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SUMMARY Since the reclassification of the genus Bartonella in 1993, the number of
species has grown from 1 to 45 currently designated members. Likewise, the associ-
ation of different Bartonella species with human disease continues to grow, as does
the range of clinical presentations associated with these bacteria. Among these, blood-
culture-negative endocarditis stands out as a common, often undiagnosed, clini-
cal presentation of infection with several different Bartonella species. The limitations
of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are dis-
cussed. The varied clinical picture of Bartonella infection and a review of clinical as-
pects of endocarditis caused by Bartonella are presented. We also summarize the
current knowledge of the molecular basis of Bartonella pathogenesis, focusing on
surface adhesins in the two Bartonella species that most commonly cause endocardi-
tis, B. henselae and B. quintana. We discuss evidence that surface adhesins are im-
portant factors for autoaggregation and biofilm formation by Bartonella species. Fi-
nally, we propose that biofilm formation is a critical step in the formation of
vegetative masses during Bartonella-mediated endocarditis and represents a po-
tential reservoir for persistence by these bacteria.

KEYWORDS Bartonella, blood-culture-negative endocarditis, emerging infections,
trimeric autotransporter adhesins, biofilm

INTRODUCTION

Just over a century ago, an emerging disease plagued almost a million frontline
troops during World War I, rendering them unfit for duty for months at a time. The

disease became known as “trench fever,” and it was subsequently shown to be caused
by the louse-borne bacterium now known as Bartonella quintana (1). Interestingly, at
that time many soldiers affected by trench fever were also reported to have cardiac
involvement, and a complication called “disordered action of the heart” was described
(2, 3). Diseases caused by bacteria in the current genus Bartonella, which once plagued
the soldiers of World War I as trench fever, remained somewhat obscure until appearing
as opportunistic infections in AIDS patients and homeless patients in urban areas in the
early 1990s. Now characterized as reemerging, bacteria in the genus Bartonella are
fastidious, Gram-negative, facultative intracellular pathogens with a unique intraeryth-
rocytic lifestyle. Bartonellae usually exist in two specific habitats: the gut of the
obligately bloodsucking arthropod vector, where they are exposed to toxic concentra-
tions of heme, and the bloodstream of the mammalian host with deprivation of access
to heme and iron (4). The ability of these bacteria to be transmitted by bloodsucking
arthropods facilitates survival and dispersion while avoiding the host immune system.
Over the past 20 years, there has been a rapid increase in the number of Bartonella
species, with 45 species now designated and with some species containing more than
one subspecies (Table 1). New species and subspecies are constantly being proposed,
as evidenced by the description of Bartonella vinsonii subsp. yucatanensis as a distinct
new taxon (5). Additionally, Bartonella isolates and candidate species from a wide range
of animal reservoirs have been described but not yet assigned new species designa-
tions and will undoubtedly further expand this growing genus of bacteria. Bartonellae
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are zoonotic bacteria transmitted from host to host by a diverse range of hematoge-
nous arthropod vectors, including fleas, lice, ticks, and sandflies (6). The association of
Bartonella species with new vectors such as sheep keds has been recently reported (7).
Likewise, the association of Bartonella species with vertebrate host reservoirs, including
cats, rodents, and humans, has long been established, but a steadily expanding range
of new animal reservoirs has been reported, including marine mammals (8), terrestrial
herbivores such as camels (9), and wild carnivores, including lions, bears, and foxes (10).
The emergence of Bartonella in a wide range of hosts and environments and the
association of these bacteria with disease are mirrored by a steady increase in the
number of articles about Bartonella which have been published in the last 2 decades
compared to earlier time periods (Fig. 1A).

The role of Bartonella species in causing endocarditis was first reported in 1993

TABLE 1 Currently designated Bartonella species, their hosts, and associated human disease

Species Host(s) Human disease association

B. acomydis Golden spiny mouse (Acomys russatus) (398)
B. alsatica Rabbits (39) Endocarditis (40)
B. ancashensis Human patient (41) Verruga peruana (41, 399)
B. apis Honeybee symbiont (400)
B. australis Kangaroos (58)
B. bacilliformis Human (26, 401) Oroya fever, verruga peruana,

Carrion’s disease (26)B. birtlesii Mice (402)
B. bovis Dairy cattle (403)
B. callosciuri Plantain squirrel (398)
B. capreoli Deer (403)
B. chomelii French cattle (404)
B. clarridgeiae Cat (187) Lymphadenopathy, fever, papule, CSD

(44, 187)B. coopersplainsensis Rat (58)
B. doshiae Voles (405)
B. dromedarii Camels (406)
B. elizabethae Rats (24) Endocarditis, neuroretinitis (18, 407)
B. florenciae Shrew, mouse (408)
B. fuyuanensis Field mouse (409)
B. grahamii Rodents, voles (405) Neuroretinitis, CSD (51, 53)
B. heixiaziensis Vole (409)
B. henselae Cat (31, 140) CSD, endocarditis, bacillary

angiomatosis, bacteremia (140)B. jaculi Greater Egyptian jerboa (398)
B. japonica Mice (410)
B. koehlerae Cat (411) Endocarditis (19)
B. koehlerae subsp. bothieri Bobcat (412)
B. koehlerae subsp. boulouisii Mountain lion (412)
B. mayotimonensis Bats (55) Endocarditis (20)
B. melophagi Sheep (413)
B. naantaliensis Bats (55)
B. peromysci Mouse (405)
B. pachyuromydis Fat-tail gerbil (398)
B. phoceensis Rat (414)
B. queenslandensis Rats (58)
B. quintana Human (415) Trench fever, endocarditis, bacteremia,

bacillary angiomatosisB. rattaustraliani Rats (416)
B. rattimassiliensis Rats (414)
B. rochalimae Foxes, raccoons, coyotes (57, 417) Bacteremia, splenomegaly (57)
B. silvatica Mice (410)
B. schoenbuchensis Deer (418)
B. senegalensis Tick (419)
B. talpae Moles (405)
B. tamiae Rodents, humans (58) Fever (58, 59)
B. taylorii Rats (405)
B. tribocorum Rats (420)
B. vinsonii subsp. arupensis Mice (65) Endocarditis (21)
B. vinsonii subsp. berkhoffii Dog, coyotes (181, 421) Endocarditis (23)
B. vinsonii subsp. vinsonii Voles (24)
B. vinsonii subsp. yucatanensis Rodents (5)
B. weissii Cat (181)
B. washoensis Dog (422)
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when B. quintana was identified in a patient with HIV infection (11). Soon thereafter, B.
quintana was also isolated from several homeless patients with chronic alcoholism,
some of whom were immunocompetent and had been diagnosed as having blood-
culture-negative endocarditis (BCNE) (12–14). In those cases, specialized isolation tech-
niques were used to isolate B. quintana from the patient’s blood and/or PCR was used
to confirm the etiology. That same year, Bartonella henselae was also shown to be
responsible for a case of “culture-negative” endocarditis (15) and also in a second
immunocompetent patient with endocarditis who owned a cat from which he most
likely acquired the bacterium (16). Since that time, the number of cases of endocarditis
and blood-culture-negative endocarditis that have been attributed to B. quintana and
B. henselae has steadily increased (Fig. 1B). While these two species represent the vast
majority of endocarditis cases attributed to Bartonella species, several other species,
including B. alsatica (17), B. elizabethae (18), B. koehlerae (19), B. mayotimonensis (20),
and B. vinsonii subsp. arupensis and berkhoffii (21–23), have been associated with
endocarditis in humans. In this review, we summarize the current knowledge of the
human-pathogenic Bartonella species, focusing on the two species, B. henselae and B.
quintana, which are most commonly associated with endocarditis.

TAXONOMY OF THE GENUS BARTONELLA
Taxonomic History

Despite the recent rapid expansion of the genus Bartonella, B. bacilliformis was the

FIG 1 (A) Number of publications on Bartonella in PubMed. Source: https://www.ncbi.nlm.nih.gov/
pubmed/?term�bartonella. (B) Increase in reported Bartonella endocarditis cases. (Adapted from
reference 177 with permission.)
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only recognized species in the genus until 1993 (24). B. bacilliformis is the agent of the
biphasic Carrion’s disease, which includes the acute hemolytic anemia phase known as
Oroya fever and the chronic phase known as verruga peruana (see reference 25 for a
recent review). The skin lesions in patients with verruga peruana are unique in that they
are highly vascularized nodules with evidence of angiogenesis (26). B. bacilliformis is
restricted to certain regions in the Andes Mountains because of the distribution of the
sandfly vector (25). Despite the unique pathology observed in patients with Carrion’s
disease, the study of B. bacilliformis was limited until the last 25 years, perhaps due to
its vector-restricted geographic distribution. Similarly, the agent of trench fever was first
known as Rickettsia quintana due to its cell association and difficulty in culturing, similar
to the rickettsiae (1). In 1965, Rickettsia quintana was grown in axenic medium in the
absence of host cells (27, 28), and it was subsequently reclassified as Rochalimaea
quintana.

Interest in these bacteria increased greatly in the early 1990s when Rochalimaea
quintana and a new species, Rochalimaea henselae, were first described in HIV-infected
patients and subsequently in immunocompetent patients (29–33). Both species were
established as etiologic agents of bacillary angiomatosis, which also exhibits angio-
genic lesions similar to verruga peruana (33). Furthermore, Rochalimaea henselae was
recognized as the primary etiologic agent of cat scratch disease (CSD) (34, 35). DNA
relatedness studies and rRNA gene analysis showed that B. bacilliformis and members
of the genus Rochalimaea were closely related, and so these two genera were merged,
establishing the current genus Bartonella, and the family Bartonellaceae was removed
from the order Rickettsiales (24).

Current Status

The genus Bartonella contains aerobic or microaerophilic, fastidious, Gram-negative
bacilli belonging to the alpha-2 subgroup of the class Proteobacteria. Out of the 45
Bartonella species listed in Table 1 which infect animals, 13 have been implicated in
human diseases. In addition to the currently recognized species, numerous subspecies
exist, as do isolates from animal reservoirs that have not yet been fully characterized
and named (candidate species). Thus, the genus is expanding rapidly in real time and
very likely includes more distinct species than those listed in Table 1. It should also be
recognized that not all of the species listed in Table 1 have been validated, but they are
included here for the sake of completeness and because they have become established
in the literature. Currently, there are 35 Bartonella species/subspecies with standing
in nomenclature (http://www.bacterio.net/bartonella.html). Several recent studies/
reviews have described the phylogenetic relationships among Bartonella species,
strains, and isolates using different gene loci, but these are not addressed in this review
(25, 36–38).

Bartonella Species Known To Infect Humans

Human infections caused by several different Bartonella species have been reported,
and the list of potential human pathogens in the genus continues to grow. However,
currently the vast majority of infections in humans are attributed most probably to B.
bacilliformis, B. henselae, or B. quintana. The association of other Bartonella species with
human disease relies on substantial information in the literature for some species and
very limited information or even single case reports for other species. Isolation of the
Bartonella species from diseased tissues is described in some reports, while in others,
serology or molecular diagnostics supports the etiologic role. Accordingly, the strength
of the association of each Bartonella species with human disease must be considered
variable. Regardless, it has been proposed that any Bartonella species found in animals
may be capable of infecting humans (20). Bartonella species that have been associated
with human disease include the following.

B. alsatica. B. alsatica was initially isolated from the blood of wild rabbits (39). B.
alsatica was isolated from a patient diagnosed with BCNE who also had a preexisting
valve lesion (40). A subsequent report implicated B. alsatica in a second case of BCNE
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in a patient who was a rabbit breeder (17), suggesting that rabbits may serve as the
reservoir for transmission of B. alsatica to humans.

B. ancashensis. B. ancashensis is a recently identified new species of Bartonella that
was isolated from two patients with verruga peruana in the Ancash region of Peru (41).
Initially, these patients were thought to be infected with B. bacilliformis, until molecular
analysis indicated that their isolates were a distinct new species. This finding raises a
question: do other Bartonella species infect patients in areas of South America where
only B. bacilliformis is thought to be endemic?

B. bacilliformis. Acute and chronic symptoms of B. bacilliformis infection are known as
Oroya fever and verruga peruana, respectively, and are collectively referred to as Carrion’s
disease. Oroya fever is an acute life-threatening hemolytic anemia that is geographically
limited to the high Andes, may result in death for more than 80% of infected patients in the
absence of antibiotic treatment, and is increasing at an alarming rate in the pediatric
population (42). The chronic form of B. bacilliformis infection results in angiogenic lesions
on the skin called verruga peruana. The diverse clinical presentation of Carrion’s disease
suggests adaptation by B. bacilliformis to facilitate immune evasion in the human host
to maintain the reservoir state for vector transmission (43).

B. clarridgeiae. At least three Bartonella species, B. henselae, B. clarridgeiae, and
B. koehlerae, are associated with cats. B. clarridgeiae was isolated from two different
immunocompromised patients reported to have CSD (44, 187). Symptoms reported
include severe headache, fever, lymphadenopathy, chills, sweating, and malaise (44).
There is also evidence of coexistence of B. henselae and B. clarridgeiae in populations of
cats and their fleas (46). Evidence of B. henselae and B. clarridgeiae DNA has also been
reported in saliva of cats and dogs, and it has been suggested that B. clarridgeiae is a
minor cause of CSD (47).

B. elizabethae. B. elizabethae has been reported to cause human illness, and strains
of this bacterium have been isolated from small mammals in Asia (48). It was originally
isolated by Daly et al. (18) from a patient with endocarditis, and human serologic
evidence of B. elizabethae infection has been reported in Thailand (49). Clinical char-
acteristics may include headache, lethargy, muscle pain, conjunctival suffusion, and
anemia. Almost 70% of patients with evidence of B. elizabethae infection also recorded
exposure to rats, while the rest had cat exposure (50).

B. grahamii. The first human isolate of B. grahamii was from an immunodeficiency
virus-negative patient presenting as a case of neuroretinitis, proving that B. grahamii is
pathogenic to humans (51). It has been reported as one of the most prevalent species
in rodents (52) and has been reported as being a causative agent of CSD-like illness in
an immunocompromised patient (53).

B. henselae. First isolated in 1992 from a febrile patient infected with HIV (31), B.
henselae commonly infects domestic and feral cats (Felis catus) causing long-term
bacteremia. B. henselae is the primary etiologic agent of CSD and is the second most
common Bartonella species causing endocarditis. B. henselae also causes bacteremia
and bacillary angiomatosis.

B. koehlerae. B. koehlerae was detected in heart valve tissue resected from a patient
with BCNE (19). In an additional case, the patient reported depression and anxiety,
headaches, joint stiffness, and hallucinations as a result of persistent infection with B.
koehlerae that resolved following antibiotic treatment (54).

B. mayotimonensis. B. mayotimonensis was isolated from the aortic valve tissue of a
patient from the United States with infective endocarditis (20). The patient lived on a
farm in Iowa and reported owning a cat prior to his illness and possible exposure to
mouse fecal droppings. The authors of that study suggest the possibility that any
Bartonella species can cause human infection and BCNE (20). A subsequent report
isolated B. mayotimonensis from the blood of bats and detected Bartonella species in
their ectoparasites (55).

B. quintana. B. quintana is the cause of louse-borne trench fever; the bacterium is
also recognized as the causative agent of bacteremia, bacillary angiomatosis, chronic
lymphadenopathy, and endocarditis. It is one of the two species of Bartonella with a
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human reservoir. A recent review identified B. quintana as the most frequent cause of
vector-borne infections in homeless and marginalized populations in the United States
and Europe (56). B. quintana is the most common Bartonella species causing endocar-
ditis.

B. rochalimae. B. rochalimae has been reported to be a cause of bacteremia, fever,
and splenomegaly in a patient who traveled to Peru (57).

B. tamiae. Three isolates of B. tamiae were recovered from patients in Thailand who
had fever (58, 59). B. tamiae DNA has since been detected in chigger mites and ticks,
suggesting that these may serve as possible vectors for the transmission of this
Bartonella species (60).

B. vinsonii. B. vinsonii has been isolated from patients with endocarditis, arthritis,
neurological disease, and vasoproliferative neoplasia (61, 62). Both B. vinsonii subsp.
arupensis (21) and B. vinsonii subsp. berkhoffii (22, 23) have been associated with
endocarditis. Vector transmission of B. vinsonii subsp. berkhoffii is suspected among
dogs and wild canines (63), but cats have also been implicated as possible reservoirs
(64). B. vinsonii subsp. arupensis is carried by rodents (65).

MICROBIOLOGY OF THE GENUS BARTONELLA

Growth Properties

Bartonella species are Gram-negative pleomorphic rods that stain poorly with the
Gram stain but better with the Gimenez stain (66). Bartonella species are fastidious,
relatively slow-growing bacteria with a requirement for heme. This growth requirement
is met by growth supplements, including hemoglobin, erythrocytes, or hemin added to
agar bases such as heart infusion agar, Columbia agar, brucella agar, or Trypticase soy
agar. Additional supplements such as IsoVitaleX are used by some laboratories. Barto-
nella species grow best at 35 to 37°C with 5% supplemental CO2, with the exception of
B. bacilliformis, which grows best at 28°C in the absence of supplemental CO2. Liquid
medium has more recently been shown to support the growth of Bartonella species and
has proven useful in both clinical and research laboratories (67, 68). Unique protein
profiles, fatty acid composition, enzymatic activities, restriction fragment length poly-
morphisms, and PCR with and without DNA sequencing are all techniques used to
identify Bartonella to the species level and are presented in depth in other reviews
(66, 69).

Some Bartonella species (B. bacilliformis, B. clarridgeiae, and B. rochalimae) possess
flagella. All Bartonella species, except B. bacilliformis, are thought to have a VirB/VirD4
type IV secretion system (T4SS), and most are thought to have a surface-localized Trw
T4SS. It has been hypothesized that the presence and functions of flagella and the Trw
T4SS are mutually exclusive (70). All Bartonella species possess surface appendages that
were initially described as type IV pili (71) but later shown to be comprised of trimeric
autotransporter adhesins (TAAs) (72). The size of the appendages and the molecular
mass of native TAAs have been shown to vary with species and are thought to be over
1 million Da for the protein trimer of the Brp TAA homologue in B. vinsonii (73).
Expression of TAA genes is also highly variable among different species, within strains
of the same species (72), and even under different conditions (74). The expression of
TAA genes correlates with autoaggregation and has also been recently shown to play
an important role in biofilm formation by B. henselae (75). It is well known that these
autoaggregative properties are more apparent in recent low-passage-number isolates.
The initial report of the isolation of B. henselae Houston-1 noted adherent colony
morphology of the primary isolate (Fig. 2), which was lost upon serial subculture,
resulting in more rapidly growing bacteria (31, 76). Spontaneous mutants lacking
expression of the TAA gene in B. henselae have been reported (77) (see Pathogenesis
of Bartonella Species), but it is not clear if this conversion from the highly autoaggre-
gative phenotype to the nonaggregative phenotype occurs in nature or if it is only a
result of laboratory growth and passage.

Bartonella Species Clinical Microbiology Reviews

July 2017 Volume 30 Issue 3 cmr.asm.org 715

http://cmr.asm.org


Genetics and Genome Organization

Bartonella species possess a single circular chromosome that varies in size from 1.45
Mbp for B. bacilliformis to 2.64 Mbp for B. tribocorum (36, 66). Based on the Bartonella
genomes sequenced to date, the genome size loosely correlates with host specificity,
with rodent-associated species having larger genomes and the human-specific species
B. bacilliformis having the smallest. Rodent-associated Bartonella species show more
evidence of horizontal gene transfer and gene duplication than do the human-specific
Bartonella species. Of particular relevance to this review, it appears that the genomes
of the rodent-associated species harbor more host adaptability factor genes such as the
T4SSs as well as TAA, transporter, and adhesin genes than do the human-restricted
species (78).

Some Bartonella species, including B. grahamii and B. tribocorum, possess plasmids
(36, 78). The functions of plasmid-borne genes in these species are not well
characterized but include putative small regulatory RNAs (75). Additional episomal
DNA elements are the linear DNA fragments of a uniform 14-kb size that were
observed in the cells of B. henselae (79). These linear fragments of DNA were shown
to be a result of random packaging of genomic DNA into 40- to 50-nm icosahedral
bacteriophage-like particles (BLPs) (Fig. 3) (79). A similar BLP was previously ob-
served in B. bacilliformis and was described as a 40-nm icosahedral particle with a
16-nm tail (80). Subsequently, the B. bacilliformis BLP was shown to consist of
specific proteins but nonselectively packaged genomic DNA (81). Initial experiments
to demonstrate gene transfer by the BLPs of both B. henselae and B. bacilliformis
were not successful (79, 81). The genes directing synthesis of components of the
Bartonella bacteriophage-like particles have not definitively been identified; how-
ever, integrated in most of the Bartonella genomes sequenced to date are genes
annotated as phage-related genes or prophage genes (36, 37, 78, 82–84). The BLP
has also been described in B. grahamii, and it has been proposed as a gene transfer
agent with successful in vitro particle-mediated transfer of genes being reported
(37, 78). It has been further proposed that Bartonella BLPs have properties that are
intermediate between those of gene transfer agents and transducing bacterio-
phages (85). Regardless, the function of these novel particles in packaging and
exporting genomic DNA provides evidence that they play an active role in hori-
zontal gene transfer and the evolution of Bartonella species.

FIG 2 Colony morphology of low-passage-number Houston-1 type strain of B. henselae (ATCC 49882). A
highly adherent colony phenotype was observed in this isolate which has subsequently been attributed
to expression of badA. (Reproduced from reference 31.)
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LABORATORY DIAGNOSIS OF INFECTIONS CAUSED BY BARTONELLA
Isolation and Culture

B. henselae and most likely the other newly recognized Bartonella species associated
with human disease avoided detection by routine blood culture methods for many
years before it was appreciated that primary isolation requires specific growth medium
and extended incubation times. Endocarditis has traditionally been diagnosed based
on a positive blood culture. However, blood culture methods have sensitivity as low as
20% for diagnosing Bartonella endocarditis, while tissue culture of surgically excised
valves has a similarly low sensitivity of 30% (86). In general, direct plating of blood or
tissue homogenates is preferable, and several different agar base formulas, including
heart infusion, Trypticase soy, brucella agar, and Columbia agar supplemented with 5%
rabbit blood or 5% hemoglobin, have been used successfully for primary isolation (66).
For primary isolation, extended incubation times of up to 21 days may be required (33).
Plates for primary isolation are incubated in 5% CO2 at 35 to 37°C, except for the
isolation of B. bacilliformis, which prefers ambient CO2 and temperatures of 26 to 28°C.
It has been reported that the lysis centrifugation method for sample preparation
increases isolate recovery (29). Successful isolation of Bartonella species from auto-
mated blood culture systems and liquid culture media has also been reported (67, 87),
as has isolation using cell culture systems (33).

Special Stains

Histopathology of valve tissue stained with hematoxylin-eosin typically reveals
marked inflammation, fibrosis, and calcification compared to endocarditis not
caused by Bartonella (88). Warthin-Starry silver staining has been a frequently
employed method for the detection of Bartonella species and reveals small, dark-
staining bacteria in the fibrotic areas of the affected valve in over 75% of Bartonella
endocarditis cases (89), but this stain is not specific for Bartonella species. Other special
stains include Giemsa and Gimenez stains, which can be used on valvular tissue for initial
diagnosis, but these techniques are also not specific for Bartonella species (66). Acridine
orange has also been used to nonspecifically detect Bartonella species in culture (90).
Immunohistochemical staining of affected tissues has employed both monoclonal and
polyclonal antibodies with various degrees of success and affords higher specificity

FIG 3 Transmission electron micrograph of the bacteriophage-like particles of B. henselae stained with
uranyl acetate. White bar, 50 nm.
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than Warthin-Starry staining (91). Regardless, due to the low yield of blood culture and
lack of specificity of specialized stains, current diagnosis of Bartonella endocarditis relies
heavily on serology and/or molecular testing of blood or valvular tissue specimens.

Serology

Serology has played a critical role in diagnosis of Bartonella infections and, in fact,
was crucial in the establishment of B. henselae as the etiologic agent of CSD (34). That
initial serologic assay used B. henselae cocultivated with Vero cells as an antigen in an
indirect fluorescent antibody assay (IFA) to test for IgM and/or IgG antibodies in the
patient’s serum. A positive titer was considered �16 for IgM and �64 for IgG, with a
4-fold rise in titer for IgG between acute-phase serum and convalescent-phase serum
samples (collected at least 2 weeks apart) preferable for definitive diagnosis (34, 92).
Further reports of Bartonella species cultivated in the absence of host cells or prepared
using other approaches resulted in wide variations in both specificity and sensitivity
(93, 94). It is very likely that the highly autoaggregative nature of most Bartonella
species, subsequently attributed to expression of the TAAs on the surface of the
bacterium, contributed to this variation, since the TAAs are antigenic and recognized by
serum from patients infected with Bartonella species (77, 95). Additionally, the variable
expression of the TAA genes in different B. henselae isolates may have further contrib-
uted to this problem (72). The IFA is not regarded as species specific, and there is
considerable cross-reactivity between B. henselae and B. quintana and perhaps other
Bartonella species as well (96). A similar IFA was used to study 22 cases of BCNE, and
a positive predictive value of close to 90% was reported, but very high antibody titers
(�1,600) were found in these patients, perhaps due to their subacute or chronic
infection with Bartonella species (97).

Serologic assays employing enzyme-linked-immunosorbent-assay (ELISA)-based
approaches have also been used for several years, but similar problems have been
reported for these assays as well, including cross-reactivity and lack of specificity (98).
One approach to serologic diagnosis to reduce cross-reactivity is to substitute specific
antigens for whole bacterial antigens. An example is the use of the VirB5 17-kDa
antigen recombinant protein expressed in Escherichia coli. In that case, the 17-kDa
recombinant protein was examined in Western blot assays and shown to have reactivity
with human sera from patients with CSD, very similar to the IFA (99). The recombinant
17-kDa antigen has subsequently been adapted to an ELISA-based assay to detect IgG
antibody against B. henselae (100) and for an IgM capture assay where high sensitivity
and specificity were reported (101). Another approach to serologic diagnosis is to
employ subcellular fractions as an antigen in an ELISA to detect IgG for the diagnosis
of CSD (102). Cross-adsorption and Western immunoblotting techniques also have been
reported with high specificity and sensitivity in detecting Bartonella endocarditis; the
cross-adsorption technique was used to overcome false positivity from cross-reactivity
with other bacterial species, especially with Chlamydia species, which could also be a
causative agent of endocarditis (86, 103–106).

Molecular Tools for Detection of Bartonella

PCR is not only one of the mainstays for diagnosing Bartonella infections, but it has
played a critical role in fulfilling molecular Koch’s postulates to associate Bartonella with
new disease syndromes. The detection of Bartonella 16S rRNA gene sequences in the
lesions of patients with bacillary angiomatosis provided the first link of Bartonella with
this condition (32). Similarly, the detection of B. henselae 16S rRNA gene sequences in
skin test antigens used to diagnose CSD helped resolve a longstanding mystery about
the etiology of CSD (35). PCR alone or coupled with restriction fragment digestion to
detect polymorphisms, enrichment broth culture, or DNA sequencing has all been used
to identify Bartonella isolates (see reference 89 for a recent review). Many different
primer pairs and techniques have been described to detect Bartonella DNA in clinical
specimens by PCR (see reference 89 for a recent review). When specifically applied to
Bartonella endocarditis, amplification of Bartonella DNA from valvular tissue by PCR has
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been shown in multiple case series to have higher sensitivity and specificity, ranging
from 72 to 98% (86, 97, 107, 108). PCR testing can also be performed on whole blood,
plasma, or serum samples, with studies reporting sensitivity of 58% and specificity of
100% (109). For a recent review of laboratory diagnostic procedures for Bartonella
species, see the work of Gutierrez et al. (69).

EPIDEMIOLOGY OF BARTONELLA INFECTIONS
Natural Reservoirs and Arthropod Vectors

Bartonella species have been isolated or detected in a wide range of animal species,
including terrestrial animals, rodents, bats, and marine animals, such as beluga whales
and sea turtles (8, 110). In most cases, the presence of Bartonella species in the blood
of these infected animal reservoirs does not result in serious disease. Thus, this vast
range of infected animals serves as a ubiquitous reservoir for potential zoonotic
infection. Only two species of Bartonella, B. bacilliformis and B. quintana, are known to
infect humans as their reservoir host. These two species, together with B. henselae,
cause the vast majority of human disease attributed to Bartonella species (111).

There are several examples illustrating how different Bartonella species have evolved
with their mammalian hosts. This would include B. henselae with cats, B. vinsonii subsp.
berkhoffii with dogs, B. bovis in cows, B. melophagi in sheep, and B. australis with kangaroos
in Australia (112). However, the list of rodent-adapted Bartonella species is growing
exponentially, as exemplified by species that have evolved with multiple types of
squirrels: ground squirrels (B. washoensis), gray squirrels (“Candidatus Bartonella dur-
denii”), flying squirrels (“Candidatus Bartonella volans”), and even groundhogs (“Can-
didatus Bartonella monaxi”) (113, 114). Most recently, bats have been identified as the
reservoirs of diverse and novel species of Bartonella. In addition to infected bats in
eastern Africa (Kenya) and Guatemala, Peru has a similar overall prevalence (24.1%) but
presents a greater variety of prevalence by species: for example, more than half of the
population of common vampire bats in Peru is infected (113). The high prevalence is
most likely due to the relatively long lifespan of bats, an average of 10 to 20 years. There
is a theoretical possibility, yet to be confirmed, that transmission of Bartonella species,
in addition to transmission via ectoparasites, may occur via direct bat bite, as is the case
with rabies transmission. Because some bat species (especially Carollia and Glossophaga
bats) share roosts with other species, there is a potential for both intra- and interspecies
transmission of infections. Bats are frequent hosts to a wide variety of ectoparasites
such as fleas, bat flies, soft ticks, and mites (115). Studies from Egypt and the United
States have shown that arthropods have a role as vectors of Bartonella species to other
wildlife, with humans being incidental hosts (116, 117).

Bartonella species have been labeled as emerging pathogens, and yet they have
been detected in the dental pulp of humans dating back to antiquity (118). Bartonella
was first recognized as an agent of endocarditis in 1993 (11). Transmission of Bartonella
species may be via arthropod vectors or direct inoculation, depending on which species
is involved. In the case of B. bacilliformis, disease incidence follows geographic bound-
aries that are limited by the distribution of its vector, the sandfly (Lutzomyia verruca-
rum), to 1 to 3 km of altitude in the Andes Mountains in Peru. Its presence in Ecuador
and Colombia supports an argument for yet another vector or mode of transmission
(119). While L. verrucarum is its most important arthropod vector, other phlebotomine
sandflies—L. maranonensis and L. robusta—may serve as vectors in areas devoid of L.
verrucarum (120). Humans are the only established reservoir of B. bacilliformis, and
several reports examining nonhuman reservoirs, including plants (121), rodents (122,
123), and domesticated animals (124), were inconclusive. Infection with B. bacilliformis
is biphasic, with both an acute hemolytic anemia (Oroya fever) and a chronic form with
vascular proliferative lesions (verruga peruana) (125).

B. henselae is endemic worldwide, and transmission to humans has been linked to
cats by both serology and epidemiologic studies (34, 92, 98, 126). Healthy cats bacte-
remic with B. henselae are associated with bacillary angiomatosis and CSD in their
human contacts. The major vector of transmission between cats is the cat flea (Cteno-
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cephalides felis) (127, 128), with about 50% of cats bearing signs of previous or current
infection (129). Cat-to-cat transmission of the organism by the cat flea, with no direct
contact transmission, has been demonstrated (130). B. henselae has been experimen-
tally detected in oral swabs from infected cats (131, 132) and is able to replicate in the
gut of the cat flea, is shed in the feces, and is also shown to live in flea feces for up to
3 days postexposure (133–135). Possible mechanisms of cat-to-cat transmission include
flea bite and ingestion of fleas and flea feces (136). Of note, asymptomatic but bacteremic
cats are more likely to harbor fleas, therefore leading to persistence in the flea vector.
Bartonella species has been detected in other types of fleas, as well as ixodid and
Dermacentor ticks (109, 137, 138), but no definitive transmission studies have shown
that these vectors transmit B. henselae (139). No flea-to-human transmission has been
identified as of yet (127, 131, 140). Rather, transmission of B. henselae occurs indirectly,
primarily by contaminated flea feces that are inoculated by a cat scratch (141) and
rarely through a cat bite (131). Bartonella clarridgeiae and B. koehlerae are widespread
in cats but are uncommon causes of illness in humans (142–144). B. elizabethae has
been isolated in humans, while its DNA has been amplified from the blood of dogs
(145). The majority of CSD cases occur in children aged 5 to 9 years and those living in
the southern United States. The estimates show 22,000 diagnoses of CSD each year in
the United States with about 2,000 hospitalizations (146). The incidence of CSD varies
by season, with most cases occurring during the fall and early-winter months, Septem-
ber through January. Some attribute the seasonal prevalence to the breeding patterns
of cats, peak time of domestic cat adoptions, and the temporal presence of fleas on
cats, which spread the bacteria among the cat population (146).

Unlike B. bacilliformis, B. quintana (trench fever) has worldwide distribution often
associated with war zones and poor sanitation predisposing to infestation with the
human body louse (Pediculus humanus), the only known vector for transmission (147).
The disease presents with fever, rash, bone pain, and splenomegaly lasting for about 4
to 5 days, thus its name of quintan or 5-day fever. On rare occasions, the symptoms
persist or recur as multiple paroxysms. World War I brought this relatively rare disease
to light, since about 1 million troops were thought to have been infected. Now, the
disease is seen mostly in alcoholic and homeless populations and has been dubbed
“urban trench fever” (148, 149). The 1990s and the HIV epidemic brought the resur-
gence of the disease presenting with fever and bacteremia with and without endocar-
ditis (107). Although the human body louse P. humanus is the main vector for its
transmission, B. quintana has been detected in cat fleas, monkey fleas, and cat dental
pulp, suggesting potential methods of transmission other than infestation and bite by
the body louse (150, 151). B. quintana is transmitted by lice through its feces, and its
mode of transmission is well researched (152). Much like B. henselae, it is also found to
replicate in the gut of the vector (134). In a state of prolonged bacteremia, it is found
in the erythrocytes (153), and nonhemolytic intracellular colonization of erythrocytes
preserves the pathogen for efficient transmission by lice while protecting it from the
host immune response and decreasing antimicrobial efficacy (153). It is also proposed
that B. quintana could present a risk in blood transfusion, since undetected bacteria
could be present in erythrocytes of blood donors (153). Recently, Bartonella species
were detected in 3.2% of asymptomatic blood donors from Brazil (154). In its classic
form of causing endocarditis, B. quintana multiplies in the louse intestine and is
excreted in the louse’s feces and deposited on human skin. Entry across the skin occurs
when a pruritic area of the skin is scratched and abraded (155).

Epidemiology of Bartonella Endocarditis

B. henselae, when combined with B. quintana, accounts for over 90% of Bartonella
endocarditis cases (107). Bartonella species in general have wide geographic distribu-
tion, possibly due to the geographic specificity of their respective hosts and vectors
(156–162). For example, DNA of several species of Bartonella was isolated from bat flies
and bats in Africa, Asia, Europe, and both North and South America (163). B. henselae
and B. quintana, the two species most commonly associated with endocarditis, are also
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known to occur worldwide (58, 164–166). While the majority of cases of Bartonella
endocarditis reported are from Europe and the Americas, cases have also been reported
from Asia, East and West Africa, and Australia, suggesting worldwide distribution of
Bartonella endocarditis (167–171). There is a clear preponderance of the male gender
in the reported Bartonella endocarditis cases, with males accounting for 60 to 85% of
cases (97, 107, 172). It is not clear whether there is a biologic basis for this difference
other than the difference in demographic factors (such as homelessness or alcohol
abuse) that exists between the genders. B. quintana endocarditis was originally re-
ported in a patient with HIV; however, subsequent reports have shown that B. quintana
endocarditis occurs in people without known immunodeficiency (11, 13). Some of the
most frequently recurring epidemiologic associations with B. quintana endocarditis
were homelessness, alcoholism, and exposure to body lice. These epidemiologic asso-
ciations are likely to be interrelated and probably are surrogate markers for low
socioeconomic status rather than each factor being individually associated with the risk
of B. quintana endocarditis. However, interestingly the majority of these patients with
B. quintana endocarditis did not have previously known valvular diseases, which would
be expected in people of low socioeconomic status. B. henselae endocarditis accounted
for about 25% of all Bartonella endocarditis and usually occurred in people who had
previous valve diseases and had a history of exposure to cats or cat fleas (107, 173, 174).
B. henselae also has been implicated as a coinfecting agent in a patient with other
bacterial etiologies such as staphylococcal endocarditis (173). Even though this was a
single case report, the possibility that the virulence and pathogenic features of Barto-
nella, such as endothelial proliferation, may prime the valve for subsequent infection by
other, more commonly encountered bacteria such as staphylococci is an area for future
investigation. Patients with Bartonella endocarditis generally tend to have a lower
average age than patients with other types of bacterial endocarditis, with observed
geographic variability in age possibly reflecting regional differences in demographics
and socioeconomic status (175–177).

BARTONELLA AND DISEASE
Disease Syndromes Associated with Bartonella Infection

B. quintana was identified in human dental tissue dating as far back as 4,000 years,
and relics of the Inca empire depict features of the disease verruca peruana, which is
now known to be caused by B. bacilliforms (118, 178). However, until only a few decades
ago only one other human disease; namely, trench fever, was attributed to bacteria in
the current genus Bartonella. Since the early 1990s, several species and subspecies of
Bartonella have been characterized, and the spectrum of natural reservoirs, vectors,
and human diseases caused by Bartonella species has significantly expanded (179–181).
Below is a brief description of some of the major human diseases caused by Bartonella
species. Even though these diseases may be distinct from endocarditis in some ways,
it is increasingly evident now that many of them are accompanied by intraerythrocytic
(bacteremic) phases which may lead to endocarditis (182).

Carrion’s disease. Carrion’s disease (bartonellosis) is caused by B. bacilliforms and
transmitted by sandflies of the species L. verrucarum. It is endemic in higher-altitude
areas of Peru, Colombia, and Ecuador, but sporadic cases have been reported in people
returning from visits to areas of endemicity (57). The classic manifestation of Carrion’s
disease is described as having two phases, the first an acute febrile illness (sometimes
known as Oroya fever) characterized by fever, generalized lymphadenopathy, myalgia,
headache, jaundice, and severe hemolytic anemia with fatality rates of as high as 90%.
Meningeal and cerebral involvement can occur in up to 20% of patients with Carrion’s
disease and manifests as delirium, paralysis, and seizures. A subsequent chronic and
cutaneous eruptive phase of the disease is characterized by development of verrucous
dermal eruptions that result from proliferation of vascular endothelial cells (183, 184).

Trench fever. Trench fever is so named because it classically occurred in the
trenches of World War I among various European armies’ troops but is also linked with
a more recent epidemic that has been reported among homeless people in impover-
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ished urban areas of several countries (148, 185). Trench fever is caused by B. quintana
and is transmitted person to person by the body louse, P. humanus. It is characterized
by a sudden onset of high-grade fever, retro-orbital headache, myalgia, and bone pain,
especially over the pretibial area. It is classically described as a 5-day relapsing fever,
hence its other name, febris quintana, from the Latin for five. The disease can take a
chronic course and last several weeks, during which bacteremia is common and cardiac
involvement may complicate the course with insidious onset of endocarditis (186).

CSD. Cat scratch disease (CSD) is caused primarily by B. henselae and is transmitted
by the scratch or, less likely, by the bite or lick of cats (150). Other Bartonella species
have been implicated in CSD-like disease in individual case reports (44, 53, 187). Even
though more than 50% of domestic cats may be carriers of Bartonella as shown in some
studies, they usually do not show signs or symptoms of infection (140, 188, 189). B.
henselae has also been isolated in fleas recovered from infected cats (140). The classic
description of CSD involves a scratch by a cat followed by local inflammation 10 to 14
days later and significant enlargement of regional lymph nodes. Systemic symptoms
such as fever and malaise typically develop and could last for several weeks. Most cases
run a benign course and resolve spontaneously, although serious complications such as
meningitis, osteomyelitis, encephalitis, and endocarditis are known to occur (190, 191).
Oculoglandular syndrome (also known as Parinaud’s oculoglandular syndrome) is an
ocular manifestation of cat scratch disease of granulomatous conjunctivitis with pre-
and postauricular lymphadenopathy; a recent case report also highlights an expanding
spectrum of ocular involvement by CSD presenting as an optic nerve granuloma (192,
193). Transmission between cats is mainly by the cat flea, although other arthropods,
mainly ticks of the genus Ixodes, have been proposed as possible vectors (194).

BA. Bacillary angiomatosis (BA) is a proliferative disease of vascular epithelia man-
ifesting as a solitary or multiple papulonodular cutaneous lesions. The etiologic agents
are both B. henselae and B. quintana (32, 33, 195). BA was originally described in patients
with HIV and other immunocompromised status such as organ transplant recipients on
immunosuppressive therapy; however, it has since been described in immunocompetent
hosts (196). The cutaneous lesions are highly vascular, bruising or bleeding easily, due
to the underlying effect of these species of Bartonella to cause abnormal vascular
endothelial cell proliferation and neovascularization (183, 197). The skin lesions could
be superficial or deep in the subdermal structures, at times even involving the bones.
Regional lymphadenopathy and involvement of mucous membranes of the mouth,
conjunctivae, and the gastrointestinal tract, including the perianal area, have also been
described. Visceral involvement is also known to occur involving the liver, spleen,
lymph nodes, and the bone marrow, with other reports documenting isolated visceral
involvement in the absence of cutaneous lesions (198, 199).

Peliosis hepatis. Peliosis hepatis is characterized by multiple vascular, hemorrhagic
parenchymatous and cystic lesions of the liver ranging from a few millimeters to 3 cm
in size. Peliosis was originally described in a case report associated with tuberculosis
in 1916 (200). Several subsequent reports have shown association with many other
pathological conditions, including multiple infectious and noninfectious diseases
such as neoplastic processes and exposure to toxins and anabolic steroids (201, 202).
In more recent years, peliosis has been distinctly associated with HIV infection (203,
204). Histologically, the lesions of peliosis show dilated capillaries, vascular hyperplasia,
and inflammatory cells much as in the case of BA (30, 198, 205). B. henselae is the
species most often associated with peliosis hepatis, and affected patients usually
present with abdominal pain, fever, and weight loss. Hepatomegaly is usually present,
and some patients may have concomitant cutaneous lesions of BA (206).

Bartonella-related mimics of autoimmune disease. Juvenile arthritis and myositis
associated with high serum titers for B. henselae that rise and fall with disease activity
have been reported in children (207, 208). Although causal association has not been
proven, increased rates of seropositivity for B. henselae have been described in patients
with leukocytoclastic vasculitis and Henoch-Schönlein purpura (209, 423) as well as in
a case of Coombs-positive autoimmune hemolytic anemia (210). Cases of uveitis
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associated with HLA-B27 seropositivity have also been described in B. henselae-infected
patients presumed to have ocular involvement by Bartonella (211). It should be noted
that the association of Bartonella species with autoimmune disorders has been largely
limited to serology-based testing and could be compromised by cross-reacting anti-
bodies.

Bartonella as a risk factor for atherosclerosis. Several infectious agents, including
Chlamydophila pneumoniae, Helicobacter pylori, cytomegalovirus, and periodontal patho-
gens, have been reported to contribute to atherosclerotic vascular disease (see reference
212 for a review). Antimicrobial activity of statins has been reported, and it has been
suggested that this activity may, at least in part, be responsible for the reduction in
cardiovascular mortality associated with the use of these drugs (213). However, anti-
biotic treatments have largely failed to significantly reduce cardiovascular mortality
(214). B. henselae has been shown to infect human CD34� hematopoietic progenitor
cells, and it was proposed that these cells may serve as the primary niche of infections
(215). A subsequent report showed that endothelial progenitor cells were infected with
B. henselae, resulting in damage counteracted by nitric oxide as demonstrated by the
administration of L-arginine (216). It has been proposed that B. henselae infection of
endothelial progenitor cells could reduce both the number of these cells and their
functionality (216). In so doing, the natural repair role for endothelial progenitor cells
would be diminished, thereby indirectly contributing to the growth of atherosclerotic
plaque (217). Further study is needed to support the role of the interaction of Bartonella
with both endothelial progenitor cells and endothelial cells. The association of Barto-
nella species with the onset and progression of atherosclerosis remains speculative at
this point.

Myocarditis. Myocarditis associated with both B. henselae and B. quintana infection
has been reported (218–220). While myocarditis is not a common clinical presentation
of Bartonella infection, it warrants mention for the severe disease course reported to
manifest in one specific affected group. During the period of 1979 to 1992, 16 sudden,
unexplained cardiac deaths were reported in elite Swedish orienteers; orienteering is a
popular activity in Sweden with extreme physical demands, extended outdoor expo-
sure, and interaction with nature (221). Of the 16 fatal cases, myocarditis was the most
common diagnosis; heart tissue from five orienteers was tested by PCR, and Bartonella
species was detected in four (221). Additionally, four of the five patients’ sera were
tested and shown to have antibodies to Bartonella species (221). A subsequent retro-
spective study on 1,136 sera from orienteers showed that 31% had antibodies to
Bartonella compared to 6.8% in time-matched healthy blood donor control sera (222).
The authors of that study concluded that antibodies to Bartonella species in Swedish
orienteers may be indicative of risk factors associated with the development of myo-
carditis and sudden unexpected cardiac death in these athletes who were previously in
good health (221, 222).

Bacteremia. Invasion of erythrocytes and prolonged intraerythrocytic presence in
their respective reservoir hosts (intraerythrocytic bacteremia) are one of the hallmarks
of inoculation of a reservoir host by Bartonella species (223, 224). Bartonella species
have been shown to employ several molecular mechanisms as a basis for invasion of
erythrocytes and evasion of the immune responses that would otherwise typically
trigger symptoms in bacteremic hosts (225–228). Such asymptomatic bacteremia has
been reported in various nonmammalian and mammalian hosts, including humans (8,
110, 229, 230). Asymptomatic bacteremia has been shown to persist from a few weeks
to several months in studies conducted in healthy human volunteers (231). In humans,
a small proportion of the erythrocytes, usually no more than 1%, is infected by B.
quintana, and such low-level bacteremia can persist for months to years with no or only
subclinical symptoms (153, 224, 232). In a rat model of infection with B. tribocorum,
B-cell-deficient rats had a more prolonged bacteremia than immunocompetent rats
(232, 233). It is plausible that low-level bacteremia may precede the pathogenesis and
eventual clinical development of endocarditis in humans; however, this has not been
epidemiologically or experimentally confirmed (234).
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BCNE. Blood-culture negative endocarditis (BCNE) is generally defined as endocar-
ditis where the microbial etiology cannot be established after at least three different
blood samples in a standard blood culture system fail to grow an organism after at least
5 days of incubation (235). The incidence of reported BCNE varies dramatically, ranging
from 2.5% to 76% of all infective endocarditis cases (236–238). One of the reasons for such
broad variability of the incidence of BCNE is the geographic variation in the reported rates
of culture-negative endocarditis, probably reflecting the differences in availability of testing
alternatives. For instance, reports from South Africa, Algeria, and Pakistan put the rates
of culture negativity at about 50% of all endocarditis cases (238–240), whereas case
series from Japan, France, and the United Kingdom report BCNE rates of 12 to 20% (235,
241, 242). In addition to geographic variations, earlier reports may have overestimated
the incidence (of culture negativity) partly because of the limited testing capability in
the past, even in developed nations, with ever-expanding contemporary options for
serologic and molecular testing. It is now estimated that BCNE accounts for around 5%
of all endocarditis cases (236, 241, 243–245). There are various reasons why a blood
culture may be negative in the face of endocarditis (hence presumed bacteremia). The
main reasons for culture negativity are pretreatment with antibiotics prior to the blood
culture; nonbacterial etiologies for the endocarditis (such as fungal etiology, for in-
stance); right-sided endocarditis, which may not be as bacteremic in systemic circula-
tion; and the presence of implanted devices such as pacemakers or implantable
defibrillators (246–248). The microbial etiologic agent of the endocarditis being fastid-
ious and thus not easily grown on standard culture medium is one of the most
important reasons why blood culture may be negative in the case of endocarditis (86,
177, 249). Bartonella is also thought to account for 3 to 4% of all cases of endocarditis
(97, 177). While B. quintana and B. henselae account for the majority of cases of
endocarditis, several other species of Bartonella have been shown to cause endo-
carditis, as shown in Table 1 (18, 86, 250, 251).

The majority of patients with Bartonella endocarditis have clinical presentations
similar to other cases of subacute bacterial endocarditis. Nonspecific symptoms
such as fever, fatigue, and weight loss predominate in the clinical picture. In one
series of 348 cases of BCNE from France, Bartonella species accounted for 28% of the
cases (86). Almost all of the patients had fever as a presenting symptom, whereas
about 50 to 70% had symptoms of heart failure such as exertional dyspnea and about
50% had insidious weight loss (86, 252–254). Physical examination findings typically
include cardiac murmur, and the aortic valve either in isolation or with another valve
is the most frequently affected valve, including in the pediatric age group (255–258). In
a detailed report, a 33-year-old man with a known bicuspid aortic valve was shown to
have BCNE confirmed by echocardiography that was shown to be caused by B. henselae
(258) (Fig. 4).

While the majority of the valves affected were native valves, prosthetic valve
involvement has been reported, and prosthetic valve involvement by Bartonella seems
to take a more aggressive course with valve perforation and rapid development to
heart failure (12, 259, 260). Additional physical exam findings include splenomegaly,
which has been reported in up to 40% of Bartonella endocarditis cases in one series;
thromboembolic phenomena; digital clubbing; and hepatomegaly (86, 175, 177).
The most commonly observed laboratory abnormalities include elevated inflammatory
markers such as erythrocyte sedimentation rate (76 to 83%), anemia (55 to 68%),
thrombocytopenia (33 to 50%), elevated liver enzymes (20%), evidence of renal failure
(40 to 50%), leukocytosis, and positive rheumatoid factor (86, 175, 177). Earlier reports
showed Bartonella endocarditis with significant mortality rates of 7 to 30%; however,
more recent studies report mortality rates in the lower range, probably signifying
improved diagnostic and therapeutic measures, including improved surgical tech-
niques (255, 261, 262).

Currently, there is a lack of criteria for the diagnosis of endocarditis caused by
Bartonella species (177). The use of traditional blood culture methods is hampered by
the low rate of culture positivity and the need for prolonged incubation time, use of
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specialized media, and special growth conditions. Despite measures to optimize the
yield, blood cultures are likely to remain negative, with some estimates showing
that up to 75% of Bartonella endocarditis cases could be culture negative (90, 97,
263). Therefore, diagnostic criteria that rely on blood culture positivity, such as the
Duke criteria, are likely to miss a significant proportion of Bartonella endocarditis cases.
Moreover, due to the indolent nature of Bartonella infections, the other major Duke
criterion of echocardiographic evidence of vegetation may not be as readily apparent as it
is for the other types of endocarditis. Thus, the utility of the Duke criteria to diagnose
Bartonella endocarditis using blood culture and echocardiographic evidence as major
criteria has been in question (264). Serologic testing for IgG antibodies to either B.
henselae or B. quintana using microimmunofluorescence techniques has been used for
the diagnosis of Bartonella endocarditis in several studies. A Bartonella IgG titer of
�1:800 is recommended as the cutoff for a positive test, offering high sensitivity,
specificity, and positive predictive value (177, 265, 266). Likewise, PCR testing of blood,
plasma, or serum samples taken from confirmed cases of Bartonella endocarditis was
shown to have a sensitivity of about 58% and specificity of 100% (267). The use of
serology and PCR testing has been proposed and eventually added as major Duke
criteria for Coxiella burnetii infection, which is epidemiologically and demographically
closely related to Bartonella endocarditis (268, 269). Similarly, incorporating a positive
Bartonella serology or PCR test as a major Duke criterion for the diagnosis of Bartonella
endocarditis has been proposed (177, 241, 264, 265, 270–273). Thus, available evidence
advocates including B. henselae or B. quintana IgG serology at �1:800 or a positive PCR
as a major Duke criterion for the diagnosis of Bartonella endocarditis.

(i) B. quintana endocarditis. B. quintana accounts for about three-fourths of Barto-
nella endocarditis cases. After transmission by the human body louse P. humanus,
bacterial entry across the skin occurs and adherence to and infection of erythrocytes
and endothelial cells ensue. The resulting bacteremia can persist for prolonged periods,
at times lasting for years. B. quintana has evolved with variably expressed outer membrane
proteins (Vomps) that are believed to be essential for infectivity as well as evasion of
detection by the host immune system (74, 274). B. quintana has also been shown to
induce intracellular signals that lead to decreased apoptosis and increased proliferation
of vascular endothelial cells (see Pathogenesis of Bartonella Species), attributes believed
to enhance its capacity to cause chronic infection and intracellular aggregation in
endothelial cells, including valvular endothelium (275). Vascular and valvular endothe-
lial cells are also targets of B. quintana colonization and production of cytokines and
mitogenic factors, leading to endothelial proliferation and cytoskeletal rearrangement

FIG 4 (A) Transesophageal echocardiogram from a patient with BCNE caused by B. henselae. Bicuspid aortic valve with left coronary leaflet
almost entirely replaced by a large vegetation (arrow). (B) Giemsa stain of the patient in panel A showing extensive fibrosis and
coccobacilli on the aortic valve that were confirmed to be B. henselae. (Both panels reproduced from reference 258 with permission from
Elsevier.)
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(228, 276). Thus, B. quintana employs several strategies to evade host immunity and
cause a prolonged and asymptomatic bacteremia that culminates in the development
of endocarditis. These pathogenic mechanisms of B. quintana underlie the insidious
clinical presentation and subtle variations in clinical findings of endocarditis caused by
B. quintana.

(ii) B. henselae endocarditis. B. henselae accounts for about one-fourth of Bartonella
endocarditis cases. The majority, but not all, of B. henselae endocarditis cases have a
history of contact or interaction with a cat. B. henselae shows tropism for endothelial
cells and replicates and persists in the endothelium similarly to B. quintana. Pathogenic
mechanisms include Bartonella adhesin A (BadA) and the TAA, which is expressed in B.
henselae as well as in B. quintana (70, 277, 278).

(iii) Treatment considerations for Bartonella endocarditis. By virtue of their patho-
genic and virulence mechanisms, namely, intraerythrocytic propagation and ability to
persist in a primary niche, Bartonella species are in general endowed with a substantial
capacity to evade the host immune system and to resist antimicrobial agents (156, 181,
224, 279, 280). Earlier studies have reported widespread in vitro susceptibility of several
Bartonella species to various classes of antibiotics, including penicillins, beta-lactams,
macrolides, and aminoglycosides (280–282). However, subsequent studies and clinical
experience have shown that treatment failures of Bartonella infections are a significant
problem despite seemingly low MICs suggesting susceptibility (282–284). Moreover, several
of the antimicrobial classes tested against Bartonella species exhibit only bacteriostatic
properties, with the exception of aminoglycosides such as gentamicin (283, 285, 286). The
issue of host defense evasion, potential biofilm formation, and hence resistance to
antimicrobials is even more acutely important in cases of Bartonella endocarditis where
cultures are likely to be negative and diagnosis delayed. Based on experience from the
past 2 decades in the treatment of Bartonella endocarditis, multiple reports and
recommendations advocate the use of at least two antibiotics, one of them being an
aminoglycoside (172, 287, 288). The recommended duration of therapy is generally for
a minimum of 4 weeks in native valve disease and a minimum of 6 weeks in prosthetic
valve endocarditis. Aminoglycosides are recommended at least for the first 2 weeks of
therapy, and the duration of combined aminoglycoside use and the total duration of
therapy correlate with a beneficial clinical outcome (98). Thus, current recommenda-
tions for treatment of Bartonella endocarditis stress the use of an aminoglycoside at
least for the first 2 weeks of therapy in conjunction with a two-drug regimen, the
second drug being a beta-lactam, a macrolide, or a tetracycline depending on the
specific concomitant clinical considerations (289, 290). The combination of gentamicin
and doxycycline has been suggested in a recent report (291).

PATHOGENESIS OF BARTONELLA
Human Infection

Pathogen-associated molecular patterns (PAMPs) are molecules associated with
specific pathogen groups that are recognized by cells of the innate immune system. To
detect invading pathogens such as bacteria and viruses, the immune system is
equipped with pattern recognition receptors that are specialized in their recognition,
including the Toll-like receptor (TLR). Following intravenous or intradermal inoculation
with Bartonella, the bacteria evade the host innate immune system. This has been
attributed to the inability of the TLR to identify the lipopolysaccharide on the outer
membrane of the bacteria as a result of the reduced endotoxic activity of the lipopolysac-
charide of Bartonella (292). Moreover, B. quintana employs strategies to dampen the host
inflammatory response through overproduction of the anti-inflammatory interleukin-10
(IL-10) and antagonizing proinflammatory factors such as Toll-like receptor 4 (293, 294).
B. bacilliformis, which possesses flagella, structures that are recognized by the TLR, is
also known to evade the innate immune system because of a primary amino acid
sequence change in the flagellin which promotes its evasion (295). After innate immune
system evasion, the bacteria are cleared from the circulating bloodstream for their
primary niche, most likely the endothelium, where they grow and seed back to reinfect
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the blood, causing bacteremic relapses in cats, mouse models, and rhesus macaques
(74, 127, 224, 296). Bartonella is known to infect a range of host cells, but the
endothelial cell is thought to be the primary niche location (296). This hypothesis stems
from the evidence shown in the verruga peruana of B. bacilliformis characterized by
tumors from endothelial cell proliferation (297) and studied in vitro (183, 298). B.
quintana and B. henselae have also been shown to invade endothelial cells (299, 300).
B. henselae has been shown to invade human endothelial cells in vitro by both a
VirB/VirD4 T4SS-dependent mechanism resulting in intracellular invasion of large ag-
gregates of bacteria termed invasomes (Fig. 5) and a VirB/VirD4 T4SS-independent
mechanism (275, 277). While B. henselae has been shown to invade human endothelial
cells in vitro by these two different mechanisms, the role of intracellular growth in
facilitating human disease is not clear (301, 302).

Regardless of the proposed role of endothelial cells in serving as the primary niche
of infection by Bartonella species, it is clear that the interaction with the endothelium
results in a host response that is unique to these bacteria. This unique angiogenic host
response results from infection by each of the three major human pathogens in the
genus Bartonella, B. bacilliformis, B. henselae, or B. quintana. Angiogenesis caused by B.
henselae is induced by production of proangiogenic factors such as vascular endothelial
growth factor (VEGF), by promoting endothelial cell proliferation, and by suppressing
apoptosis of vascular endothelial cells (303–306). VEGF is also a potent mitogen and
tumor angiogenesis stimulator, and during B. henselae infection, production of VEGF is
shown to be increased in microvascular endothelial cells (300). The production of VEGF
by B. henselae has been shown to be regulated by the TAA-dependent activation of

FIG 5 Transmission electron micrograph of a B. henselae invasome after internalization into an endo-
thelial cell. Magnification, �12,000.
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hypoxia-inducible factor 1 (Hif-1) (77, 307). B. henselae has also been shown to repro-
gram human endothelial progenitor cells (308). B. bacilliformis infection shows evidence
of endothelial cell proliferation in its vascular tumor (Peruvian warts) evident during the
chronic phase, and in vitro models have shown that it stimulates endothelial cells and also
induces angiogenesis (183). The production of VEGF during B. henselae infection has been
shown to require BadA and occurs through a hypoxia-inducible factor 1-dependent
mechanism (77). A similar role has been proposed for the Vomps of B. quintana (309).
In contrast, the inhibition of apoptosis has been shown to be a result of delivery of the
Bartonella effector proteins (Beps), namely, BepA, by the VirB/VirD4 T4SS of B. henselae
(310). Thus, in the case of B. henselae, the coordinated efforts of BadA and the
VirB/VirD4 T4SS are thought to be required for the angiogenic host response induced
by this bacterium (311). A paracrine angiogenic loop model has been proposed to
explain this unique host response in B. henselae (Fig. 6) (312). However, it should be
noted that B. bacilliformis is able to induce dramatic angiogenic lesions in infected
patients, but this species has no known VirB T4SS encoded in its genome. Thus, the role
of the VirB/VirD4 T4SS appears to be dispensable for at least some Bartonella species to
induce angiogenesis. Alternatively, it is possible that B. bacilliformis has as-yet-
undefined factors that function in a capacity similar to that of the Beps to augment the
role of the TAAs in eliciting a proangiogenic host response. Mitogenic activity associ-
ated with the B. bacilliformis GroEL chaperone for human umbilical vein endothelial
cells has been demonstrated, suggesting a possible role for this protein in Bartonella-
induced angiogenesis as well (313).

Virulence Factors

Every bacterium carries virulence factors specifically adapted to its needs for inva-
sion, colonization, replication, and survival in the host cell, and Bartonella species are no
exception. With the exception of virulence-associated surface-exposed proteins, most
bacterial virulence factors are delivered either to the extracellular environment or
directly into host cells (314). The virulence factors described to date for Bartonella
species fall into these two categories. While many virulence factors for these bacteria
have been described, infection by Bartonella species is facilitated by the presence of
two major virulence factors, the TAAs and the T4SSs.

The TAA family of proteins. The TAAs of Gram-negative bacteria are a family of
proteins that are considered type V secretion systems. While there is considerable variability
in TAA size, sequence conservation, and the number of gene copies in the genomes of
different Bartonella species, all Bartonella species appear to have at least one TAA gene

FIG 6 Paracrine angiogenic loop model for B. henselae. The role of BadA, VirB, and the cognate effectors (Beps) in inducing the
angiogenic host response that is unique to Bartonella species is shown. (Adapted from reference 312.)
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(315). The TAA family of proteins is found in many other Gram-negative bacteria (316). The
TAA protein family is termed BadA in B. henselae (77), Vomps in B. quintana (74), and
Bartonella repeat proteins (Brps) in B. vinsonii (73). The role of BadA and the Vomps in
virulence in the genus Bartonella is the best-studied facet of these TAAs.

(i) BadA. BadA has been ascribed several functions, the first of which is adherence
to host extracellular matrix proteins or target endothelial cells. BadA is a monomer of
328 kDa that forms filaments that are about 240 nm long on the surface of B. henselae
(315). Other bacteria possess TAAs with similar characterized adherence functions such
as Yersinia (YadA) (317) or Neisseria meningitidis (NadA) (318). TAAs form extracellular
filaments composed of head and stalk domains assembled on a C-terminal membrane
anchor, forming a “lollipop-like” structural architecture (315, 319, 320). During assem-
bly, the TAA is secreted into the periplasm while the membrane anchor builds a
homotrimeric 12-stranded beta-barrel in the outer membrane. This trimerization is
required to maintain the stability and adhesive property of the protein (319). The trimer
barrel forms a pore which transports the head and stalk domains to the cell surface,
and the C-terminal part of the stalk clamps the pore (321). Previous experiments
with mutant strains show that while the BadA head is responsible for adherence to the
extracellular matrix and autoagglutination (AAG), the stalk is required for fibronectin
adherence (322). BadA prevents bacteria from being phagocytized and also stimulates
endothelial cell proliferation by inducing a proangiogenic host cell response through
activation of Hif-1, a crucial transcription factor for angiogenic cytokine secretion (77,
323, 324). A ΔbadA mutant of B. henselae was shown to exhibit reduced replication and
a weakened proangiogenic host response in a zebrafish embryo model (325).

Even within B. henselae, the size of the BadA protein is variable, and it is thought that
much of this variation is due to the different size of the repeating neck/stalk regions
(72). Likewise, the amount of surface-localized BadA is also highly variable, ranging
from no detectable BadA in the Berlin-1 and ATCC 49793 strains to very high expression
in the Marseille strain (72). Regulation of the badA gene has been attributed to the
BatR/S two-component regulatory system (326) and the general stress response system
(327). More recent studies have shown that a family of nine unannotated and highly
transcribed RNAs designated Bartonella regulatory transcript (Brt1 to Brt9) found
upstream of a putative transcriptional regulator protein are important in the regulation
of badA (75).

Considerable confusion exists in the literature with regard to the genome sequence
(accession no. BX897699) of the badA locus for the Houston-1 type strain of B. henselae
(ATCC 48892), which reports a 1-bp deletion in the anchor of the badA gene (BH01510)
(82). This results in the BadA anchor region being annotated as a separate 67-amino-
acid-protein-encoding gene (BH01520) which partly overlaps the 3= end of BH01510
(77). Riess et al. subsequently reported that the B. henselae Houston-1 strain exhibits
surface-localized BadA and does not contain this mutation in the membrane anchor
region of BadA (72). Independent sequence analysis of low-passage-number B. henselae
Houston-1 in our laboratory shows BH01510 and BH01520 as a single merged open
reading frame (unpublished data). Furthermore, immunoelectron microscopy shows a
surface-localized BadA, indicating a functional membrane anchor domain (Fig. 7),
suggesting that the genome sequence reported by Alsmark et al. (82) may reflect a
higher-passage-number variant with a laboratory-derived mutation in the badA gene.
It should be noted that other strains or laboratory-derived variants have also been
shown to be defective for either badA expression or BadA surface localization (72).

(ii) Vomps. Vomps are a multigene family of TAA proteins found in B. quintana that
have a similar modular structure (head-neck-membrane anchor) as BadA of B. henselae
(74, 328). There are four Vomps (A to D), which, like BadA, function as adhesins
mediating host cell adhesion and autoaggregation in B. quintana (74). Expression of the
vomp genes varies in the host and is thought to suppress the host immune response,
favoring adaptive interaction (74). The Vomps are closely related to the afimbrial adhesin
YadA, a TAA of Yersinia enterocolitica. The surface-expressed Vomps contain conserved
structural features of YadA, including collagen-binding motifs (74, 329). VompC confers
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the ability to bind collagen IV, and VompA is necessary and sufficient for autoaggre-
gation (74). In vivo, Vomp genes are differentially expressed, and gene deletions were
shown to occur during prolonged bloodstream infection (74).

VirB/VirD4 T4SS. Bacterial T4SSs are present in many Gram-negative bacteria, including
Helicobacter pylori, Coxiella burnetii, Agrobacterium tumefaciens, and Legionella pneumophila
(224, 330–332). In B. henselae, the VirB/VirD4 T4SS is the best-characterized T4SS among
the Bartonella species (see reference 223 for a review). The B. henselae VirB/VirD4 T4SS
is comprised of a multiprotein system (VirB2 to VirB11) which translocates Beps to
target cells through a contact-dependent process that is thought to require a pilus-like
surface-protruding filament that is believed to consist of VirB2 and VirB5 (303, 333–336).

Postadherence, host cell signaling interruption is mediated via the translocation of
seven unique Bartonella effector proteins (BepA to -G) (337), all encoded immediately
downstream of the VirB/VirD4 T4SS on the genome, by using the B. henselae VirB/VirD4
T4SS for delivery. VirB T4SSs consist of a substrate translocation channel which
spans the two membranes of Gram-negative bacteria and a surface filament which
extends from the bacterial envelope and establishes contact with target cells. This
translocation channel extends to the host cell membrane and facilitates transloca-
tion of substrate. Bacteria gain entry into human endothelial cells either as a single
bacterium using a VirB/VirD4 T4SS-independent zipper-like mechanism (302) or
through an invasome-mediated uptake requiring the VirB/VirD4 T4SS (Fig. 5) (275). The
VirB/VirD4 T4SS delivers BepG for invasome-mediated uptake (338) and/or BepC and
BepF to extensively rearrange the actin cytoskeleton (339). This rearrangement pro-
duces bacterial aggregation and ultimately engulfment by host cell membranes and
entry into endothelial cells via the invasome (275). The presence of the bacterium
causes a proinflammatory response activating NF-�B, and cytokines that promote
inflammation such as tumor necrosis factor alpha (TNF-�) are released. Activation of

FIG 7 Expression and surface localization of BadA in B. henselae. Houston-1 (A) and Marseille (B) strains
were reacted with rabbit anti-BadA antibody, followed by goat anti-rabbit IgG conjugated to 10-nm
colloidal gold particles. Cells were washed, suspended in phosphate-buffered saline, transferred onto a
copper-coated grid, air dried, and imaged using a JEOL JEM 1400 microscope. Surface localization of
BadA can be seen in both the Houston-1 and Marseille strains but not the isogenic badA deletion
mutants (Houston-1 ΔbadA mutant [C] and Marseille ΔbadA mutant [D]). The markerless, nonpolar
in-frame Houston-1 deletion mutant was constructed as previously described (325). The Marseille
deletion mutant was constructed by the same approach (unpublished data). Rabbit anti-BadA antibody
was raised to the stalk region of the BadA protein (77) and was generously provided by Volkhard Kempf.
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NF-�B induces the secretion of interleukin-8 and the expression of intercellular adhe-
sion molecule 1 (ICAM-1) and E-selectin.

This VirB/VirD4 T4SS is also crucial for the inhibition of endothelial cell apoptosis
(340) and intraerythrocyte infection; a mutant defective in virB4 and virD4 was not
bacteremic in a model system (332). On delivery into the endothelial cell, BepA also
localizes to the plasma membrane to induce production of second messenger cyclic
AMP conveying an antiapoptotic property to the cells (341). Bartonella infection is
known to suppress early and late events in apoptosis, namely, caspase activation and
DNA fragmentation, respectively (304). The translocation of the Beps into endothelial
cells, together with the induction of VEGF production, which is dependent on the
presence of BadA on the surface of B. henselae, is thought to work together to induce
the angiogenic host response (Fig. 6). The interplay of BadA and the VirB/VirD4 T4SS has
been studied, and it was shown that BadA can affect effector translocation (311). The
contributions of each of these two virulence factors in inducing angiogenesis are not
yet entirely clear, and study has been hampered by the lack of a practical animal model.

Trw T4SS. Asides from VirB/VirD4, a second type of T4SS, Trw, has been identified
as a molecular determinant of host-specific erythrocyte infection (342). It is a set of
virulence genes that were laterally acquired, and the gene products are effective in
promoting prolonged bacteremia through erythrocyte adhesion and infection (342–
344). Trw does not translocate any known effectors but produces multiple variant pili
involved in the attachment and invasion of host erythrocytes (345). The presence of Trw
has been shown to correlate with loss of flagella, which represents a major pathoge-
nicity factor for erythrocyte invasion by B. bacilliformis and probably other flagellated
Bartonella (70). Variable expression of some Trw protein genes appears to correlate with
the presence or absence of other Trw proteins. The Trw T4SS has several components:
of more importance are the adherent components, TrwL and TrwJ, which are surface-
exposed components that mediate host specificity (342). TrwL and TrwJ have been
referred to as anchoring and pilus proteins, respectively (346). In in vitro adhesion and
invasion assays, the TrwJ and TrwL transposon mutants showed reduced adhesive
properties and lacked the ability to invade the erythrocyte (342).

Hbps. Heme is essential for Bartonella survival. In the gut of their arthropod vector,
Bartonella species are exposed to toxic concentrations of heme, which is otherwise
confined to the bloodstream of the mammalian host. Thus, one of the roles of the
multigene family of hemin binding proteins (Hbps) is to facilitate survival in the vector,
as is the case for B. henselae in the cat flea (347). It is thought that Bartonella uses HbpA
for iron acquisition and to bind hemin required for bacterial growth (348). Five different
Hbp genes have been identified in both B. henselae (349) and B. quintana (350). The
Hbps also serve as adhesins and have been shown to bind fibronectin and facilitate
entry into endothelial cells (351). HbpC, in contrast to HbpA, is sensitive to environ-
mental changes such as those in temperature and hemin and is overexpressed in the
arthropod gut. HbpC is hypothesized to bind hemin to prevent access to the bacterial
cell and counter the resultant heme toxicity (4). Deletion of the hbpC gene also affected
the ability of B. henselae to infect the cat host. HbpA and HbpC were also observed on
the outer membrane vesicles produced by B. henselae, and constitutive expression of
HbpC increased the amount of hemin associated with the vesicle. It should be noted
that Pap31, originally described as a protein associated with the BLP of B. henselae
(352), is homologous to the multigene Hbp family of Bartonella, Omp31 of Brucella,
Agrobacterium tumefaciens Omp25, and opacity proteins of Neisseria species (350).
Pap31 is also thought to be involved in heme acquisition and virulence and is also said
to bind fibronectin and heparin, possibly on the same domain (349, 350, 353).

Fhas. The filamentous hemagglutinins (Fhas) are a family of type V secretion system
proteins encoded in the genome of some Bartonella species, including B. henselae, but
not all species. Fhas are known to be a virulence factor in other Gram-negative bacteria
like Bordetella pertussis (354, 355) and Pasteurella multocida (356) by facilitating adhe-
sion. Nine copies of full-length and truncated fhaB genes (fhaB1 to -9) are found on the
B. henselae genome with each gene copy being immediately downstream of or in close
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proximity to the hemolysin activator gene (hecA); hemolysin activator is a separately
encoded protein that is thought to serve as a transporter domain for FhaB (315). While
the Fhas represent additional potential pathogenicity factors, it is not clear which of the
Fha gene loci are expressed in B. henselae. Proteomics studies have shown the presence
of antibodies in cat sera that are reactive with the FhaB2 protein of B. henselae,
providing indirect evidence that at least one of the FhaB loci is expressed in vivo (357).
It has been proposed that the Fha proteins may play a supporting role for adherence
when BadA is not expressed in B. henselae (315). Regardless, the function of the Fha
proteins in Bartonella adherence and virulence remains unknown.

Other Bartonella adhesins and outer membrane proteins. Surface labeling of B.
henselae demonstrated several surface-localized proteins, a subset of which were
shown to bind human endothelial cells (358). One of those, Omp43, functions as an
adhesin during B. henselae interaction with endothelial cells (359), binds fibronectin
(360), and bears homology to the Omp2 family of porins from Brucella spp. Omp43 was
shown to be immunogenic in cats, with sera from most infected cats being reactive to
this protein (361). Another putative adhesin of B. henselae is Omp89, an immunogenic
surface protein containing a zinc metalloprotease domain that has been shown to bind
fibronectin (360). Other membrane-associated proteins, GroEL, HtrA, and Omp89, are
also thought to be involved in protein folding or degradation (360–362). In B. bacilli-
formis, several outer membrane proteins between 11.2 and 100 kDa have been iden-
tified (363, 364). Six of these have been shown to mediate bacterial interactions with
erythrocytes (363). A 43-kDa immunogenic lipoprotein, which is a homologue of LppB
proteins of Haemophilus spp. that are associated with virulence, has been reported
(365). B. bacilliformis also possess a flagellin, a 42-kDa protein subunit of the flagella
which has been shown to be resistant to protease or trypsin treatment and provides the
bacteria with motility (43, 366).

Invasins. Invasion-associated locus A and B genes (ialAB) of B. bacilliformis were first
described by Mitchell and Minnick (226). These genes are necessary for both the invasive
phenotype and its erythrocyte parasitism (367). In B. bacilliformis, IalB is localized to the
inner membrane, but in B. henselae, it is localized on the outer membrane (226, 361, 367).
IalB has been implicated in invasion of erythrocytes in both B. bacilliformis and B.
henselae. In B. bacilliformis, IalB is produced in increasing amounts as the temperature
drops below 37°C (368), but it has also been noted that other environmental changes
like those in iron availability and pH have an effect on expression (367). In B. henselae,
IalB and Omp43 elicit an antibody response that varies between cats (226, 361, 367).
IalB has also been shown to be required for intraerythrocytic bacteremia (367). In B.
birtlesii, IalB was localized to the outer membrane and shown to be required for invasion
of erythrocytes but not adherence (342). In B. henselae, IalB is thought to facilitate entry into
erythrocytes, and recombinant IalB protein has been reported to be immunogenic and
proposed as a possible diagnostic tool for an immunoassay (369). Genome analysis of
B. elizabethae and B. grahamii also shows the presence of an ialB locus (370, 371).

Growth in Biofilms

A biofilm may be defined as a cluster of bacterial cells embedded in a matrix, which
is more tolerant of most antimicrobials and host defenses than are free-floating single
cells (372). Surface protein adhesins facilitate substrate adherence and autoagglutina-
tion (AAG). Adherence has been described as a two-phase process: phase 1, in which
the bacterial cells first behave as dormant colloidal particles making reversible contact
with surfaces according to their physiochemical properties, and a subsequent phase in
which biologically produced adhesins anchor the cells more irreversibly to the surface
(373). AAG activity is a known signal for host cell interaction and virulence in several
Gram-negative bacteria, and outer membrane proteins of these bacteria have been
demonstrated to be autoagglutinins (374). Once autoagglutinated, bacteria com-
municate with one another using chemical signal molecules, a process called
quorum sensing, which allows bacteria to monitor the environment and to change
behavior depending on conditions in the community. Quorum sensing is critical for
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biofilm formation (375). Biofilms are formed when bacteria irreversibly adhere to a
surface, communicate, and excrete a protective matrix. Production of an extracellular
polymeric substance (EPS) matrix, reduced growth rates, and alternating regulation of
specific genes distinguish biofilm sessile aggregates from their planktonic counterparts
(376). Biofilms are characterized by their stability, chronic bacterial infections, and
increased resistance to antibiotics. Biofilm EPS consists of proteins, DNA, polysaccha-
rides, and excreted cellular components (377). It ensures that the bacteria are protected
from host immune responses such as macrophage engulfment, antibiotics, or host
immune defenses while sequestering valuable enzymes and nutrients, exchanging
genetic information, and recycling lysed cell components (378).

Despite the well-known role of both BadA of B. henselae and the Vomps of B.
quintana in facilitating autoaggregation and adherence, which are critical initial steps
in biofilm formation, very little information about the growth of Bartonella species in
biofilms and the role that the TAAs play in the process has been reported. In the case
of B. henselae, growth in biofilms was first reported by Kyme et al. (76). In that report,
the autoaggregative nature was described as phase variation, which has subsequently
been shown to be attributable to the presence of BadA on the surface of B. henselae
(72). Studies show that BadA accumulates as a dense surface layer of long hair-like
structures (�240 nm) and that the absence of BadA prevents AAG (379). The role of
TAAs in biofilm formation has been proposed or experimentally demonstrated for a
wide range of Gram-negative bacteria, including Acinetobacter baumannii (380), Burk-
holderia species (381–383), uropathogenic Escherichia coli (UPEC) (384), enterohemor-
rhagic E. coli (EHEC) (385), and Salmonella enterica (386). Not surprisingly, we have shown
that BadA plays an important role in biofilm formation by B. henselae, as a badA deletion
mutant has an impaired ability to form biofilms (Fig. 8) (75). When our laboratory con-
structed nonpolar deletion mutants of the badA gene in both the Houston-1 type strain and
the Marseille strain of B. henselae, they were shown to have a reduced ability to form
biofilms. Scanning electron micrographs show that the ΔbadA strains have reduced adher-
ence and biomass accumulation, whereas the wild-type parental strains for both
Houston-1 and Marseille have the ability to form well-structured biofilms (unpublished
data) (Fig. 8).

The autoaggregative nature of low-passage-number Bartonella species grown under
laboratory conditions is well known, and large aggregates of bacteria have been
observed in histopathological specimens from patients with BA (387), verruga peruana
(388), and CSD (389). The ability of B. henselae (75, 76) and perhaps other Bartonella
species to aggregate and form biofilms suggests that these bacterial communities
are an integral component of the vegetative masses reported for endocarditis caused
by Bartonella. Molecular studies and histopathology of heart valves from cases of
Bartonella endocarditis demonstrate the presence of these bacteria on the surface of
damaged valves (97, 177). A damaged heart valve could serve as the substrate on which
Bartonella biofilms form and establish infections that are resistant to antibiotic treat-
ment, as is the case for BCNE.

It is also tempting to speculate on a possible role of Bartonella biofilms in coloni-
zation of their arthropod vectors. Biofilm formation by Yersinia pestis in the proventric-
ulus of the rat flea vector has been shown to promote transmission (390). Y. pestis
apparently evolved from non-vector-borne Yersinia species for rat flea transmission by
three loss-of-function mutations that enhanced biofilm formation in the flea foregut
(391). It may also be possible that biofilm formation plays a limited role in transmission
of Y. pestis by the cat flea (392). Five different Bartonella species have been shown to
persist in the cat flea vector (393). B. henselae replicates in the flea gut and is excreted
in the flea feces (128, 135). It has been proposed that B. henselae forms a biofilm in the
flea gut and possibly on the flea feces to persist before transmission on the claws of cats
(394). It has also been hypothesized that B. quintana may also form a biofilm on louse
feces (133). Thus, it is possible that the biofilm formation in the arthropod vectors of
Bartonella species and/or their feces enhances transmission of these bacteria, much as
it does for Y. pestis.
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Bartonella species share the ability to infect erythrocytes in their natural hosts, and
it has been speculated that a primary niche exists to allow persistence of these bacteria
in the host and to seed the bloodstream for subsequent transmission by the arthropod
vector. The preponderance of evidence supports the role of the endothelium in serving
as this primary niche (296), but it has also been suggested that endothelial progenitor
cells may also function as a niche reservoir (215–217, 308). Intracellular survival in
endothelial cells would afford an opportunity for immune evasion and may explain the
stealthy nature of these pathogens (223). However, in humans bartonellae are not
widely reported inside endothelial cells, suggesting that this may be a laboratory-
generated phenomenon of unclear clinical relevance (203, 301, 387, 388). Similarly, an
immunocompromised mouse model (SCID/BEIGE) using Bartonella taylorii was devel-
oped and shown to establish a chronic infection with the bacteria localized as extra-
cellular aggregates embedded within the collagen matrix (395). An alternate explana-
tion is that Bartonella species form stable biofilms (rather than carrying out intracellular
invasion of endothelial cells), which allow immune evasion and persistence in their
hosts. Extracellular attachment of bartonellae to endothelial cells or extracellular matrix
proteins may provide the substrate for the formation of a focus that becomes a structured
biofilm for seeding of the bloodstream and persistence in the face of both antimicrobial
treatment and the host immune response.

CONCLUSIONS

The genus Bartonella is a rapidly expanding group of ubiquitous bacteria that are
found in a diverse array of animal reservoirs. Three species of Bartonella, B. bacilliformis,

FIG 8 Biofilm formation by B. henselae. Scanning electron microscopic images of the adherent cells for
both the Houston-1 and Marseille wild-type (WT) strains compared to reduced adherence, autoaggre-
gation, and biofilm formation for the isogenic mutants in which the badA gene is deleted (ΔbadA).
Bacterial cells (105) were inoculated onto a coverslip in a six-well plate and grown for 24 h in Schneider’s
liquid medium at 37°C and 5% CO2. Cells were fixed with 2% paraformaldehyde plus 2% glutaraldehyde
and 0.15% alcian blue (to preserve the polysaccharide moieties found in the EPS of biofilms [396, 397])
in 0.2 M sodium cacodylate buffer, pH 7.2. Samples were washed, postfixed for 90 min in 1% OsO4, and
dehydrated. Samples were air dried overnight; the coverslip was mounted on adhesive carbon film,
coated for 20 s with Au/Pd (60:40) at 16.40 g/cm and 25 mA, and examined using a JEOL JSM6490LV
microscope operated at 3-kV low vacuum; and secondary images were collected as JPEG files. The ΔbadA
mutants were the same strains as those described in the legend to Fig. 7.
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B. henselae, and B. quintana, are responsible for the vast majority of human disease
caused by this group of bacteria. In particular, B. henselae and B. quintana are frequent
causes of BCNE that often go undiagnosed due to technical challenges in diagnosing
infections caused by Bartonella species. Despite this challenge, the number of reported
cases of Bartonella endocarditis is rapidly rising, and it represents a significant cause
of infective endocarditis that remains understudied. The role of the TAAs (BadA and
Vomps) and the T4SSs of Bartonella in the interaction of this bacterium with the
vascular endothelium has been well studied, and they certainly play critical roles in
the establishment of endocarditis. Furthermore, the ability of Bartonella to form
biofilms is likely to be a crucial step in infection of heart valves and therefore in
causing endocarditis. Additionally, the role that biofilms play in colonization and
transmission in the arthropod vectors responsible for transmission of Bartonella species
and persistence in both the natural and incidental hosts should also be considered.
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