reward anticipation, and
reward uncertainty (30–33). Although these studies have confirmed
that M1 neurons multiplex representation of reward with the
representation of motor parameters, a number of issues need
further investigation. Particularly, it is unclear whether reward-
related neuronal modulations in M1 (31, 33) represent rewards
per se, their anticipation, and/or the mismatch between the actual
and expected rewards. Furthermore, the relationship of these
reward-associated signals with the processing of motor information
is poorly understood. Understanding of these interactions will help
elucidate mechanisms underlying reward-based learning (34).
To this end, we have developed an experimental paradigm in

which reward and characteristics of movements were manipu-
lated independently: (i) Movements and reward were separated
by two different delays, (ii) multiple movement directions were
examined for their impact on reward, and (iii) unexpected var-
iability in reward amounts were introduced to produce their
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mismatch to the animal’s expectation of reward. Neuronal en-
semble activity was recorded chronically in rhesus monkeys using
multielectrode arrays implanted in both M1 and S1. These ex-
periments revealed a widespread representation of reward antici-
pation in M1 and S1 neuronal populations. Additionally, many
M1 and S1 neurons responded to unexpected changes in reward
magnitude [i.e., represented reward prediction error (RPE)].
Moreover, neuronal responses to RPEs were directionally tuned;
they varied according to the direction of the movement planned by
the animal. Taken together these results indicate that predictive
encoding of reward is robust in both M1 and S1 and that reward-
related signals interact with neuronal directional tuning in senso-
rimotor cortex. As such, reward-related neuronal modulations in
the monkey primary sensorimotor cortices could contribute to
motor learning (35).

Results
Our central goal was to test whether M1 and S1, at both the single-
cell and the ensemble level, can mediate reward-based learning.
More specifically, we sought to measure cortical neuronal activity
that encoded reward anticipation, unexpected changes in reward
presentation, and modulation of reward-associated signals by arm
movements. For this purpose, we used a task in which animals
moved a realistic image of a monkey arm (avatar arm) on a
computer screen using a hand-held joystick. In any given trial, the
avatar hand had to be moved and placed over a circular, colored
target and held over it for 3 s. A passive observation version of the
task (Fig. 1C) was also implemented. In this version, a computer
controlled the movement of the virtual arm while the monkey,
whose limbs were restrained from moving, was rewarded for
simply observing the task displayed on the computer screen. The
color of the target informed the monkeys about the time when a
juice reward would be delivered.
In early-reward trials, cued by a blue target, reward was de-

livered 1 s after target acquisition, whereas in late-reward trials,
cued by a red target, reward was delivered after 2 s (Fig. 1C). In
the joystick control task, after receiving the juice reward (0.66 mL,
500-ms pulse) monkeys continued to maintain the avatar arm at
the target location for the remaining hold period. Holding still at
the target location was encouraged by small juice rewards (50 ms,
0.03 mL) that were delivered periodically (every 500 ms) during
the entire 3-s hold period. Changes in position during the hold
time precluded the remaining rewards. All of the monkeys learned
the requirement to hold the virtual arm still. In a majority of the
trials (>90% in monkeys M and R and 80–85% in monkey C) the
monkeys did not move their hands. The SD of joystick position
during the hold time was 0.014 cm in monkey M, 0.06 cm in
monkey C, and 0.025 in monkey R.
Because the total hold time period (3 s) was the same irrespective

of the early or late reward delivery, the reward rate was maintained
irrespective of trial sequence. We expected that this homogeneity of
the reward rate would result in similar movement patterns for both
trial types even though the rewards were given at different times
after the movement was completed. Indeed, the reaction times (RT;
Fig. S1C) and movement times (MT; Fig. S1B), which are proxies
for motivation levels, were similar for both trial types. The early-
(blue trace in cumulative histograms) and late- (red trace) reward
trials were not significantly different [P > 0.05, Kolmogorov–Smirnov
(KS) test, n = 3 monkeys]. The same held true in a majority of
behavioral sessions (24/25 sessions in monkey M, 12/13 in monkey
C, and 7/7 in monkey R). It was found that monkeys only weakly
favored early reward over the late reward as inferred by a small
difference between the numbers of attempted early-reward trials
and late-reward trials (Fig. S1A, monkey M: 0.6%, monkey C: 2.4%,
and monkey R: 1%). In summary, although monkeys had a slight
tendency to initiate early-reward trials more often, there were no
significant differences in the movement parameters.

Neuronal Modulations During Different Task Epochs. A total of
485 neurons were recorded in the three monkeys (M1, monkey M:
n = 125, monkey C: n = 176, monkey R: n = 184; S1 from monkey
M: n = 96). Several representative neurons with different kinds of
neuronal responses elicited during the task are illustrated in Fig. 2A.
The data are separated into joystick control sessions (Fig. 2A, Left)
and passive observation (Fig. 2A, Right), and early- (cyan) and late-
(magenta) reward conditions. The associated arm position (joystick
control session), the virtual arm position (passive observation ses-
sion), and the electromyographies (EMGs) from biceps and triceps
(passive observation session) are displayed above the perievent time
histograms (PETHs). Some neurons were modulated by the posi-
tion of the arm, that is, neuronal firing increased (e.g., RHA1_005a)
or decreased (e.g., RHA3_008a) when the arm moved away from
the center. Some neurons were modulated by the arm movement
velocity: The neuronal firing increased as a function of the tan-
gential velocity (e.g., RHA3_012b). Some neurons were modulated
by arm position and reward, meaning that neuronal firing increased
as the arm moved away from the center and decreased till the end
of reward delivery epoch and increased right after, and, finally,

Fig. 1. Experimental setup and schematic of the paradigm. (A) Rhesus mon-
keys were trained to perform a center-out task using a custom-made hand-held
joystick. Moving the joystick displaced an avatar monkey arm on the computer
monitor. (B) Neural data were obtained from M1 neurons in three monkeys
(monkeys M, C, and R) and S1 neurons in one monkey (monkey M) using
chronically implanted arrays (black and brown rectangles). (C) Experiment
schematic: Trial began when monkeys positioned the arm within the center
target. Following fixation (FT), a circular target (T), red or blue, appeared at a
distance of 9 cm from the center in one of eight target locations. Monkeys were
trained to react quickly (RT) and acquire the target by moving the avatar arm
(MF, movement forward). After reaching they held the arm at the target lo-
cation for 3 s. A juice reward (R) was delivered either after 1 s (early reward) or
after 2 s (late reward) into the hold time. Target color (blue vs. red) cued the
monkey regarding reward time (early, cyan vs. late, magenta). Small juice re-
wards were given every 500 ms during the 3-s hold period (HT, hold time). At
the end of the hold period, monkeys returned the arm to the center (MB,
movement back). The next trial began after a brief intertrial interval (ITI). (Inset)
The avatar monkey arm relative to a target-size disk. Note the cursor (0.5-cm
yellow circle) has to be completely within the target to count as a successful
“reach.” In Exp. 2, in 10%of the trials out of the total a surprise reward (SR) was
given to the monkey before the target appeared.
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spiking activity decreased again when the arm moved back to the
center (e.g., RHA2_030b). Some arm velocity-related neurons also
maintained spiking activity at a level higher than baseline till the
end of the reward delivery epoch (e.g., RHA1_023b; see also
RHA1_022c in Fig. 2B). Some neurons did not respond to position
or velocity but increased their spiking activity till the end of the
reward delivery epoch (e.g., RHA3_009b). Note that the neurons
in a column, with different response properties, were all recorded
simultaneously during the same session.
Fig. 2 B and C show two example M1 and S1 neurons whose

spiking activity distinguished early from late reward. PETHs shown
in Fig. 2B are aligned on hold onset and those in Fig. 2C are aligned
on reward onset. The data are separated into joystick control ses-
sions (Left) and passive observation (Right) and early- (cyan) and
late- (magenta) reward conditions. The associated arm/hand posi-
tion and licking frequency (joystick control session) and the virtual
arm position (passive observation session) are displayed above the
PETHs as in Fig. 2A. Spike rasters are also included in Fig. 2B.
Although the arm position was stable (RHA1_023b in Fig. 2A and

RHA1_022c in Fig. 2B), and the EMGs (seen in Fig. 2A) did not
show any significant muscle contractions around the time of reward,
the M1 and S1 neurons exhibited differences in firing rate before
reward onset (P < 0.05, two-sided t test).

Reward-Related Modulation in the M1/S1 Neural Population. The
population average PETH for monkeys M, C, and R during
joystick control are displayed in Fig. 3A and during passive ob-
servation conditions for monkeys M and C in Fig. S2A. Pop-
ulation PETHs, centered on hold onset, for the early- (cyan) and
late-reward trials (magenta) show that the neuronal ensemble
average firing rate is very high for movement (t < 0), except in
monkey M for passive observation. The average spiking activity
decays during the hold time up to the time of reward. Early-trial
neural activity can be distinguished from late-trial activity, es-
pecially in monkey C (both joystick control and passive obser-
vation) and monkey M (joystick control). In all of the monkeys
the average PETHs were not very different for the early and late
trials before the onset of the hold period.

Fig. 2. Neuronal modulation during task epochs. (A) Example neurons from a joystick control session (Left) and passive observation session (Right) from Exp.
1. (Left) The changes in the mean (z-scored) arm position (at the top), followed by binned (50 ms), z-scored firing rate (PETH) of example neurons, all aligned
to onset of hold time. (Right) A passive observation session; the EMG activations are displayed at the top. EMGs were measured from left (lT) and right triceps
(rT), and left (lB) and right biceps (rB). Then, the virtual arm position is plotted. Neurons tuned to position, velocity, reward, or a combination of those is
displayed next. Bands around the mean represent ±1 SE. Data are color-coded based on the time of reward: early (blue) and late (red). Time of reward is
indicated in the upper panels by color-coded downward-pointing arrows. Note that the arm is stationary during the hold period. Weak muscle activations
were seen around the time of movements in the passive observation session. (B) Example neurons plotted in the same format as in A; however, the y axis
depicts the absolute firing rate modulation. The lower panels show spike raster plots. (C) PETH of the example neurons shown in B aligned to the time of
reward onset. y axis depicts the normalized firing rate modulation.
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Simply averaging the spiking activity across the neural population
may conceal some differences. Thus, to examine whether the neu-
ronal ensemble can distinguish early- from late-reward trials, before
the early reward (0–1 s of the hold period) we used a machine
learning algorithm–the support vector machine (SVM). For that, we
used a 500-ms-wide moving window along the trial time axis, while
separate SVM classifiers were trained for each window position to
decode the trial into early vs. late rewards. Different window du-
rations, step sizes, and algorithms were also tested (Materials and
Methods). To compare the representation by different cortical areas
of the early- vs. late-reward conditions, the classifier was also trained
on different pools of neurons (ipsilateral and contralateral M1, S1,
etc.). Irrespective of whether the neurons were selected from the
ipsilateral or the contralateral M1, the classifier could clearly dis-
sociate early- from late-reward trials in the initial 1-s hold period
preceding any of the rewards [shaded window in Fig. 3B, monkey C:
contralateral M1, receiver operating characteristic (ROC): 0.77 ±
0.11; ipsilateral M1, ROC: 0.72 ± 0.09; P < 0.05, ROC post-SVM].

S1 neurons carried much less information to separate early- from
late-reward trials because decoder performance was lower than that
obtained with ensembles of M1 neurons (Fig. 3C, monkey M: M1,
ROC: 0.6 ± 0.08; S1, ROC: 0.54 ± 0.04; ROC post-SVM).
As an additional test, we examined passive observation sessions

where the animals did not produce any movements of their arms.
Even in the passive observation task the SVM classifier could
distinguish between early- and later-reward trials, based on the
neuronal population activity recorded during the initial hold time
period (0–1 s; Fig. S2B, monkey C: ROC: 0.58 ± 0.06; monkey M:
0.62 ± 0.07). These classification results suggest that reward time
classification was not due to differences in arm movement patterns
between the early- and late-reward conditions.
The association between the target color and neural representa-

tion of the expected time of reward (early vs. late) was reinforced
with practice. If the difference in M1/S1 neural activity between
early- and late-reward trials reflected this association, then predic-
tions of reward timing based on neural ensemble activity should
improve with practice. Consistent with this hypothesis, during the
first session we observed that M1 neural ensemble activity, produced
during the initial hold time period (0–1 s), did not clearly distinguish
between early- vs. late-reward trials (Fig. S2C, orange trace; monkey
C: ROC: 0.51 ± 0.1 and monkey M: 0.54 ± 0.07). However, after a
few sessions of training (joystick control sessions: monkey C, nine
sessions and monkey M, eight sessions), M1 neural ensemble activity
could distinguish early- from late-reward trials (Fig. S2C, blue trace;
monkey C: ROC: 0.77 ± 0.11 and monkey M: 0.62 ± 0.08). As a
control, the target color information was withheld in the last session,
by changing it to a neutral color (white). Immediately, the classifier
performance dropped to chance levels during the initial hold time
(0–1 s) (Fig. S2C, black trace for monkey C; ROC: 0.5 ± 0.1).
In summary, the neuronal population-based classifier analysis

could distinguish the early- from late-reward trials before early
reward. The improvement in classifier output with training sug-
gests a learned association between the target color and the time
of reward, which may be strengthened over time.

Modulation in Neuronal Activity Due to a Mismatch from Expected
Reward Magnitude. We next asked whether M1/S1 neurons re-
sponded to unexpected changes in reward magnitude. To test this,
in a small fraction (20%) of randomly interspersed trials reward was
withheld (NR, no-reward trials). In these trials, the animals received
a lower-than-expected amount of juice, referred to as a negative
RPE (34, 36). In another subset of trials (20%), the animals re-
ceived more than expected juice (0.9 mL, 750-ms pulse; DR,
double-reward trials), referred to as a positive prediction error. In
the remaining 60% of the trials the expected amount of reward was
delivered (0.46 mL, 350-ms pulse; SR, single-reward trials).
When reward was withheld, negative RPE, a brief period of

increased neuronal firing activity was observed in the PETHs of
some neurons (RPE in Fig.4A, Right), whereas others, recorded
during the same session, did not show this increase in spiking
activity (Fig. 4A, Left). Fig. 4B shows the PETH of another ex-
ample neuron (RHA_012a), along with the associated raster plot
and licking frequency (see SI Materials and Methods for more in-
formation on licking frequency estimation). This M1 neuron dis-
played a significant increase in spiking activity when reward was
omitted (cyan and magenta RPEs). More example neurons from
monkeys M and R are displayed in Fig. 4C, Top and Fig. S3. These
neurons exhibited a significant increase in spiking activity in re-
sponse to reward omission (two-sided t test: P < 0.05). Such an
increase in neuronal activity was recorded in many M1 and
S1 neurons (monkey M, 113/221 neurons and monkey R, 38/
189 neurons; two-sided t test: P < 0.05), shortly after the potential
reward time [monkey M: 143 ± 5.6 ms (SD), n = 113 cells and
monkey R: 165 ± 5.2 ms (SD), n = 38 cells]. As shown in Fig. 4C,
Bottom (magenta trace), the average activity of the M1/S1 neuronal
population also captured this transient neuronal excitation.

Fig. 3. Representation of reward by the neuronal population. (A) Population
firing rate: The firing rate of each neuron was computed, z-scored, and av-
eraged to plot the population PETH for each monkey for a joystick control
session. The associated confidence bands are also shown (±1 SE). (B and C)
Neuronal ensemble-based classifier analysis. Proportion of correct classification
of trials, denoted by decoding accuracy, according to reward time (1 or 2 s) is
shown on the y axis. The time aligned to hold onset is shown along the x axis.
The classifier was trained using all of the contralateral M1 neurons (purple) or
the ipsilateral M1 neurons (green). Note that the classification was significantly
better (P < 0.05, bootstrapped ROC) than chance even before reward was
delivered (at 0–1 s of hold period, shaded gray box) when using ipsilateral or
contralateral M1 neurons (B) or S1 neurons (C).
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When the reward magnitude was doubled-positive RPE a sig-
nificant reduction in spiking activity was observed. Neurons in Fig.
4C, Top and Fig. S3 display this reduction in spiking activity (green
trace; two-sided t test: P < 0.05) when the juice delivery epoch
extended beyond the regular period of 350 ms. This effect,
which was significant in many neurons (monkey M, 55/221 cells
and monkey R, 30/189 cells), could also be captured by the
average population activity of M1/S1 neuronal ensembles (Fig.
4C, Bottom, green trace).
In summary, a majority of M1 and S1 neurons responded to

both positive and negative RPE by producing opposing changes
in firing rate modulation: an increase to signal a reward with-
drawal and a reduction for a reward increase.

M1 and S1 Neurons Multiplex Target Direction, Arm Velocity, and Reward
Information. In a center-out arm movement task, M1/ S1 neurons
are tuned to changes in the location of the target, direction of
movement, and arm velocity, among other parameters. To assess
the relative strength of the reward-related modulation in the same
M1/S1 neuronal spiking activity, a multiple linear regression analysis

was carried out by including reward magnitude, along with cursor
velocity and target location, as regressors. This analysis was carried
out independently in seven different, 400-ms-wide trial epochs [Fig.
5A: baseline (B), fixation (F), target (T), movement forward (MF),
hold (H), reward (R), and movement back (MB)]. Single-reward
and no-reward trials were included in one model; double- and
single-reward trials were part of another model.
As expected, variability in firing activity in many M1/S1 neurons

could be accounted for (P < 0.05) by changes in cursor velocity
(monkey M: M1, 88%; β = 0.18 ± 0.006. S1: 84%; β = 0.17 ± 0.008.
Monkey R: M1, 59%; β = 0.08 ± 0.0053) and target location (Fig.
5A; monkey M: M1, 73%; β = 0.067 ± 0.016. S1:68%; β = 0.06 ±
0.019. Monkey R: M1, 71%; β = −0.15 ± 0.008), especially during
the movement phases (MF and MB in “cursor velocity” and “tar-
get” panels in Fig. 5A). However, reward magnitude significantly
affected M1 neural activity in the reward epoch (R in “reward”
panel of Fig. 5A): A sizeable population of M1 and S1 neurons
robustly responded to a negative RPE (Fig. 5A; monkey M: M1:
82.6%; β = −0.15 ± 0.0069. S1:61%; β = −0.13 ± 0.01. Monkey R:
M1, 63.4%. β = −0.08 ± 0.0058).

Fig. 4. Neuronal modulation due to mismatch in the expected reward magnitude. (A) Plots showing hand movement trace and the neural activity of ex-
ample neurons from the same session when a reward is omitted—a no-reward trial. The plot format is the same as that of Fig. 2A. Note the transient increase
in spiking activity, indicative of RPE, after the potential reward onset time for the neuron in the right but not in the left panel. (B) Another example neuron,
along with the absolute firing rate, licking frequency, and spike raster during a no-reward trial. The plot format is adapted from Fig. 2B. (C) (Top) Example
neuron from monkey M (Right) and monkey R (Left). The normalized neural activity is plotted with respect to time of reward for single-reward trials (black),
double-reward trials (green), and no-reward trials (magenta). (Bottom) The average population neural activity. Bands around the mean represent ±1 SE. The
horizontal lines below the abscissa span the duration of the single reward (black, 350 ms) and the double reward (green, 700 ms). Note that when reward is
withheld a transient increase in neural activity is observed, whereas when more than the expected reward is delivered a reduction in activity is witnessed. The
arrows (downward-pointing, red) indicate when the neural activity was significantly different from the regular reward condition.
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During reward delivery, when the flow of juice began to diminish,
monkeys licked at the juice spout. A potential concern was whether
the licking movements were represented in the neuronal modula-
tions observed during the reward epoch. Although neural record-
ings were performed in the forearm areas of M1 (monkeys M and
R) and S1 (monkey M), licking movements could be potentially
represented by the M1/S1 neurons. In fact, a small percentage of
neurons (<5%) showed spiking activity that corresponded to licking
frequency. Licking frequency was determined using a custom
methodology and added as a regressor in subsequent analysis. We
observed that some neurons (“licking frequency” panel in Fig. 5A;
monkey M: M1 = 13%, S1 = 7.5%; monkey R: 17%) were weakly
tuned to changes in the frequency of licking (M1: β = 0.0032 ±
0.0032; S1: β = 0.01 ± 0.002, monkey R: 0.05 ± 0.007). More im-
portantly, changes in reward magnitude continued to account for
most of the variability in M1/S1 neuronal spiking activity, as they did

before introducing licking frequency as an additional regressor
(monkey M: M1, 82.6%; β = −0.15 ± 0.0069. S1:61%; β = −0.13 ±
0.01. Monkey R: M1, 63.4%; β = −0.08 ± 0.0058).
To isolate effects related to reward anticipation, the multiple

regression analysis was performed by including reward antici-
pation as an additional regressor, along with other confounding
variables, such as cursor velocity, target location, licking fre-
quency, reward magnitude, and so on. Because reward antici-
patory activity is expected to increase as the time of reward
approaches (e.g., RHA3_009b in Fig. 2 A and B), the “time
elapsed after target appearance” was included as the regressor
that represents anticipation. By running this modified regression
model we obtained the fraction of neurons significantly modu-
lating (P < 0.05) their neural activity in accordance with the time
elapsed after target onset. The fraction was represented as a func-
tion of time. We observed that, as the time of reward approached, a

Fig. 5. Reward-related neural activity is multiplexed along with other task relevant parameters. (A) Epoch-wise multiple regression analysis. Each panel shows fraction
of neurons whose variability in spiking activity could be explained by changes in cursor velocity (panel 1), target position (panel 2), reward (panel 3, single reward vs. no
reward), reward anticipation (panel 4), surprise reward (panel 5), and licking frequency (panel 6), using a multiple regression model (P < 0.05), in different 400-ms-wide
epochs during a trial: B, before fixation; F, fixation; T,target onset; MF, moving (forward) to target; H, hold period; R, reward delivery; and MB, moving back to center.
(B) Spatial tuning of reward-related neural activity. Normalized firing rate of example cells is plotted for eight different arm movement directions. Average ± SEM
(smaller than the markers) of the neural activity is shown for different epochs: during movement (300–700 ms after target onset, black) and after the expected time of
reward (200–600 ms, green) for the no-reward trials. (C) The directional tuning of all of the neurons for the movement and reward epochs (in no-reward trials) was
assessed using multiple regression. The directional tuning of all of the neurons is captured by the scatter plot. The model assessed neuronal firing rate with respect to
different target positions along the x axis and y axis. By plotting the respective (x and y) coefficients (Coeff.x and Coeff.y, respectively) in 2D space, each neuron’s
preferred direction (angle subtended by the neuronwith the abscissa) and tuning depth (radial distance of the neuron from the center) were determined. Tuning during
the movement (black dots) and after the expected time of reward (200–600 ms, green) for the no-reward trials is shown. (D) The histograms show the number of
neurons that underwent a change in spatial tuning from the preferred direction. Directional tuning of many neurons changed by 180 ± 45°.
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greater fraction of cells reflected anticipation. For example, in
monkey M the number of M1 anticipation-related neurons in-
creased as the time of reward approached (Fig. 5A, “reward an-
ticipation”): 0% around target appearance, 4% during movement,
25% during the hold time, and 27% around the time of reward.
S1 neurons had a similar trend with the exception of a noticeable
dip around the time of reward: 0% around target appearance, 1%
during movement, 14% during the hold time, 9% around the time
of reward, and 25% toward the end of hold time. In monkey R the
effect of reward anticipation was weaker but nevertheless a signif-
icant population of M1 neurons showed the same trend: 0% around
target appearance, 3% during movement, 4% during the hold time,
and 9% around the time of reward. These results confirmed that
M1/S1 spiking activity reflected the time elapsed from target onset.
Notably, we did not see any significant changes in the representa-
tion of the other regressors (velocity, target location, etc.), which
suggests that the time-dependent changes are specific to reward
anticipation and not related to any movements.
To aid better visualization of the increase in reward anticipatory

activity, trials were separated into early- and late-reward trials, and
the regression analysis was performed in every time bin leading up
to the reward. More specifically, we performed an independent
regression on every 100-ms time bin, using the average of 100 ms
of data. In this analysis we also included all of the previously used
regressors: instantaneous velocity, target position, reward out-
come, time after target appeared, surprise reward, and licking
frequency. Trials for this analysis were aligned to target onset,
instead of to each trial-relevant epoch. Because the reward time
was staggered, ±2 SD of the distribution was determined for both
early- and late-reward trials and indicated in the plots (black
vertical lines, Fig. S4A). By running this continuous regression
model, in monkey M, as expected from the previous analysis,
gradually more and more M1/S1 neurons significantly modulated
their firing rate as the time of reward approached (Fig. S4A).
Importantly, the time course of this increase in the number of M1/
S1 cells tuned to reward plateaued around the time reward was
delivered. As a result, the time course was faster for the early-
reward condition compared with the late-reward condition. A
similar trend, albeit weaker, can be seen for monkey R also. Be-
cause monkey C did not participate in Exp. 2, and because licking
movements were not monitored for monkey C, the regression
model for this monkey only included target position, velocity, and
reward anticipation. However, a similar trend could also be seen
for reward anticipatory activity in monkey C despite the utilization
of a reduced model. Interestingly, in monkey C some neurons
were observed to be modulated right after target appearance,
which may be indicative of the prospective reward. In all, these
results reinforce the notion that M1/S1 neurons also modulate
their firing rate as a function of reward anticipation.
Having examined the impact of reward omission (negative

RPE) on spiking activity in M1 and S1, a similar multiple linear
regression analysis was used to study the influence of an un-
expected increase in reward (positive RPE). Several neurons
modulated their firing rate significantly (P < 0.05) by positive
RPE, although the effects were weaker than for negative RPE
(monkey M: M1, 45.5%; β = −0.05 ± 0.0037. S1:22%; β = −0.05 ±
0.005. Monkey R: M1, 35.5%; β = −0.037 ± 0.0043). We antici-
pated that a more salient positive RPE would be generated if the
monkeys were rewarded when they least expected it. To do so, in a
few (10%) randomly chosen trials animals received juice (surprise
reward in Fig. 1C) while they waited for the trial to begin. Al-
though some neurons (∼10%) in monkey M modulated their fir-
ing rate to the unexpected reward, a much larger fraction of
neurons responded in monkey R (“surprise reward” panel in Fig.
5A; M1, 35%; β: −0.04 ± 0.003). To assess the strength of the
neural activity elicited by surprise reward we examined the re-
gression coefficients generated by the regression model (continu-
ous regression was performed on every 100 ms, as mentioned

previously). By doing so, we observed that in monkey M, despite
the fact that only 10% of the neurons significantly responded to
the surprise reward, these cells showed a clear increase in firing
modulation strength (Fig. S4B). Both M1 (β = 0.023 ± 0.002) and
S1 (β = 0.016 ± 0.003) neurons showed an increase in activity
around the time of the surprise reward. In monkey R, a similar
trend was observed, with the coefficient of strength increasing to
reflect surprise reward (β = 0.025 ± 0.003).
In summary, our results suggest that, in addition to target lo-

cation and cursor movement velocity, RPE, reward anticipation,
and, to a small extent, licking movements contributed to the
spiking activity of the M1 and S1 neurons. M1/S1 neurons also
modulated their firing rate as a result of both negative and positive
RPEs. The effects of negative RPEs on M1/S1 neurons seemed to
be stronger and more widespread than those of positive RPEs.

Reward-Related Modulations in the Spatial Tuning of Sensorimotor
Neurons. It is well known that the firing rate of M1/S1 neurons var-
ies in a consistent way according to arm movement direction (black
trace in Fig. 5B), a property known as neuronal directional tuning.
Thus, as expected, the normalized firing rate of the neuron 6J4_012b
from monkey R shows clear directional tuning (Fig. 5B, Left, black
trace, P < 0.05, bootstrap): a higher firing rate for the target located
at 90°, therefore referred to as the “preferred” direction, and a lower
firing rate for the target at 270°, the “nonpreferred” direction. An
example neuron from monkey M (Fig. 5B, Right, RHA1_012b) is
also directionally tuned (P < 0.05, bootstrap). To examine di-
rectional tuning in the neuronal population, a multiple regression
model (Materials and Methods) was fitted to every neuron’s spiking
activity when the arm was moving to the target (MF, movement
forward epoch in Fig. 5A). The model assessed neuronal firing rate
with respect to different target positions along the x axis and y axis.
By plotting the respective (x and y) coefficients in 2D space, each
neuron’s preferred direction (angle subtended by the neuron with
the abscissa) and tuning depth (radial distance of the neuron from
the center) were determined. The black dots in Fig. 5C and Fig. S5
represent the directional tuning of individual neurons. These graphs
indicate that many neurons were directionally tuned (monkey M:
206/220; monkey R: 167/198 neurons P < 0.05, bootstrap; monkey
M: quadrant 3; monkey R: quadrant 2).
We then asked whether the same neurons exhibited directional

tuning around the time of reward. For that, a multiple regression
model was fitted to every neuron’s average spiking activity in the
last 400 ms, before reward delivery began. The directional tuning of
every neuron was plotted in Fig. S5A (blue dots). This analysis
revealed that the directional tuning, calculated at the time of re-
ward onset, was correlated with the tuning during the movement
epoch in monkey M (R = 0.7; P < 0.001; n = 220). The tuning was
weaker in monkey C (R = 0.27; P < 0.001; n = 176) and monkey R
(R = 0.18; P = 0.002; n = 184). These results suggest that M1/
S1neurons were weakly tuned to the target location at the time of
reward onset. This result is consistent with the observations from
Fig. 5A (target panel) that show neural activity modulated by target
location when the target was visible (till the end of hold epoch).
We then measured directional tuning when the reward was

omitted. As shown in Fig. 5B (green trace), both neurons illus-
trated showed strong directional tuning (P < 0.05, bootstrap).
However, in both cases these neurons’ spiking activity was sup-
pressed in the preferred direction (90° in 6J4_012b and 180° in
RHA1_012b). To further examine directional tuning in the same
M1/S1 neuronal population, a multiple regression model was
fitted to every average neuronal spiking activity during the first
400 ms of the potential reward epoch in these no-reward trials.
Fig. 5C shows the preferred direction and tuning depth for each
M1 and S1 neuron (green dots and squares) during this epoch.
These graphs indicate that many neurons underwent a significant
change in their directional tuning, from the movement to the
reward epochs (monkey M: quadrant 3–1; monkey R: quadrant
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2–4). To assess whether these changes in M1 neuronal preferred
direction were significant, a nested regression model was
designed and tested (Materials and Methods). This analysis
revealed that many neurons in monkey R (M1: n = 154/198, P <
0.05, bootstrap nested regression) and in monkey M (M1: n = 68/
126; S1: n = 33/94, P < 0.05, bootstrap nested regression) un-
derwent a significant change in preferred direction during this
transition, from movement to reward epochs. Indeed, a fraction
of these neurons (monkey R, 48%; monkey M: M1, 46%; S1:
30%) exhibited a change in directional tuning on the order of
180 ± 45° (Fig. 5D). These results indicated that, when reward
was omitted, a large fraction of M1/S1 neurons exhibited sup-
pression in firing activity in their preferred direction.
Next, we tested whether these changes in directional tuning could

be influenced by the return arm movement produced by the ani-
mals. The return arm movement was offset by at least 1 s from the
beginning of the reward delivery epoch in late-reward conditions
and by 2 s in early-reward conditions. Further, during the postre-
ward hold time, small rewards kept the monkeys motivated to hold
the hand at the target. Moreover, the animals delayed the return
movement (300–500 ms) following reward omission. The task de-
sign and the behavior would therefore minimize the influence of
return arm movement on the neural activity at the time of reward
delivery. However, we also ran a multiple regression analysis to
compare neuronal directional tuning around the time of return
movement with that around the time of the potential reward, in a
no-reward trial (Fig. S5B). The directional tuning during the return
movement (cyan dots in Fig. S5B) was not correlated with the
tuning observed during the no-reward epoch (green dots; replicated
from Fig. 5B) in monkey M (R = −0.05; P = 0.28; n = 220) but
negatively correlated in monkey R (R = −0.35; P < 0.001; n = 184).
The return movement had no influence on the neural tuning at the
time of reward for one monkey, whereas for the second monkey a
negative relationship between the neuronal activity during these two
epochs was found, which by itself may not account for the firing rate
modulations around the time of reward.

Discussion
In the present study we manipulated reward expectation using
explicit instruction of reward timing by color cues. This experi-
mental setting allowed us to study the representation of temporal
intervals related to rewards by M1 and S1 neurons, as well as the
representation of the reward, and the integration of this in-
formation with the traditional M1 and S1 neuronal firing modu-
lations, such as encoding of movement direction and velocity. We
observed that (i) more than 9–27% of M1/S1 neurons exhibited
anticipatory neuronal activity related to reward timing, which was
distinct enough to differentiate reward times that were 1 s apart,
(ii) and modulated their neural activity as a function of errors in
reward expectation, and (iii) M1/S1 neurons corepresented reward
and motor parameters.

Reward-Related Activity in Sensorimotor Neurons. Modulation in
neural activity was observed in many M1/S1 neurons around the
time of reward, which we have interpreted as representing both
expectation of reward and mismatch in reward expectation. These
findings are consistent with reward anticipatory modulations pre-
viously seen in premotor cortical neurons (30, 32) and in motor
cortical neurons (33) (see SI Discussion for more information).
However, given that many of these M1/S1 neurons are involved in
planning of arm movements, a potential concern is that the mon-
keys could be moving their arms, loosening their grip on the joy-
stick, or performing other unmonitored hand movements, which
could be misinterpreted as reward-related modulation. However, in
our task design any arm movement produced during the hold time
would preclude the animal from receiving the intended reward. To
comply with this constraint, all three monkeys learned to hold
their arms steady. This was confirmed by inspection of the joystick

position, during the 3-s hold time, which revealed that the arms of
the monkeys remained stable on most trials during the hold time.
Despite a steady position, one could still attribute the observed
M1/S1 neural firing modulation to a change in arm or body pos-
ture, which led to no change in the arm end point. However,
because the monkeys were operating a spring-loaded joystick,
adjusting their arm/body posture while keeping the joystick sta-
tionary would be extremely demanding and logistically quite an
unfeasible task for the animals. Notwithstanding these mitigating
factors, we have conducted passive observation sessions, where
monkeys did not operate the joystick at all but simply watched the
task being performed on the screen. In these sessions, the mon-
key’s hands were well-restrained to the sides of the chair, while
EMGs were recorded to control for any inadvertent muscle con-
tractions. A slight increase in EMG was recorded from the (long
head of) triceps and the biceps as the virtual arm moved; however,
no EMG modulations were observed around the time of reward.
Under these conditions of complete absence of overt arm move-
ments, clear reward-related M1/S1 neuronal firing modulations
occurred in several neurons (e.g., RHA2_030b and RHA3_009b
in Fig. 2). Furthermore, examination of neuronal firing rate
modulations demonstrated that the spiking activity of some neu-
rons represented arm position and velocity, but not reward-related
activity, whereas other simultaneously recorded neurons displayed
reward-related activity. If the reward-related activity was influ-
enced by arm movements, this finding would be unlikely. Fur-
thermore, a few M1/S1 neurons, recorded simultaneously during
the same session, displayed only reward-related activity.
Finally, we identified licking-related neurons and the firing

rate modulations in these neurons followed the changes in lick-
ing frequency. To determine the changes in neural activity that
were correlated with licking movements, we have used a gener-
alized linear model analysis (37–39). From this analysis we
learned that spiking activity of only a small percentage of neu-
rons was related to licking frequency (<15%), whereas a much
higher number of our recorded M1/S1 neurons represented arm
movements (>80%) and changes in reward (>50%). These
findings are consistent with the fact that our multielectrode ar-
rays were originally implanted in the so-called forearm repre-
sentation of M1/S1. Based on all these controls, we propose that
our results are totally consistent with the interpretation that the
observed M1/S1 neuronal firing rate modulations described here
were related to reward expectation, rather than emerging as the
result of some unmonitored animal movement.

RPE Signals in M1/S1. Following “catch” trials when a reward was
withheld, a transient increase in neural activity was observed in
many M1 and S1 neurons. This observation is consistent with a
recent study (31) that reported an increase in firing in M1 and
dorsal premotor (pMd) neurons when reward was not delivered
in one monkey. We have replicated those findings in our study
and further extended them by demonstrating that M1 and
S1 neurons reduced their firing rate for a higher-than-expected
reward. Altogether, these results support the hypothesis that
M1 and S1 encode bidirectional RPEs. Our findings are also
consistent with those obtained in an imaging study (40) and a
recent electrocorticography study (41) in which RPE-related
activity was detected in sensorimotor brain regions.
Neuronal response to both positive and negative RPEs, in-

dicated by distinct bidirectional changes in firing rates, was initially
reported for midbrain DA neurons (34, 36, 42). Subsequently, bi-
directional RPE signals have been observed in many other brain
areas (43–47). The widespread nature of RPE signals may suggest a
common general mechanism involved in learning from outcomes.
Our results suggest that this mechanism may also exist in the
monkey primary motor and sensory cortical areas as well.
Although the role of DA in reward processing is rather com-

plex and still a subject of debate (48, 49), one line of research has
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implicated the phasic DA response, typically seen in midbrain
DA neurons, as the mediator of RPEs (36, 50–52). Typically,
reinforcement-based learning models have used prediction er-
rors to account for behavioral plasticity (53–55). Recent studies
that looked at plasticity in the motor system, particularly re-
garding the role of reward in motor adaptation (13, 56) and fa-
cilitation of movement sequences (57), have suggested that
M1 neurons may play a crucial role in this process. The fact that
we observed here that M1 and S1 neurons exhibit bidirectional
prediction error signals reinforces this hypothesis significantly.
Interestingly, a significant fraction of M1/S1 neurons, at the time

of reward omission, exhibited directional tuning that was distinct
from the one displayed by them during the arm movement epoch.
Changes to the M1 neuron directional tuning, and hence, to the
cell’s preferred direction, has been observed previously, as a
function of task context (58–60) or even during the time duration
of a trial (61, 62). During a typical trial, no tuning could be de-
tected before the target appeared; strong neuronal tuning emerged
only after the target appeared and remained throughout the period
the target was acquired, until the end of the hold period. However,
when reward was withheld, many M1/S1 neurons changed their
preferred directions by 180 ± 45°. We speculate that these changes
are related to reward omission and may serve to facilitate reward-
based learning. However, it still remains to be tested whether these
reward-related modulations affect future M1/S1 neural activity.

Distributed Encoding in M1/S1 Neurons. Based on studies carried
out in the last couple of decades, M1 neuronal activity has been
correlated with several kinetic (20–22, 63, 64) and kinematic
parameters (16, 17, 19). Even though many of these movement
parameters are correlated with one another, in general one line
of thinking in the field purports that cortical motor neurons are
capable of multiplexing information related to different param-
eters (65–68), including reward (65, 69, 70). Simultaneous re-
cording from several M1/S1 neurons in our study has shown that
many of these neurons are associated with some aspect of
movement—position, velocity, and so on—whereas a subset of
the neurons also seem to be receiving reward-related signals.
This latter group of M1/S1 neurons are perhaps the ones that
displayed both movement and reward-related activity. These
findings are consistent with those from recent studies that have
examined neurons in M1 and pMd responding to arm position,
acceleration, and reward anticipation (31).
In conclusion, we observed that M1/S1 cortical neurons si-

multaneously represent sensorimotor and reward-related mod-
ulations in spiking activity. According to this view, M1 and
S1 ensembles can be considered as part of a distributed network
that underlies reward-based learning.

Materials and Methods
All studies were conductedwith approved protocols from the DukeUniversity
Institutional Animal Care and Use Committee and were in accordance with
NIH guidelines for the use of laboratory animals. Three adult rhesus macaque
monkeys (Macaca mulatta) participated in this study. More information re-
garding animals and the implants are available in SI Materials and Methods.

Behavioral Task. The task was a modified version of the center-out task. A
circular ring appeared in the center of the screen. When monkeys held the
avatar arm within the center target, a colored (red/blue) circular target ring
appeared in the periphery, in one of eight evenly spaced peripheral locations.
Monkeys had to then move the arm to place it on the target and hold it there
for 3 s. A juice reward was delivered after 1 s (early reward) or after 2 s (late
reward). The target color cued the time of reward (blue, early and red, late).
In Exp. 2, in 20%of trials rewardwas omitted (no reward). In another 20% the
reward was doubled (double reward). Further, in a small subset of randomly
chosen trials (10%) a surprise reward (gated by a 350-ms pulse) was delivered
during the fixation period. More information on the task design can be found
in SI Materials and Methods.

Neural activity was recorded using a 128-channel multichannel acquisition
processor (Plexon Inc.) (71). All of the analyses were performed in MATLAB
(The MathWorks, Inc.).

PETH of Neuronal Activity. The recorded action potential events were counted
in bins of 10 ms, smoothed using a moving Gaussian kernel (width = 50 ms)
for illustration purposes. Details regarding normalization procedures can be
found in SI Materials and Methods.

Classifying Trials Based on Early vs. Late Reward. To investigate the strength
of information about the time of reward provided by a single neuron, or
provided by the entire population, a decoding analysis was performed based
on a linear discriminant analysis algorithm or SVM algorithm, using the
MATLAB statistics toolbox (see SI Materials and Methods for details).

Multiple Linear Regression. To model every neuron’s changes in firing rate as
a function of task contingencies (Fig. 5A) a multiple regression analysis was
carried out with the following general linear models (GLM; see SI Materials
and Methods for details).

Spatial Tuning. The normalized mean firing rate was determined during the
movement epoch, the hold time epoch, reward epoch, and return movement
epoch. The z-scored firing rate in each epoch was fit for each neuron with a
GLM (see SI Materials and Methods for details.)
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