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Abstract

Proper handling of missing data is important for many secondary uses of electronic health record 

(EHR) data. Data imputation methods can be used to handle missing data, but their use for 

analyzing EHR data is limited and specific efficacy for postoperative complication detection is 

unclear. Several data imputation methods were used to develop data models for automated 

detection of three types (i.e., superficial, deep, and organ space) of surgical site infection (SSI) and 

overall SSI using American College of Surgeons National Surgical Quality Improvement Project 

(NSQIP) Registry 30-day SSI occurrence data as a reference standard. Overall, models with 

missing data imputation almost always outperformed reference models without imputation that 

included only cases with complete data for detection of SSI overall achieving very good average 

area under the curve values. Missing data imputation appears to be an effective means for 

improving postoperative SSI detection using EHR clinical data.
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1. Introduction

With the widespread adoption of Electronic Health Record (EHR) systems, progressively 

greater amounts of electronic clinical data are being generated, making researchers, 

healthcare administrators, and clinicians alike increasingly interested in the secondary use of 

EHR data to improve clinical knowledge and our ability to deliver patient care. With respect 

to clinical research and quality improvement, the availability of EHR data offers new 

opportunities for knowledge advancement covering a wide range of categories including 

Address Correspondence to: Gyorgy J. Simon, PhD, Department of Medicine and Institute for Health Informatics, University of 
Minnesota, 420 Delaware Street SE; MMC 912, Minneapolis, MN 55455, simo0342@umn.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
J Biomed Inform. Author manuscript; available in PMC 2018 April 01.

Published in final edited form as:
J Biomed Inform. 2017 April ; 68: 112–120. doi:10.1016/j.jbi.2017.03.009.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clinical and translational research, public health surveillance, and healthcare quality 

measurement and improvement1,2. Among these, EHR-based detection of specific outcomes 

and adverse conditions (e.g., diabetes incidence3
, adverse drug interactions4, Clostridium 

difficile infection relapse5), related risk factors, or risk stratification of patient populations 

may add particular value to clinical stakeholders.

1.1 Significance and purpose of postoperative complication detection models

The American College of Surgeons (ACS) National Surgical Quality Improvement Project 

(NSQIP) is widely recognized as “the best in the nation” surgical quality improvement 

resource in the United States6. With the guidance of NSQIP, participating hospitals track 

outcomes around the process of surgical care by manually abstracting and collecting 

preoperative, intraoperative, and postoperative clinical data elements and morbidity/

complication occurrences. The preoperative and intraoperative clinical data elements include 

patient demographics, co-morbidities and disease history, functional status, laboratory 

results, operation duration, and wound classification scores. Postoperative morbidity 

outcomes include 21 well-defined adverse events (i.e., complications) within the 30-day 

postoperative window and are labor intensive to accurately abstract and detect. These 

adverse event occurrences include surgical site infections (SSIs), urinary tract infections, and 

acute renal failure, etc. Because data collection for NSQIP is labor intensive, only a subset 

of surgical patients are selected annually at each hospital for inclusion into NSQIP (based on 

a cyclical schedule and a certain target number with stratified sampling to preferentially 

select major surgical cases). For each of these patient cases, all preoperative, intraoperative, 

and postoperative data are collected and included in NSQIP.

NSQIP uses the collected data from all member hospitals to calculate the hospital’s relative 

performance with respect to adjusted postoperative morbidity and mortality and compares 

each member hospital’s performance with a benchmark for each postoperative adverse 

event. Specifically, a ratio of observed to expected number of events is provided to each 

hospital for each event adjusted by patient morbidity, case complexity, and a number of other 

factors7. An O/E ratio of 1 means the performance is as expected for a particular outcome 

given the composite patient and case severity, whereas less or greater than one indicates 

better or worse performance, respectively8. With this feedback, NSQIP member hospitals are 

able to focus on areas of improvement and have achieved measurable improvement in 

surgical care quality and in many cases have saved money by reducing length of stay and 

preventable readmissions7,8.

The success of NSQIP in improving surgical quality for member hospitals is ensured by the 

high quality collection of the preoperative and postoperative clinical data elements 

performed with manual abstraction as follows. To maintain the high reliability of this data 

collection, formally trained surgical clinical reviewers (SCR) are employed by hospitals to 

select surgery cases strictly following NSQIP inclusion and exclusion criteria, manually 

extract preoperative data characteristics, and then recognize and record postoperative 

morbidity events and mortality. The NSQIP data elements abstraction process based on 

manual clinical charts review is very time and labor intensive, which makes NSQIP 

expensive to implement, but overall it provides very high quality and trustworthy data to 
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frontline clinical stakeholders. Unfortunately, mainly due to this costly manual manner of 

clinical data collection and other costs like its associated participation fee, less than 20% of 

hospitals in the United States currently are enrolled in NSQIP9. To make NSQIP more 

accessible, one proposed and promising solution is to accelerate the process of data 

extraction by automatically abstracting NSQIP elements from EHR systems. Accordingly, 

the ultimate goal of our study is to utilize automated techniques, specifically machine-

learning, to classify surgical patients with or without particular postoperative adverse events.

In this manuscript, we focus on the detection of SSIs within 30 days after surgery; however, 

we expect this methodology to generalize to other postoperative adverse events, as well. An 

SSI is an infection occurring after surgery in the part of body where surgery took place. 

Nationally standardized definitions of SSIs used by NSQIP and the Centers for Disease 

Control and Prevention (CDC) through the National Healthcare Safety Network (NHSN) can 

be classified into superficial, deep, and organ space, based on the depth and severity of 

infection10. Although most surgical patients do not experience an SSI, SSIs are very costly 

and morbid, and certain areas of surgery, like colorectal surgery, have relatively high 

incidence of SSIs (i.e., between 7 to 20%)11. SSIs are also associated with increased costs, 

length of hospital stay, readmission rates, and mortality12. An SSI costs between 6,200 to 

15,000 US dollars per patient, and up to 10 billion US dollars per year in the United States 

alone13 and has become a particular area of interest nationally under government 

performance-based programs such as value-based purchasing.

The overall aim of this research is to develop valid, robust, and practical EHR-derived 

models for detecting three kinds of postoperative SSI and overall SSI. Compared with 

administrative data or claims data upon which several previous studies relied14,15, EHR data 

contains richer clinical information (e.g., vital signs, lab results, social history information), 

which might provide important additional significant indicators to aid in SSI detection. Our 

use of EHR data is more likely to allow the construction of more detailed and informative 

SSI detection models.

1.2 Capturing the context of “missing data”

Unfortunately, secondary use of EHR data can be challenging due to the inconsistent and 

incomplete nature of patient records within the EHR. The presence or absence of elements, 

the timing and sequence, and other characteristics of the collected data can vary greatly from 

patient to patient. Sometimes necessary or expected data elements might be missing in a 

patient’s record. Missing data rates in the EHR have been previously reported from 20% to 

80%16, 17. In this study, we were interested in clinical data between postoperative day 3 to 

30 (which we refer to as the postoperative window henceforth) because the first two days 

after surgery often constitute a recovery period, where abnormal measurements are common 

and may simply be a result of healing from the trauma caused by surgery, rather than a sign 

of SSI. During the postoperative window, the problem of missingness commonly exists for 

many data elements. Researchers traditionally categorize missing data mechanisms into 

three types according to the characteristics of the missingness: missing completely at 

random (MCAR), missing at random (MAR), and missing not at random (MNAR)18,19.
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• MCAR - Causes of missingness are not related with any characteristics of the 

dataset (e.g., whether a data point is missing is not related with any values in the 

dataset). For example, the urine culture test is usually ordered to help make 

diagnosis of urinary tract infection. However, a urine sample might be randomly 

broken and the test result is missing completely at random.

• MAR - Data are not missing at random, but the probability that a data element is 

missing depends on values of other observed variables in the dataset. As an 

example, suppose men are more likely to drop out of a clinical trial, but the 

chance of dropping out is the same for all men. We can say that male subjects are 

just MAR. Both MCAR and MAR are viewed as ignorable missingness.

• MNAR - When the likelihood of missingness is related to missing variables, a 

third type of non-ignorable non-response missingness, MNAR, arises. For 

example, consider a study aiming to evaluate treatments to reduce cocaine use. In 

this hypothetical study, the outcome drug level is measured from a urine drug test 

every Monday morning. Participants who use cocaine over the weekend and do 

not show up for their urine test would be expected to have higher cocaine 

metabolites. Therefore, the likelihood of the data being missing is directly related 

to the unobserved cocaine level, which is viewed as MNAR.

The traditional three missing data categories are not sufficient to capture the complexity of 

missing data in EHR-derived applications. Missing data in EHR-derived datasets could be 

caused by a lack of collection or a lack of documentation20. Lack of collection, for example, 

refers to orders or other items that are not placed or measured. In this instance, the missing 

data element is typically a negative value, i.e. a normal state patient. Alternatively, 

the.clinician may not be considering the measurement since the test or measure is thought to 

be low yield for the patient in question. Such missing values are MNAR. Lack of 

documentation refers to orders or other items that are placed or performed but the response 

values are not recorded or obtained during the process of data collection. In this instance, 

data was lost during the extraction, transformation, and loading (ETL) of clinical data21. 

Such missing values are MCAR or MAR. Furthermore, a good working knowledge of the 

specific research question is likely helpful for understanding missing data mechanisms and 

potentially for selecting the most suitable missing data imputation methods for a particular 

secondary use application of EHR data.

In our SSI detection use case with EHR data, possible missing data can potentially be caused 

by either lack of collection or lack of documentation and thus we are facing a mixture of 

MNAR and MCAR/MAR mechanisms. In the situation of lack of collection, for example, a 

white blood cell (WBC) count is usually measured repeatedly to monitor a patient’s status 

after surgery. However, WBC test is not necessarily ordered for all patients—patients doing 

well clinically are less likely to have the WBC test. Similarly, an image-guided order with 

interventional radiology related to SSI treatment or a microbiology culture test is less likely 

to be placed on patients for whom there is minimal to no suspicion of an SSI. There are also 

examples of lack of documentation. For instance, the microbiology gram stain specimen 

from a wound suspected of harboring an SSI may be sent to an outside laboratory and 

therefore not recorded in the system. It is difficult to tell to which category of data 
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missingness a case of missingness belongs (e.g., lack of collection or lack of 

documentation). Additionally, performance of common missing value imputation methods in 

the context of MNAR is unknown. Therefore, we need to explore and compare different 

missing data imputation methods, and find the most suitable approach.

1.3 Related work

Though numerous missing data treatments have been developed, selecting the most 

appropriate one depends strongly on the problem at hand22,23. Overall, most studies have not 

demonstrated one technique to be universally better than others. This section briefly 

summarizes traditional statistical and model-based methods. Our aim is to suggest ways that 

clinical research practitioners without extensive statistical backgrounds can handle missing 

data by exploring several of the most commonly used strategies to handle missing data for 

the real problem of postoperative SSI detection with EHR data.

The most common and easiest method is to exclude cases or single variables with missing 

data. Researchers either consciously or by default drop incomplete cases since many 

statistical and machine learning tools operate on complete cases and only rarely have built-in 

capabilities to handle missing data24,25. However, discarding cases or variables with missing 

data not only decreases the number of available cases in a given dataset but may also result 

in significant bias26,27. As an alternative to complete-case analysis, many researchers will 

impute missing values for variables with a small percentage of missing data28,29, such as 

using the mean value of the observed cases on variables of interest. However, filling in the 

mean value usually causes standard errors to appear smaller than they actually are, since it 

ignores the uncertainty of missing data30.

Compared with filling in the mean value, advanced methods, such as multivariate and 

maximum likelihood imputation, were developed several decades ago. In particular, 

multivariate imputation enables researchers to use existing data to generate or impute values 

approximating the “real” value and has been widely applied in clinical data analysis31,32. In 

addition, multivariate imputation by chained equations (MICE) approach generates a 

regression model for each variable with missing data, with other variables as predictors, to 

impute the missing data. This method, being a regression model, can handle different types 

of variables (continuous or discrete). More recently, imputation methods based on more 

sophisticated models have been developed. Some well-known approaches, such as 

multilayer perceptron, self-organizing maps, and K-nearest neighbors (KNN), have been 

employed as the predictive models to estimate values for the missing data in specific 

applications such as breast cancer diagnosis, detection of cardiovascular patients and 

intensive care unit monitoring33,34. However, for clinical researchers, most complicated 

methods typically are not easy to implement. Also, to date they have failed to show a 

convincing and significant improvement over univariate imputation (e.g., filling in the mean 

value or MICE).

At the present time, most algorithms apply to MCAR or MAR. Imputation for MNAR is 

generally not recommended, and hence few algorithms exist. Algorithms like selection 

method and pattern mixture models could jointly model data and missingness. The former 

assigns weights to observations based on their propensity for missingness35, while the latter 
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constructs imputation models for each pattern of missingness36. Both methods have the 

potential to reduce bias in the results. However, due to their untestable assumptions, they 

may perform worse than imputation methods developed for MCAR or MAR. Several 

researchers have previously applied the combination of Fourier transformation37 and lagged 

KNN to impute biomedical time series data in which up to 50% of data are missing38.

In our work, the potential for non-random missing data exists. Discarding patients with 

missing values would be a conservative choice. However, if we discarded all observations 

(patients) that contain missing values, we would discard close to 80% of our study 

population. This alone could fatally bias the results and hence imputation is imperative. In 

this work, we seek to explore several commonly used missing data imputation methods in 

our SSI dataset to increase our sample size and to avoid discarding a large portion of patients 

with missing values. In particular, eight imputation methods were used to fill in absent 

values for lab tests and vital signs in the postoperative SSI dataset. To compare different 

imputation methods, the performance of multiple detection models based on different 

missing data treatments were evaluated by using the reference standard SSI outcome from 

NSQIP.

2. Materials and Methods

Our overall methodological approach for this study included five steps: (1) Identification of 

the surgical patients and associated EHR data from the University of Minnesota clinical data 

repository; (2) Data preprocessing; (3) Handling missing data by using different imputation 

methods; (4) Supervised learning model development using different imputed datasets 

seperately; (5) Evaluation of final models using reference standard SSI outcome data from 

the NSQIP registry. Institutional review board approval (IRB) was obtained and informed 

consent waived for this minimal risk study.

2.1 Data Collection

The clinical data repository (CDR) at the University of Minnesota Medical Center (UMMC) 

is a database that makes EHR data accumulated from a larger, tertiary care medical center 

available for researchers. We extracted clinical EHR data from CDR for surgical patients 

included in the NSQIP registry 2011 through 2013 and retrieved their NSQIP postoperative 

SSI outcome from the registry. The patient’s medical record number and date of surgery 

were used to link CDR data to the NSQIP registry. Though UMMC has been a member of 

NSQIP since 2007, the CDR only has consistent clinical data since 2011 when the institution 

implemented its current Enterprise EHR system (Epic systems). Patients without matching 

records in the CDR (22 total, from incorrectly entered medical record numbers) were 

removed. Our goal was to assess the models’ robustness in the face of changes that take 

place over time, since the purpose of our model will be to ultimately detect future SSIs. 

Thus, our dataset was divided into a training set of patients with surgery dates between 2011 

to the end of 2012 and a test set of patients with surgery dates in 2013. The training dataset 

was used for model development, while the test set was used solely for evaluation of the 

models we developed.
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The standard definition of SSI by CDC has been used by NSQIP reviewers35 to determine if 

a patient experienced an SSI. However, some clinically important indicators mentioned in 

the standard definition, such as imaging orders and cultures, are not included in the NSQIP 

elements. We collected relevant data elements from six types of data: demographics, 

medications, orders, diagnosis codes, lab results and vital signs, based on the opinion of 

three content experts (all surgeons familiar with NSQIP definitions and the EHR). 

Demographics contained each patient’s basic information (e.g., gender, race, age). Among 

medications, we focused only on the use of antibiotics after surgery. Orders known to be 

associated with the diagnosis and treatment of an SSI were also gathered from CDR, 

including orders of imaging studies, infectious disease consultation, and interventional 

radiology drainage procedures for abscess drainage. Diagnosis codes consisted of relevant 

ICD-9 codes created during the encounter and hospital stay at the time of surgery from 

coding, as well as diagnoses from the past medical history and problem list. Lab values (e.g., 

WBC, hemoglobin, lactate, etc.) and vital signs (e.g., temperature, pain scale, etc.) before 

surgery and those generated during the postoperative window after surgery were extracted, 

as well, from the CDR. Microbiology cultures, such as wound culture, abscess culture, were 

collected. We also included surgical wound classification and American Society of 

Anesthesiologists (ASA) physical status classification that was recorded prior to surgery39. 

The surgical wound classification is used to grade intra-operative wound contamination, 

which is highly correlated with the chance of developing a postoperative SSI, and is part of 

intra-operative case documentation. ASA classification reflects a patient’s overall status with 

respect to surgical risk from normal healthy patient to a brain-dead patient40.

2.2 Data Preprocessing

Data preprocessing consisted of transforming the data (if necessary), and correcting any 

inappropriate formating in the data for further modeling (e.g., the erythrocyte sedimentation 

rate value could be entered as “56 H” in EHR system, however, to keep the value consistent 

in numerical format for further modeling, we needed to remove “H”.) Lab results and vital 

signs, viewed as continuous variables, are measured periodically. The resulting longitudinal 

data were summarized into three features: two extreme values (highest and lowest values) as 

well as average value during the postoperative window. To establish a baseline, the 

preoperative extreme and average values were also extracted. Binary features (taking the 

values of 0 and 1) are created for medications, orders and diagnosis codes, indicating the 

presence or absence of that data element during the postoperative window. For example, the 

value of 1 for a particular antibiotic (medication) signifies that the patient received the 

antibiotic during the postoperative window. Another two variables, ASA score and wound 

classification, are ordinal variables with multiple levels. A univariate logistic regression 

model was used to compare the effects of different levels, and levels regrouping might be 

necessary. In our dataset ASA classes I and II were grouped and classes III, IV, V and VI 

were grouped. For wound classification, classes I and II were grouped and classes of III and 

IV were grouped. We made age an ordinal variable—above the age of 65 and under 65. 

Other SSI risk factors, such as smoking, alcohol use, history of diabetes, anesthetic type, 

etc., however, were not selected as significant indicators to SSI by the detection model in our 

pilot study using the completed dataset, therefore, were not included in this study41.
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All the data were transformed into a data matrix amenable to statistical modeling. The rows 

of this matrix correspond to patients and the columns to features (predictors). It is worth 

noting that a patient may have multiple visits during the postoperative window. All the EHR 

data generated during the postoperative window were collected for modeling.

2.3 Missing Data Imputation of the Incomplete Dataset

We define a missing value as a specific lab result or vital sign that is missing entirely during 

the postoperative window. For example, a patient’s WBC values could be completely 

missing during the postoperative window. In this instance, there is no way to summarize the 

WBC values. We need to impute the WBC related variables (i.e., maximum WBC, minimum 

WBC, and average of WBC). If a patient has several WBC measurements during the 

postoperative window, imputation is unnecessary. In this work, mean-imputation, 0-

imputation, imputing normal values, and MICE methods were utilized. In the case of first 

three non-model-based methods, for each feature, a single value is imputed every time the 

value for that feature is missing. For example, in case of “mean” imputation, for each 

feature, the mean of the non-missing entries was calculated in the training dataset and 

imputed into both the training and test datasets every time the value was missing for that 

feature. In case of “0” imputation, we simply imputed the numeric value “0” for every 

missing entry; and in case of “normal” imputation, the average value of patients in the 

training set with no postoperative SSI was imputed into both the training and test datasets.

Non-model-based imputation ignores the concept that related features can be used to 

“predict” what the missing value could be. In MICE method, we utilized linear regression 

modeling to impute missing values based on the non-missing values of other features, 

essentially a multivariate imputation through chained equations42.

In the course of imputation, bias can be introduced when values are not missing at random. 

To reduce some of this bias, indicator variables were used. An indicator variable, 

implemented as a dummy variable, takes the values of 1 and 0; 1 indicates that the 

corresponding value is missing. For example, if a dummy variable for postoperative WBC is 

created and takes the value 1 for a patient (observation), then the patient in question does not 

have any postoperative WBC value during the postoperative window; the corresponding 

features (minimal, maximal postoperative WBC) contain imputed values. In total, for our 

dataset, this resulted in 15 original features, 33 transformed features and 22 dummy 

variables. Table 1 summarized the different imputed datasets by different methods.

2.4 Model Development

After missing data imputation, eight datasets (including both training and test sets) based on 

different imputation methods were prepared, and detection models for each kind of SSI and 

overall SSI were constructed on the eight training sets. Features were pre-selected based on 

expert opinion. Variables irrelevant to SSI were eliminated. Backwards elimination was 

utilized for data-driven feature selection. One logistic regression model for each SSI type 

(including overall SSI) was built for each training set, and no regularization terms were used. 

We also developed one SSI detection model for each SSI type without imputation, by 

discarding all records with missing values. This served as the reference model.
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2.5 Model Evaluation

The performance of the SSI detection models was evaluated both on the training set and on 

the leave-out test set. In order to assess the detection performance of the model on the 

training set, 10-fold cross validation (CV) was employed and the values of area under the 

curve (AUC)43, as well as the bias, were calculated. AUC is an accepted performance metric 

and quantifies the ability of a model to discriminate between positive and negative outcome. 

Bias is used to examine whether the estimation of outcome systematically differs from the 

true outcome18. The closer the absolute value of bias is to 0, the smaller the bias is for SSI 

detection. Positive or negative bias indicates the overestimate or underestimate of a model.

Evaluating the reference model raises important issues. We could evaluate its performance 

on the unimputed test dataset as a reference. However, the reference model would not be 

able to make predictions for the vast majority of patients, since many (around 50%) would 

be deleted due to missing values. For this reason, we applied the reference model (without 

imputation) to all imputed test sets and selected the one with best performance as the 

performance for the reference model. The reference model was evaluated on each imputed 

test dataset. Every model that was constructed on a specific imputed training set was 

evaluated by the imputed test set that used the same imputation method.

3. Results

We retrieved the clinical data from EHR for 4,491 patients in the NSQIP registry at UMMC 

between 2011 and 2013. Table 2 includes detailed demographic information. The training set 

covers years 2011 and 2012, and encompasses 2,840 patients with 132, 51, and 81 

postoperative superficial SSI, deep SSI, and organ space SSI, respectively. The test data set 

covers the year 2013 and contains 1,651 patients with 41, 34, and 41 respective SSI types. 

Some patients may have multiple SSI types.

Model performance in detecting superficial, deep, organ space and overall SSI are shown in 

Figure 1. AUC scores obtained through a 10-fold cross validation on the training set and the 

final AUC scores on the test set are also reported. Generally, imputed models performed 

substantially better (statistically significant difference, with at least a 2nd digit difference in 

AUC) than the reference model, except for superficial SSI detection, where the reference 

model offered comparable performance.

The final AUC score and bias of each model are reported in Table 3. We observed that for 

superficial SSI, every model performed similarly except “Dummy+0” and the reference 

model, which had the largest bias. Among models of deep SSI, imputed models without 

dummy variables performed best and the reference model performed worst in terms of AUC. 

Also, “Dummy+MICE” had the smallest bias among the different models. For organ space 

SSI, models with dummy variables performed best except “Dummy+0”, and all models had 

similar bias except “Dummy+0”. For detecting any SSI, most imputed models had similar 

performance and were substantially better than the reference model. Biases were also similar 

except the reference model and “Dummy+0”, which were more biased than the other 

models. Selected important variables, the estimated coefficients of variables and the 95% 

confidence intervals for the coefficients, are included in the supplemental appendix.
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Pairwise t-tests on the 1000 replications of the Bootstrap procedure were conducted to test 

for statistical difference in AUC scores between the methods for each SSI event. The 

majority of imputation methods in each category of SSI showed statistical difference, with 

p-values less than 0.01, except “0” vs. “Dummy+Mean” for superficial SSI (p-value=0.102), 

“MICE” vs. “Normal” for Deep SSI (p-value=0.129), “Dummy+Mean” vs. “Dummy

+Normal” for organ space SSI (p-value=0.098), and “Reference” vs. “Mean” (p-value = 

0.094) and “Normal” “vs. “0” (p-value=0.143) for overall SSI. The detailed results are 

included in the supplemental appendix.

4. Discussion

In this work, we explored the use of nine methods for treating missing data (one where 

records with missing values were completely discarded and eight methods using imputation 

for missing values) and evaluated the performance of the SSI-detection models constructed 

on nine training sets that utilized these imputation methods. Overall, we found imputation to 

be beneficial. Models built on imputed data outperformed the reference model for all SSI 

types except superficial SSI. In case of superficial SSI, essentially all models had very 

similar performance; only “Dummy+0”, the model built on the 0-imputed dataset utilizing 

bias-correcting dummy variables, had lower performance. We will explore the reasons for its 

lower performance later.

The most surprising finding from this study is that the models with bias-correcting dummy 

variables did not perform as well as we expected. We expected that missing values signal 

that the patient is at a lower risk of SSI (the lab test is not necessary), giving rise to a 

“healthiness” bias. We originally thought that models without the dummy variables would 

have no ability to correct for this “healthiness” bias; hence, the addition of the bias-

correcting dummy variables would allow the model to correct the bias, improving its 

performance. Instead, the performance did not improve. There are two possible reasons for 

this. First, potentially the rates of missing values in the cases (SSI patients) and the controls 

(patients without SSI) are significantly different between the training and test set. In 2013, 

non-SSI patients appear to have more results (e.g. WBC and vital signs like body 

temperature) than in 2011–2012; thus, the “healthiness” bias in the training set is different 

from that on the test set. Second, there are some variables in the dataset that can take on the 

role of the dummy variables to some extent. For example, the variable “patient type”, which 

indicates whether the patient had an inpatient or outpatient surgery, captures the 

“healthiness” bias well: outpatient surgeries are traditionally less complicated and thus are 

less likely to have complications; or conversely, if a procedure is associated with higher risk 

and a higher complication rate, it is less likely to be performed in the outpatient setting. This 

is similar to dummy variables, which also indicate a lowered risk of complication when the 

corresponding lab tests are not ordered.

The “0” model, where the value 0 was imputed for missing elements, performed surprisingly 

well. It achieved AUC scores ranging from 0.852 to 0.934. In most cases, imputing 0 is not 

clinically meaningful. Typically, imputing 0 for temperature would be a disastrous choice, as 

it would create large biases. The model for superficial SSI is one example. Among its 

significant variables, two are related to temperature: the postoperative maximum 
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temperature and the minimum temperature. Their coefficients have the opposite signs, with 

the maximal temperature having the positive coefficient and the minimum having the 

negative. This can be interpreted as the difference between the maximum and minimum 

postoperative temperatures, which automatically corrects for the bias.

MICE exploits the structure of the problem, namely the relationship between the variables 

with the missing value and other variables; compared with other non-model-based 

imputation methods that ignore such structure, MICE methods are expected to perform best. 

Surprisingly, we did not find that the performance of the MICE models is significantly better 

than that of other imputation models. This is a result of differences in the problem structure 

between unhealthy and healthy patients: variables of healthy non-SSI patients are different 

in range from unhealthy SSI patients, and are more likely to have higher rate of missingness 

than unhealthy SSI patients, which affects the models in two ways: (1) the observations of 

unhealthy SSI patients contributes more in modeling imputation models because only 

complete observations are used to build imputation models; and (2) as a result, biases were 

likely introduced when applying the model to impute missing values for healthy non-SSI 

subjects. In spite of this, it is worth pointing out that “Dummy+MICE” achieved the best 

AUC on Organ Space SSI and the lowest bias on Superficial SSI. Overall, the performance 

of MICE method is good, but other simpler imputation techniques appear to be able to match 

their performance for the use case of SSI detection.

Another interesting fact worth noting is that in some cases, the performance of the models 

on test set was actually better than that in the training set. There are two possible reasons for 

this observation. First, this may be related to the SSI rates in the year of 2013 (test dataset) 

and 2011–2 (training dataset). For example, the rate of superficial SSI in the two sets was 

most different, 2.5% and 4.6%, respectively; consequently, the performance of models for 

superficial SSI between the two datasets differed and was higher for the test dataset. As for 

other types of SSI, rates were close between the two datasets, specifically 2.5% vs. 2.8% for 

organ SSI and 2.1% vs 2.1% for deep SSI. While the EHR system was not changed from the 

2011 to 2013, other possible unseen factors which may influence the distribution of patients 

in 2013. Second, it is possible the constructed models underestimate the risk of SSI on the 

training set; therefore, the performance on the training dataset is relatively lower than for the 

test dataset; yet, the biases remain small. We also hypothesize that the increased collection 

of lab results may have also biased the regression models we used to fill in missing values 

since they were constructed on the training set. This is an analogous effect to the inability of 

the dummy variables to “un-bias” the estimates.

Limitations

The NSQIP database can provide insight into the importance of adequately addressing the 

problem of missing data. Data in NSQIP is manually abstracted directly from the EHR by 

trained personnel. If WBC values are entirely missing in the NSQIP file, it is most likely that 

the cause of missingness is lack of collection (i.e. there was no need to measure it). 

However, in our experiment, we have not fully explored the characteristics of missingness in 

the NSQIP dataset. This will be addressed in future work.
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The NSQIP population in this experiment had some patients with primary providers who 

utilized a different EHR from the one used for manual data extraction and entry into the 

NSQIP database. In general, the EHR for the institution enrolled in the NSQIP database 

includes all pre-, intra-, and post-operative data on included patients. However, there are 

examples where the surgeon’s outpatient EHR or the patient’s primary care provider’s EHR 

differs from the EHR of NSQIP-enrolled institution. This is relevant to our present study of 

missing data, since preoperative data as well as post-operative complication data may be 

recorded in a database to which the trained manual abstractors do not have access. In our 

study, the EHR for the surgeon remained the same as the NSQIP-enrolled institutional EHR. 

However, the EHR for the primary care provider often differed (approximately 50% of 

cases). Patients with primary care providers who utilize a different outpatient EHR 

(compared to the NSQIP-enrolled institution’s EHR) might have some relevant data within 

the postoperative window missing after discharge from the hospital. We did not exclude/

censor these patients. In addition, a subset of SSIs in our study were noted in the ICU or 

acute care (i.e., inpatient) setting. Some SSIs, most notably superficial SSI, can occur as 

wound infections in the outpatient and ambulatory settings after the index stay. Others, 

namely, deep and organ space SSI can be typically discovered during the index inpatient 

stay. However, some occur after discharge. These SSIs often require readmission and further 

inpatient treatment. Therefore, missing data after discharge could be an important potential 

limitation to applying our approach more widely. Actually, 5% of SSI cases in our cohort are 

those patients with SSIs who have no data collected. Presumably, these patients were both 

seen and treated at clinics that utilized a different EHR from the NSQIP-enrolled 

institutional EHR.

As introduced in section 2.1, our dataset was divided into a training set and a test set by 

calendar year rather than randomly sampling, since we are interested in investigating how 

robust the models are in face of institutional changes at a relatively short time horizon. It is 

inevitable that due to institutional changes the model performance will drift. With every 

passing year the model’s performance can decrease. At some point in the future, the model 

will have to be recalibrated or outright reconstructed. It is undesirable to have to rebuild a 

model every year. Our method of dividing the data set by year allows us to assess how 

resilient the models are to such institutional changes.

The application of EHR data in surveillance continues to be an issue of importance in the 

informatics and quality literature. Though the main purpose of our work is to accelerate the 

manual process of NSQIP data collection, EHR data could be used to help surveillance as 

well. At this point, we do not believe that we can entirely rely on the EHR since a number of 

challenges remain. These include the real-time availability of EHR data, the heterogeneity of 

EHR systems utilized by different providers treating the patients enrolled in the NSQIP 

database, and the variability of signals for event detection.

The relative infrequent nature of these events is part of the challenge with event detection. 

When events (e.g., myocardial infarction) are relatively rare, the imbalanced nature of the 

data could be a large part of the challenge. Possible solutions to deal with this challenge 

when investigating more adverse (and thankfully rarer) events will be explored in future 

work.
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Unstructured data refers to narrative clinical notes such as discharge summaries, progress 

notes, operative notes, microbiology reports, imaging reports, and outpatient visit notes. In 

the narrative notes, there are some keywords related to the diagnosis and treatment of SSI, 

such as abdominal abscess, anastomotic leak, and wound dehiscence, etc. Unfortunately, we 

did not include unstructured data in this experiment. By using natural language processing 

tools, we will extract those relevant keywords, include them as new features, and combine 

both current and new potential features. We hypothesize that the combination of structured 

and unstructured clinical data would include more significant indicators and signals of SSIs, 

and thus improve the performance of detection. The performance of the model solely with 

structured data and that of the model with both structured and unstructured data will be 

compared and evaluated in future work.

5. Conclusion

In summary, we found models with imputation perform almost always better than models 

that discarded patient records with missing values. However, the optimal choice of 

imputation method is not clear. Data characteristics and data collection variation all affect 

the performance of imputation methods. If the test and training datasets have similar 

characteristics in terms of missing values, the use of bias-correcting dummy variables can be 

advantageous; if the characteristics differ, the estimated bias will be incorrect and can be 

similar in magnitude to the bias caused by the missing value they try to correct for, which is 

what happened in the present study. Similarly, if variables present in the dataset, such as 

“patient type” can take on the role of correcting for the bias, then dummy variables may not 

be necessary.

If it is guaranteed that test datasets have the same missing value biases as training or 

evaluation datasets, then the use of bias-correcting dummy variables can be advantageous. 

Similarly, MICE is advantageous only if the structure of the training dataset is similar to the 

structure of the test dataset. In our example, increased lab result collection created 

significant differences between the training and test datasets, rendering MICE only 

marginally useful. In our experiments, we found that imputing the mean of the non-SSI 

cases was successful in reducing the bias introduced by the fact that missing labs and vitals 

were suggestive of the lack of SSI event.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• For each patient, many data elements in EHR are missing (e.g. tests that were 

not necessary to order) and these data elements are missing not-at-random. 

Other data elements might be missing at random. We compared a number of 

commonly-used imputation methods for a problem, where the exact nature of 

the missing value is unknown.

• Imputation offered superior predictive performance over complete-case-

analysis, where patients with missing values are excluded.

• Some of the simplest methods (e.g. imputing the mean of the normal patients) 

offered excellent performance.
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Figure 1. 
Detection Performance for each category of SSI with different imputation methods. The 

AUC scores are calculated based on both the training set (using the 10-fold cross validation) 

and the test set. Generally, the results indicate that developed models have a better 

performance on the test sets.
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Table 1

Imputed datasets with eight imputation methods.

Imputed Datasets Imputation Method

Mean filling in the mean of all non-missing observations in training set;
filling in the mean of all non-missing observations in test set, separately

Normal filling in the mean of non-SSI patients in training set;
filling in the mean of non-SSI patients in test set, separately

MICE using multivariate regression model

0 filling in 0 for all missing values

Dummy+Mean adding dummy variables to model “mean”

Dummy+Normal adding dummy variables to model “normal”

Dummy+MICE adding dummy variables to model “MICE”

Dummy+0 adding dummy variables to model “0”
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