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SUMMARY Bacterial skin infections represent some of the most common infectious

diseases globally. Prevention and treatment of skin infections can involve application

of a topical antimicrobial, which may be an antibiotic (such as mupirocin or fusidic

acid) or an antiseptic (such as chlorhexidine or alcohol). However, there is limited evi-

dence to support the widespread prophylactic or therapeutic use of topical agents. Chal-
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lenges involved in the use of topical antimicrobials include increasing rates of bacterial
resistance, local hypersensitivity reactions (particularly to older agents, such as bacitra-
cin), and concerns about the indiscriminate use of antiseptics potentially coselecting for
antibiotic resistance. We review the evidence for the major clinical uses of topical antibi-
otics and antiseptics. In addition, we review the mechanisms of action of common topi-
cal agents and define the clinical and molecular epidemiology of antimicrobial resistance
in these agents. Moreover, we review the potential use of newer and emerging agents,
such as retapamulin and ebselen, and discuss the role of antiseptic agents in preventing
bacterial skin infections. A comprehensive understanding of the clinical efficacy and driv-
ers of resistance to topical agents will inform the optimal use of these agents to pre-
serve their activity in the future.

KEYWORDS Staphylococcus aureus, antibiotic resistance, antiseptic, community-
acquired infections, impetigo, skin infections

INTRODUCTION

The skin is one of the first lines of defense against microbial invasion (1). Healthy skin
harbors a diverse range of bacteria, collectively known as the skin microbiome, and

depending on host, bacterial, and environmental factors, this bacterial population may
be protective or harmful (2, 3). Breaches in the skin, whether accidental (e.g., trauma or
insect bite) or intentional (e.g., surgical incision), allow incursion of bacterial pathogens
and can lead to skin and soft tissue infection (SSTI). SSTI is an extremely common
infectious disease syndrome, with an estimated 14.2 million SSTI-related ambulatory
care attendances in the United States in 2005 (4). Occasionally, treatment of SSTI may
involve administration of a topical antibiotic agent, although supportive evidence for
topical antibiotic use varies according to specific clinical manifestations. In addition to
therapeutic indications, topical antibiotics and antiseptics are increasingly used in the
prevention of skin infections, particularly to reduce surgical site infections (SSIs) in
patients colonized with Staphylococcus aureus (5).

Theoretically, topical antibiotic use offers several advantages over systemic admin-
istration, including delivery of high concentrations of antimicrobial at the required site
of action and a reduction in systemic toxicity (Table 1). However, the widespread use
of commonly used topical antibiotics (particularly mupirocin and fusidic acid) has led to
increasing bacterial resistance in some settings, limiting the potential efficacy of such
agents. Moreover, there are recognized concerns about the possible deleterious eco-
logical impact (so-called “collateral damage”) of increasingly widespread use of topical
antiseptics, such as chlorhexidine and triclosan (6, 7). Given global concerns regarding
antibiotic resistance and relatively limited therapeutic options, especially for some
species, such as S. aureus, the appropriate use of topical agents and the prevention of
further resistance are critical.

Here we provide an overview of the major preventative and therapeutic uses for
topical agents and a review of the clinical and molecular epidemiology of resistance to
these agents. Specifically, we focus on common and emerging topical antibacterial and
antiseptic agents. The scope of this review does not cover topical antifungal or antiviral
agents, nor does it extensively cover skin and nasal decolonization, which was recently
comprehensively reviewed (5). For convenience, we use the terms “topical antibiotic(s)”
and “topical antiseptic(s)” throughout.

CLINICAL USAGE OF TOPICAL ANTIBIOTICS AND ANTISEPTICS

Topical antibiotics are among the most commonly prescribed antimicrobial agents.
For example, in 2015 there were 4.7 million primary care prescriptions for topical
antibiotics in the United Kingdom, at a cost of approximately $29.9 million (8). However,
although they are widely used, evidence supports the prescription of topical antibiotics
for only a small number of indications. To date, published antimicrobial stewardship
guidelines have focused almost exclusively on systemically or intravenously adminis-
tered antibiotics, and few studies have attempted to quantify the extent of topical
antibiotic consumption or to assess the appropriateness of topical antibiotic prescrib-
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ing practices. Using national data from outpatient physician practices, one study from
the United States assessed topical antibiotic prescribing practices between 1993 and
2007 (9). The authors of that study found that approximately one-fourth of dermatol-
ogy patient visits and approximately one-fifth of pediatric patient visits were associated
with a topical antibiotic prescription. The most common diagnosis associated with a
topical antibiotic prescription was skin neoplasm, and it was hypothesized that in such
instances, topical antibiotics were being used as postoperative wound prophylaxis
following minor surgery, a practice that is not supported by existing evidence (9).
Similarly, a study from New Zealand assessed national trends and demographics in
topical antibiotic prescribing practices between 2006 and 2014. Community usage of
topical fusidic acid increased significantly over the study period, with the highest usage
in children under 5 years of age (10). However, high rates of topical antibiotic usage
were also observed in the �75-year-old age group, and it was suggested that given the
limited evidence for prescribing topical antibiotics for older age groups, a proportion of
this usage may be considered clinically inappropriate (10).

In the following sections, we provide an overview of the major clinical uses (both
prophylactic and therapeutic) for topical antibiotic and antiseptic agents. Where pos-
sible, we review the evidence for and against their use.

Impetigo

Impetigo is a common superficial and contagious bacterial skin infection that is
usually caused by S. aureus and/or Streptococcus pyogenes. Clinically, there are two main
syndromes: the more common nonbullous impetigo (impetigo contagiosa) and the less
common bullous (blistering) impetigo (Fig. 1) (11, 12). Nonbullous impetigo typically
manifests as small intraepidermal blisters, which subsequently form yellow-brown
crusted lesions around the face, particularly the nose and mouth. It is most common in
children aged 2 to 5 years old, and although self-limiting, it is generally treated with
antibiotics to reduce symptom duration and to prevent further transmission of caus-
ative bacteria. Impetigo can be treated with topical antibiotics and/or systemic antibi-
otics, and the decision of which therapy to use is generally based on the number and
extent of lesions, with minor disease usually treated with topical agents (11).

TABLE 1 Theoretical advantages and disadvantages of topical antimicrobial therapy for
bacterial skin infections

Advantage/disadvantage

Advantages
May enable targeted delivery of a high concentration of antimicrobial to site of infection
Higher likelihood of adherence to treatment (e.g., in children)
Less potential for systemic side effects and toxicity
May avoid need for systemic antimicrobials
Ensures that site of infection is regularly inspected
Topical application allows use and development of agents that may not be able to be used

systemically (e.g., neomycin or bacitracin)
Topical route of administration may be easier for patients and caregivers

Disadvantages
Limited evidence base for clinical effectiveness
Many agents associated with local allergy
Limited understanding of potentially deleterious effects on skin microbiota
Minimal depth of penetration, limiting use on intact skin
Unquantified effects on wound healing process
Widespread and unrestricted use is likely to select for bacterial resistance (e.g., fusidic acid

and Staphylococcus aureus)
Potential for storage in patient homes, with possibility of recurrent use and contamination
Often combined with topical steroid therapy, meaning that primary prescribing indication

may be for inflammation rather than infection
Potential perception by both patients and prescribers as more “benign” than systemic

antimicrobials
May be difficult for some patients to apply to larger surface areas or skin folds
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Despite an estimated global prevalence in children of approximately 162 million
(13), there is limited high-quality evidence to guide the appropriate empirical topical
treatment of impetigo. A meta-analysis conducted in 2012 to assess interventions for
impetigo included 24 randomized controlled trials (RCTs) that compared topical anti-
biotic therapy to placebo, another topical antibiotic, or a topical antiseptic (12). Overall,
the authors of that analysis concluded that topical antibiotic therapy achieved signif-
icantly higher cure rates than those with placebo (risk ratio [RR], 2.24; 95% confidence
interval [CI], 1.61 to 3.13), and they found no significant difference between the two
main topical antibiotics used, i.e., mupirocin and fusidic acid. However, the quality of
the included studies was variable, and most studies were conducted over a decade ago,
when the prevalence of bacterial resistance to topical agents may have differed (14, 15).
Importantly, there remain several knowledge gaps regarding the most appropriate
topical treatment for impetigo (16). For example, given that impetigo is generally
regarded as a self-limiting condition, there are relatively few trials comparing topical
antibiotic treatment to treatment with placebo. Moreover, there are currently no
studies comparing the use of topical antibiotic to that of placebo or topical antiseptic
in settings with a high prevalence of resistance to commonly used topical agents.
Finally, as laboratory testing is not part of the routine work-up for mild impetigo, true
rates of resistance in causative pathogens are largely unknown. As such, caution should
be exercised in extrapolating results of studies conducted in low-resistance settings, as
it is possible that clinical and microbiological cure rates differ between settings. Given
the current evidence, key points for practitioners to consider in prescribing topical
antibiotics for impetigo include using the shortest possible duration of therapy and
maintaining a close liaison with the microbiology laboratory regarding local resistance
patterns.

Chronic Wounds

Chronic (or “complex”) wounds include conditions such as venous leg ulceration
and pressure ulcers (Fig. 2) (17). Both conditions are relatively common, with an
estimated prevalence for venous leg ulceration of between 0.1% and 1% in high-
income countries (18). For pressure ulceration, prevalence varies according to the
setting (e.g., hospital versus community) and patient group (e.g., there is a higher
prevalence in spinal injury patients) (19, 20). One population-based study in 2014 in the
United Kingdom across community, health care, and residential care settings observed

FIG 1 Clinical presentations of impetigo. (Left) Typical crusting lesions of nonbullous impetigo. (Right) Blistering
lesions characteristic of nonbullous impetigo. (Images are reproduced courtesy of Dermnet NZ under a Creative
Commons agreement [CC BY-NC-ND 3.0 NZ] [the left panel was cropped minimally].)
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an overall prevalence of pressure ulceration of 4.6% (19). Similarly, studies from the
United States and Europe show a range of prevalence values of approximately 4% to
43%, depending on the setting (21–23).

One of the key factors in considering the use of topical antibiotics or antiseptics in
the context of chronic wound management is deciding whether a wound is truly
infected rather than asymptomatically colonized (24, 25). The vast majority of chronic
wounds are colonized with at least one bacterial species, and accordingly, the decision
on whether a wound is infected is based predominantly on clinical judgment rather
than on microbiological analysis (26). However, specific pathogens (e.g., S. aureus, S.
pyogenes, Enterobacteriaceae, and Pseudomonas aeruginosa) may have adverse impacts
on wound healing, and along with clinical assessment and underlying pathology (e.g.,
diabetic neuropathy or vasculopathy), their isolation should be taken into account in
considering antibiotic treatment (17, 27–30).

Either systemic or topical agents may be considered for treating infected chronic
wounds, although, to date, evidence for using topical agents to effectively treat chronic
wound infections is equivocal. In general, published studies do not recommend the use
of topical agents for treating noninfected chronic wounds (31). For example, a 2014
Cochrane systematic review evaluated RCTs that involved antimicrobial therapy for
promoting healing of venous leg ulceration (32). The authors identified 40 RCTs
(recruiting 4,253 participants) that evaluated topical preparations. Although the RCTs
were of variable quality, the authors of that review found statistical evidence to support
the use of topical iodine in promoting wound healing compared to standard wound
care (RR, 2.17; 95% CI, 1.30 to 3.60), although they could find no evidence to support
the use of topical honey- or silver-based products (32). Based on the available data, they
could not draw robust conclusions about the use of any other topical agents (including
povidone-iodine, hydrogen peroxide, mupirocin, and chloramphenicol) in promoting
healing of venous leg ulceration (32). Similarly, a 2016 systematic review evaluated 12
RCTs (including 576 participants) assessing the utility of topical agents in the healing of
both infected and noninfected pressure ulcers (19). The authors concluded that there
was insufficient evidence (based on the heterogeneity and quality of trials) to assess
any benefit of topical agents on pressure ulcer healing (19). Interestingly, however,

FIG 2 Characteristic lower leg venous ulceration demonstrating shallow ulceration and surrounding
reddened skin. (The image is reproduced courtesy of Dermnet NZ under a Creative Commons agreement
[CC BY-NC-ND 3.0 NZ].)
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there was (limited) evidence to suggest that povidone-iodine may actually be detri-
mental for wound healing compared to nonantimicrobial alternatives, such as protease-
modulating dressings (RR, 0.78; 95% CI, 0.62 to 0.98) (33) and hydrogel (RR, 0.64; 95%
CI, 0.43 to 0.97) (34).

Wound Infection following Burn Injuries

Wound infections following burn injuries represent a major source of morbidity and
mortality (35). The disruption of the skin epidermal barrier, coupled with avascular
necrotic tissue and relative local and systemic immunosuppression, provides a “perfect
storm” for colonization and proliferation of microbes (36, 37). It has been estimated that
in patients with severe burns, up to three-fourths of all mortality is associated with
sepsis, either from wound infections or from other infectious complications (e.g.,
pneumonia) (37–39). Numerous systemic and topical antibiotic and antiseptic agents
have been used for the prevention and treatment of burn wound infections (BWI), with
the rationale for application of topical therapy predominantly related to prophylaxis of
BWI. It is postulated that topical therapy may reduce the microbial burden in the burn
wound, thereby reducing the risk of infection and potentially promoting wound
healing (36, 37, 40, 41).

To date, however, many of the studies assessing the efficacy of topical agents in BWI
prophylaxis have been relatively small, with a variety of clinical endpoints and trial
methodologies. A systematic review in 2013 attempted to assess the effectiveness of
topical prophylaxis for BWI, and it included 26 RCTs (with 1,329 participants) evaluating
a range of topical agents, such as silver sulfadiazine, neomycin, bacitracin, polymyxin B,
and mafenide acetate (42). The authors found no evidence to support the use of topical
antimicrobials (compared to either no intervention or any other intervention) for the
prevention of BWI (42). Moreover, a subanalysis of 11 RCTs (with 645 participants)
involving the use of 1% topical silver sulfadiazine found that patients treated with silver
sulfadiazine actually had a higher risk of BWI and a longer hospital stay than those
treated with either dressings or skin substitutes (odds ratio [OR], 1.87; 95% CI, 1.09 to
3.19), although the extent of bias within the included studies was unclear (42–51).

Prevention of Postsurgical Wound Infections

Infections following surgical procedures are a major cause of health care-associated
infections (HCAI) and result in considerable clinical and economic burdens (52). De-
pending on the surgical procedure, preoperative intravenous antibiotics are often
administered as part of bundles of interventions designed to prevent surgical site
infections (SSIs) (53, 54). Prophylactic systemic antibiotic use has been studied exten-
sively and is generally considered an effective and evidence-based contribution to SSI
prevention (53). In addition to systemic antibiotics, contemporary SSI prevention
strategies often involve the application of a topical antibiotic and/or antiseptic agent
(5), with the two most common uses being antibiotic application (usually with mupi-
rocin) to the nasal mucosa to eradicate preoperative S. aureus carriage and antiseptic
body washes (usually with chlorhexidine) to reduce the bacterial load on the skin. The
available evidence suggests that prophylactic nasal and skin decolonization is an
effective strategy for preventing S. aureus SSI following some surgical procedures,
predominantly orthopedic and cardiac surgeries (54). In particular, a large meta-analysis
of 17 RCTs and quasi-experimental trials evaluated the protective effect of decoloni-
zation with nasal mupirocin on prevention of SSI post-cardiac or -orthopedic surgery
(including studies that did and did not incorporate skin decolonization with chlorhexi-
dine) (54). The authors of that study observed a significant protective effect of decolo-
nization in preventing SSIs caused by S. aureus (pooled relative risk, 0.39; 95% CI, 0.31
to 0.50). Moreover, this reduction was observed for both methicillin-susceptible S.
aureus (MSSA) (pooled relative risk, 0.50; 95% CI, 0.37 to 0.69) and methicillin-resistant
S. aureus (MRSA) (pooled relative risk, 0.30; 95% CI, 0.15 to 0.62). The use of mupirocin
and chlorhexidine is further discussed below, and additional evidence for their use in
bacterial decolonization was recently thoroughly reviewed (5).
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In contrast to the nasal application of topical antibiotics, there is comparatively
limited evidence to support the administration of topical antibiotics (cf. antiseptics)
directly at the surgical site (55). A previous review suggested that local application of
topical antibiotics for surgical prophylaxis gave an unproven benefit for the majority of
surgical procedures (55). Based on that analysis, it was concluded that locally applied
topical antibiotics had a probable benefit in reducing SSI rates in joint arthroplasties
(specifically when used in antibiotic-impregnated cement) and ophthalmic surgery and
a possible benefit in reducing the rates in cosmetic breast augmentation and in obese
patients undergoing abdominal surgery (55). In addition, a recent Cochrane review
evaluated the use of locally applied topical antibiotics in the prevention of surgical
wounds healing by primary intention (i.e., when the clean wound edges are actively
held together with sutures, staples, or adhesive) (56). The authors identified 10 RCTs
and four quasi-experimental studies that included a total of 6,466 patients. These
studies covered a range of surgical procedures, from minor dermatological procedures
conducted in an outpatient or emergency department to major surgeries conducted in
an operating theater. When the use of topical antibiotics was compared to the use of
no antibiotic, the authors observed a reduction in the risk of SSI (RR, 0.61; 95% CI, 0.42
to 0.87), with a number needed to treat to prevent one SSI (NNT) of 50. Similarly, the
use of topical antibiotics was superior to the use of topical antiseptics in reducing the
risk of SSI (RR, 0.49; 95% CI, 0.30 to 0.80; NNT, 24). The authors concluded that, overall,
the use of topical antibiotics was associated with a probable reduced risk of SSI but that
the included studies were of variable quality and heterogeneity. Moreover, due to a lack
of statistical power and/or analyses, no conclusions could be drawn about whether
topical antibiotics were associated with increased adverse outcomes, such as allergic
contact dermatitis or increased antimicrobial resistance, or whether any specific anti-
biotic was superior to another (57).

In another recent systematic review, the use of topical antimicrobials (including
both antibiotics and antiseptics) for the treatment of wound healing by secondary
intention (i.e., open wounds that heal through new tissue growth, such as a perianal
abscess) was assessed (58). The authors of the analysis evaluated 11 RCTs (including 886
patients) of variable quality that covered a range of surgical procedures. After synthe-
sizing all studies, the authors concluded that there was insufficient evidence to estab-
lish the effectiveness of topical antimicrobials for promoting wound healing or reduc-
ing infection rates for wound healing by secondary intention. Therefore, at present,
there is insufficient high-quality evidence for the routine use of topical antimicrobials
for the treatment of postsurgical wound healing by either primary or secondary
intention.

Prevention of Minor Traumatic Wound Infection

Minor traumatic skin wounds (e.g., abrasions or lacerations) are common presenta-
tions to primary care practices and emergency departments. To date, there is scarce
evidence to support the adjunctive use of topical antibiotics in preventing infection or
promoting wound healing following uncomplicated minor wounds. One previous
narrative review was able to identify only two historical double-blinded placebo-
controlled RCTs that compared infection rates in patients with minor wounds with and
without the application of topical antibiotics (59). One study, from 1995, compared the
use of petrolatum (placebo) and one of three topical antimicrobial preparations (bac-
itracin zinc ointment, silver sulfadiazine cream, and a triple antimicrobial ointment
[TAO] containing bacitracin zinc, polymyxin B, and neomycin) for the prevention of
infection following standard wound care (which included the use of sutures) in 465
patients with minor lacerations (60). The authors observed a significant difference in
wound infection rates between the placebo group and the three groups who received
topical therapy, although there was no significant difference in infection rates between
the three treated groups. However, as noted previously (61), the majority of patients
were graded as having “grade 1 infection” or a stitch abscess, which may have resolved
with basic wound care regardless of whether topical antimicrobial therapy was used.
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The second placebo-controlled RCT was conducted in 1985 and compared the use of
TAO ointment with that of placebo ointment (preparation not stated in the study) in
preventing impetiginous lesions following minor wounds in 59 children aged 2 to 5
years (62). Although the authors observed a difference in infection rates between the
TAO-treated group and the placebo-treated group (15% versus 47%), the study num-
bers were small, and the authors did not comment on the statistical significance of their
findings or on whether the infections were clinically relevant (62). Future, larger RCTs
to assess the efficacy of topical antibiotics in preventing posttraumatic wound infection
are required to establish the utility of this approach.

CURRENTLY USED TOPICAL ANTIBACTERIAL AGENTS
Mupirocin

Mupirocin (first known as pseudomonic acid A) is produced naturally by Pseudomo-
nas fluorescens (63). First used clinically in the 1980s, mupirocin is administered
exclusively as a topical agent, as either a cream or an ointment (64–70). However, when
it is administered systemically, mupirocin is rapidly degraded to an inactive metabolite,
monic acid. To date, the main clinical uses for mupirocin have been treatment of minor
staphylococcal skin infections and S. aureus nasal decolonization (12, 71, 72).

Mupirocin has a relatively broad range of antibacterial activity, covering all staph-
ylococci (including MRSA), most streptococci (with the exception of Streptococcus
bovis), and several Gram-negative bacteria, particularly Haemophilus influenzae, Neisse-
ria gonorrhoeae, Neisseria meningitidis, and Moraxella catarrhalis (73). Mupirocin acts by
reversibly binding to a bacterial enzyme called isoleucyl-tRNA synthetase. This enzyme
catalyzes the conversion of isoleucine and tRNA to the isoleucyl-tRNA molecule (74, 75).
Due to similarities between a moiety on the mupirocin structure and isoleucine,
mupirocin can bind to isoleucyl-tRNA synthetase, specifically binding at a site called the
Rossman fold and subsequently inhibiting bacterial RNA and protein synthesis (74, 76).

Because mupirocin has predominantly been used for the prevention and treatment
of staphylococcal infections, to date, the majority of studies assessing the clinical and
molecular epidemiology of mupirocin resistance have focused on staphylococci.

Phenotypic and genotypic characterization of mupirocin resistance. For staphy-
lococci, mupirocin resistance is described as either low level or high level, depending
on the resistance phenotype and the molecular basis of resistance (see below). There
are several laboratory methods for evaluating mupirocin resistance in staphylococci,
including broth or agar dilution, disc diffusion, and Etest methods (77–81). However,
there is currently no clear consensus on the most appropriate phenotypic differentia-
tion of low- and high-level resistances, with different interpretative criteria used by the
Clinical and Laboratory Standards Institute (CLSI) (82) and the European Committee for
Antimicrobial Susceptibility Testing (EUCAST) (www.eucast.org). For example, for either
broth microdilution or disc diffusion, the CLSI recommends differentiating only be-
tween “no high-level resistance” and “high-level resistance,” depending on whether
there is a presence or absence of growth (82). In contrast, EUCAST defines MICs of �1
mg/ml as indicating susceptible strains and those of �256 mg/ml as indicating resistant
strains, with an intermediate category of uncertain clinical significance (www.eucast
.org).

At the molecular level, low-level resistance (indicated by MICs of 8 to 256 mg/ml) is
determined by point mutations in the isoleucyl-tRNA synthetase gene (ileS) (76, 83–86),
which is chromosomally borne (in contrast to plasmid borne). A range of point
mutations have been associated with low-level resistance, with the most commonly
reported mutations being V588F and V631F (74, 76, 87). These mutations are located in
the Rossman fold, thereby limiting the ability of mupirocin to bind to the isoleucyl-tRNA
synthetase enzyme (76). Importantly, the presence of these mutations has not been
shown to confer a significant bacterial fitness cost in vitro, suggesting a possible fitness
advantage for these low-level resistant strains in the context of ongoing mupirocin use
(84, 85, 87). Interestingly, one recent study demonstrated the rapid development of
mutations associated with low-level mupirocin resistance after only 14 days of exposure
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to subinhibitory mupirocin concentrations, with mutations being stably maintained in
the absence of mupirocin (87).

In staphylococci, high-level resistance (MIC of �256 mg/ml) is most commonly
mediated by the mupA gene (also known as ileS-2). This gene encodes a novel
isoleucyl-tRNA synthetase (88, 89) and is primarily disseminated via plasmid-mediated
horizontal gene transfer (74). A range of conjugative plasmids have been reported to
harbor mupA, predominantly those related to the pSK1/pG01 family of plasmids
(90–93). Moreover, within plasmids, mupA can be flanked by insertion sequences (IS),
particularly IS257, which may promote recombination-mediated dissemination of mupA
between plasmids (92, 94, 95). Importantly, the plasmids that harbor mupA may also
contain additional resistance determinants, including those that encode resistance to
aminoglycosides, macrolides, tetracycline, and clindamycin, raising the possibility that
mupirocin use may select for coresistance to other antimicrobials (74). In addition,
identical mupA-containing plasmids have been identified across a range of S. aureus
lineages, including clonal complex 5 (CC5), CC8, CC22, and CC30, highlighting the ability of
these plasmids to disseminate across major S. aureus clones (90, 91). Furthermore, studies
have demonstrated in vitro transfer of mupA-containing plasmids between Staphylococcus
epidermidis and S. aureus (96), and the presence of mupA-containing conjugative plasmids
has also been documented for other coagulase-negative staphylococci (CoNS), such as
Staphylococcus pseudintermedius (97), raising suggestions that CoNS may act as a possible
reservoir of mupA.

Although the presence of mupA is almost always associated with high-level resis-
tance, isolates harboring mupA and displaying low-level resistance were reported in
two previous studies (98, 99). In one of these studies, mupA was found to be chromo-
somally integrated rather than plasmid borne, although the specific integration site and
flanking elements were not characterized (99). Moreover, isolates that harbor mupA on
a plasmid yet appear to be phenotypically susceptible to mupirocin have also been
described. For some isolates, a frameshift mutation in mupA was described (100),
although in other isolates, despite their appearing phenotypically susceptible, no
apparent mupA mutation was detected, raising the possibility of mutations in a
promoter or regulatory region (101).

More recently, an additional mechanism of high-level mupirocin resistance was
described, thought to be determined by a novel, plasmid-borne gene, mupB, that was
identified in a clinical MRSA strain in Canada (102). The mupB gene shares only 65.5%
and 45.5% nucleotide similarities with mupA and ileS, respectively. To date, however,
there are few studies that have systematically assessed staphylococci for the presence
of mupB (103).

Prevalence of mupirocin resistance in staphylococci. There have been numerous
studies assessing the prevalence of mupirocin resistance in staphylococci, differing
largely in the patient population studied (e.g., community, hospital, or intensive care
unit [ICU]), bacterial species (e.g., S. aureus versus CoNS), associated resistance profile
(e.g., MRSA versus MSSA), and nature of surveillance (e.g., active surveillance in patients
previously treated with mupirocin versus passive surveillance of isolates from all
patients). However, only subsets of these studies have assessed the molecular epide-
miology and coresistance patterns of mupirocin-resistant isolates. Results of larger
recent studies assessing mupirocin resistance in S. aureus are summarized in Table 2.

In addition to that in S. aureus, mupirocin resistance is also found in CoNS, although
this has been characterized less extensively. For example, one nationwide French study
performed in 2011 and 2012 assessed mupirocin resistance in invasive CoNS isolates.
The authors of that study described an overall mupirocin resistance rate of 10.3%, with
a high-level mupA-mediated resistance rate of 5.6% (104). A higher resistance rate was
demonstrated in a 2007 Irish study that observed a high-level mupirocin resistance
prevalence of 22% among bloodstream isolates of CoNS (105). Similarly, a 2013 Belgian
study described a mupA-mediated resistance rate of 20% for bloodstream isolates of S.
epidermidis (106).
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Clinical use of mupirocin and emergence of resistance in staphylococci. Several
studies have attempted to assess the association between clinical use of mupirocin and
the emergence of resistance. Mupirocin resistance varies according to factors such as
study setting (e.g., community versus hospital), availability of treatment (e.g., over-the-
counter versus prescription), and patient populations (e.g., hemodialysis patients versus
general patients).

Unsurprisingly, the emergence of resistance appears to be more common when
there is unrestricted use of mupirocin in a large population of patients. For example, in
New Zealand, mupirocin was available for purchase in community pharmacies between
1991 and 2000 (107). In 1999, approximately 28% of S. aureus isolates in one New
Zealand study were resistant to mupirocin, with a higher resistance rate in community-
associated isolates than in hospital-associated isolates (30.2% versus 19.8%, respec-
tively) (107). Interestingly, a follow-up New Zealand study, conducted in 2013, dem-
onstrated a reduction in the prevalence of mupirocin resistance, from 28% to 11% (108).
This decline was concurrent with a decrease in the use of mupirocin in New Zealand
following a regulatory change in 2000 restricting mupirocin use to “prescription only.”
Similarly, in western Australia, widespread empirical use of mupirocin led to high rates
of mupirocin resistance in MRSA during the early 1990s, peaking at 18% in 1993 (109).
Subsequent regulatory changes resulted in a reduction in mupirocin resistance among
MRSA isolates, to 0.3% in 1997 (110). In contrast, resistance development appears to be
less frequent when community use of mupirocin is targeted rather than empirical. For
example, in a large RCT involving 3,447 U.S. military trainees, a 5-day course of
mupirocin was administered to those trainees found to be colonized with MRSA (111).
Four months later, participants were assessed for MRSA colonization and the occur-
rence of skin infections. No mupirocin resistance was detected among MRSA isolates.

In the hospital setting, there are also notable differences in the emergence of
mupirocin resistance depending on whether mupirocin use is widespread (e.g., univer-
sal decolonization of all preoperative patients) or restricted. For example, in one
Brazilian study, all inpatients (between 1990 and 1995) found to be infected and/or
colonized with MRSA were treated with a regimen that involved mupirocin and
chlorhexidine to eradicate MRSA carriage (112). Subsequently, the rate of mupirocin
resistance in MRSA was found to be 65% in 1995 (113). Following a restriction in
mupirocin use to colonized patients only, mupirocin resistance decreased to 15% in
1999 and 2000 (112). Similarly, among renal dialysis patients, the routine and sustained
use of prophylactic mupirocin to prevent peritoneal catheter site infections has been
associated with subsequent isolation of resistant S. aureus (114, 115). Moreover, in one
study, patients who were colonized with mupirocin-resistant strains were at an in-
creased risk of exit site infection (114).

Conversely, when mupirocin use has been targeted to reducing nasal colonization
with S. aureus in perioperative prophylaxis, the emergence of resistance has generally
been less common (72, 116, 117). For example, in two large RCTs (with a combined total
of 1,808 patients) assessing the effectiveness of mupirocin for preoperative S. aureus
nasal decolonization for the prevention of surgical site infections, mupirocin-resistant S.
aureus isolates were detected in only six patients (0.003%) (116, 118). Furthermore, of
these six patients, only three were in the group that had received mupirocin (118).
Similarly, in a Dutch study of cardiothoracic patients, mupirocin resistance was not
detected in any S. aureus isolates from 868 patients following mupirocin treatment
(119).

Like studies of S. aureus, some studies have also investigated the association
between mupirocin use and resistance in CoNS. For example, a study from the
Netherlands assessed trends in mupirocin resistance in both S. aureus and CoNS
between 2006 and 2011 (120). The study demonstrated an increase in mupA-mediated
mupirocin resistance in CoNS, from 8% in 2006 to 22% in 2011. Moreover, this increase
was associated with a 3-fold increase in mupirocin usage over the study period (120).
Similarly, in another study from the same Dutch institution, high-level mupirocin
resistance among CoNS isolates was assessed for surgical inpatients before and after a
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universal decolonization regimen involving nasal mupirocin treatment and chlorhexi-
dine body washes (121). Prior to decolonization, the rate of high-level mupirocin
resistance was 21%, increasing to 43% after 5 days of mupirocin and chlorhexidine
treatment, with 99.5% of resistance mediated by mupA (120).

Interestingly, a recent study by Hetem et al. (122) utilized a deterministic mathe-
matical model to explore the emergence of mupirocin resistance in the context of
hospital-based targeted or universal S. aureus decolonization regimens. They concluded
that the risks of mupirocin resistance emergence were similar for both targeted and
universal decolonization regimens and that, based on this finding, universal decoloni-
zation may be a more practical solution than targeted prophylaxis (122). Furthermore,
based on analysis of published data assessing transmissibility rates of MRSA in hospitals
(and incorporating a species-specific sensitivity analysis of transmissibility rates), they
also concluded that high-level mupirocin resistance in CoNS was not a major risk for the
emergence of high-level mupirocin-resistant S. aureus in the context of mupirocin use
for decolonization (122).

In clinical practice, mupirocin is usually administered with chlorhexidine, a bigua-
nide cationic antiseptic agent (see below). Interestingly, in one case-control study of an
MRSA decolonization program, the presence of both low-level mupirocin-resistant
isolates and the qacA/B genes (mediating reduced susceptibility to chlorhexidine) was
associated with persistent MRSA carriage (98). The prevalence and relevance of chlo-
rhexidine resistance are discussed separately below.

Fusidic Acid

Fusidic acid is a steroidal antibiotic derived from the fungus Fusidium coccineum. The
most active derivative is the sodium salt (sodium fusidate), and this was first used
clinically in the early 1960s for the treatment of staphylococcal infections. One of the
important features of fusidic acid is the fact that it can be administered orally,
intravenously, or topically. In particular, topical fusidic acid can be administered in a
variety of preparations, including ointment, cream, lotion, and gel forms. Similar to
those for mupirocin, the key clinical indications for topical fusidic acid are the treatment
of superficial skin infections and eradication of nasal carriage of S. aureus.

Fusidic acid is primarily active against staphylococci (including most CoNS strains),
with MICs for susceptible staphylococci ranging from 0.016 to 0.5 �g/ml (www.eucast
.org). However, MICs for S. pyogenes are considerably higher, ranging from 1 to 16
�g/ml. Fusidic acid also has in vitro activity against several other Gram-positive bacteria,
including corynebacteria and Gram-positive anaerobes. In general, Gram-negative
bacteria are resistant to fusidic acid, with the exceptions of Neisseria and Moraxella
species and some strains of the Bacteroides fragilis group.

Although the chemical structure of fusidic acid is similar to that of cephalosporin P,
unlike cephalosporins, fusidic acid does not act on the cell wall but acts as a protein
synthesis inhibitor, specifically at the translation phase. During bacterial protein syn-
thesis, elongation of the polypeptide chain occurs as the ribosome moves along mRNA
and accepts aminoacyl-tRNA units, in a reaction coupled to GTP hydrolysis. Elongation
factor G (EF-G) is a GTPase involved in translocation of the mRNA-tRNA complex and is
encoded by the chromosomal fusA gene. Binding of fusidic acid to EF-G produces a
conformational change that prevents the dissociation of the EF-G–GDP complex from
the ribosome, thus preventing binding of the next aminoacyl-tRNA unit and inhibiting
further protein synthesis. This relatively unique mode of action means that there is
currently no known cross-resistance with other antimicrobial classes.

Genotypic and phenotypic characterization of fusidic acid resistance. Fusidic acid
susceptibility testing can be performed using agar dilution, broth microdilution, disc
diffusion, or Etest methods. Although there are no CLSI interpretive criteria for fusidic
acid susceptibility, EUCAST (www.eucast.org) defines susceptibility in staphylococci for
MICs of �1 mg/liter and resistance for MICs of �1 mg/liter (based on oral or intrave-
nous doses of 500 mg twice daily or three times daily).

In staphylococci, there are a number of molecular mechanisms that mediate resis-
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tance to fusidic acid, both chromosomal and acquired. These mechanisms vary in their
prevalence, mode of action, and impact on bacterial fitness. At the chromosomal level,
resistance is most commonly associated with mutations in fusA, resulting in a structural
change in EF-G and reduced fusidic acid binding to the EF-G ribosome complex.
Although there are at least 30 fusA mutations, only a few result in phenotypic resistance
to fusidic acid. Crystallographic analysis has demonstrated that the majority of muta-
tions occur in structural domain III of EF-G, although they can also occur in domains I
and V (123). Interestingly, mutations in domain V of EF-G have also been shown to be
associated with the small colony variant (SCV) phenotype, with features such as
reduced susceptibility to aminoglycosides and hemin auxotrophy (124). Within domain
III (amino acids 404 to 483 in EF-G), the most commonly described mutations are L461K,
H457K, and P406L, with the L461K mutation being the most common mutation
associated with high-level resistance (125, 126). Site-directed mutagenesis and cloning
of mutant fusA alleles demonstrated that these three mutations increase the fusidic
acid MIC for S. aureus by at least 32-fold (126). Moreover, although some mutations in
EF-G (e.g., P406L and H457Y) have been associated with an impairment of biological
fitness in S. aureus (127), it has been demonstrated that secondary mutations in EF-G
may compensate for this loss of fitness and potentially allow for the persistence of
fusidic acid-resistant strains within a population (127).

In addition to chromosomal resistance-conferring mutations, there are several ac-
quired genes that have been characterized in staphylococci that confer fusidic acid
resistance. In particular, the fusB and fusC genes encode metalloproteins (FusB and
FusC, respectively) that can bind to EF-G. Binding of these proteins enables the
dissociation of the ribosomal EF-G–GDP complexes that form in the presence of fusidic
acid (128, 129) and resumption of protein translation, despite the presence of fusidic
acid.

Both fusB and fusC are located on mobile genetic elements; this enables transfer
across S. aureus clones, and possibly across staphylococcal species (130, 131). fusB may
be chromosomal or plasmid borne and typically confers low-level fusidic acid resis-
tance. In S. aureus, fusB has been found on pUB101, a ubiquitous 21.9-kb plasmid that
encodes �-lactamase and cadmium resistance (132–134), and recent work has de-
scribed fusB in association with a highly clonal p11819-97 plasmid among isolates of
the dominant European CA-MRSA CC80 clone (135). The fusB gene has also been
described as being present on the chromosome of a European fusidic acid-resistant S.
aureus impetigo clone (EEFIC) (136). In addition to that in S. aureus, fusB is also found
in coagulase-negative staphylococci, and in one study assessing fusidic acid-resistant
staphylococci from North America and Australia, fusB was more prevalent among CoNS
strains than among S. aureus strains (65.0% versus 17.4%, respectively) (125). Further-
more, in another study from Europe, fusB was more prevalent among fusidic acid-
resistant CoNS strains than among fusidic acid-resistant S. aureus strains (26.5% versus
10.1%, respectively) (137). Similar to that in S. aureus, fusB in CoNS can be either plasmid
borne or chromosomal. For example, in one study, fusB was found to be harbored
within chromosomally located pathogenicity islands (PIs) within S. epidermidis (138),
and it was occasionally found to be colocated within these PIs with a putative virulence
gene, vapE (138).

Subsequent to the characterization of fusB, a FusB homologue exhibiting 44% amino
acid homology to FusB was reported for S. aureus (139, 140). In addition, a FusB
homologue exhibiting 47% amino acid homology to FusB was reported for Staphylo-
coccus saprophyticus (140). These two homologues were named FusC and FusD, re-
spectively, and their encoding genes were designated fusC and fusD (140). More
recently, another FusB homologue, FusF, encoded by the fusF gene, was described as
a major resistance determinant in fusidic acid-resistant Staphylococcus cohnii (141).

The fusC gene is particularly prevalent among fusidic acid-resistant S. aureus and
CoNS strains, and to date, it has always been identified within staphylococcal cassette
chromosome (SCC) elements, with or without the mecA gene (139, 142–146). One
recent study assessed the genetic context of fusC across different lineages of S. aureus,
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including ST5 and ST1 (147). In all lineages, fusC was always located within SCC
elements, and it was hypothesized that SCC-mediated horizontal transfer was the main
mechanism for fusC to be disseminated, both within S. aureus and across other
staphylococcal species (147). Importantly, the genetic colocation of fusC with mecA may
be important in driving the emergence of MRSA in settings where large amounts of
fusidic acid are used. A particularly clear example of this is in New Zealand, a country
with high (and increasing) usage of topical fusidic acid since the early 2000s (10, 108).
Since 2005, a fusidic acid-resistant ST5 MRSA clone has emerged to become the
dominant MRSA lineage in New Zealand, suggesting that in addition to fusidic acid use
selecting solely for strains containing fusidic acid resistance determinants, there is also
likely to be coselection of other resistance genes, such as mecA (108, 147).

Prevalence and clinical relevance of fusidic acid resistance. The reported preva-
lence of fusidic acid resistance in staphylococci varies widely according to factors such
as patient population, specimen type (e.g., clinical isolates versus carriage isolates), and
geographic region. Importantly, many studies assessing fusidic acid resistance in
staphylococci were conducted prior to the discovery of the fusC, fusD, and fusF genes
and are unlikely to reflect the true prevalence of these mechanisms. Table 3 provides
information on recent larger studies describing both the prevalence and mechanisms
of fusidic acid resistance in staphylococci.

To date, several studies have identified potential associations between the use of
topical fusidic acid and the emergence of fusidic acid resistance in staphylococci at
both the patient and population levels. For example, in the United Kingdom, the use of
topical fusidic acid approximately doubled over a 6-year period from 1995 to 2001, with
a concomitant increase in fusidic acid resistance among S. aureus bloodstream isolates,
from 2.0% in 1990 to 6.1% in 2001 (148). Moreover, a contemporaneous study from
Wales identified a significant correlation between primary care practice level prescrib-
ing of fusidic acid and fusidic acid resistance in community MSSA isolates (149).
Similarly, a more recent study from the United Kingdom analyzed trends in fusidic acid
use and resistance in MRSA between 2002 and 2012 (142). In that study, although a
slight decline in topical fusidic acid community use was observed, the percentage of
fusidic acid resistance among contemporaneous MRSA bacteremia isolates increased
markedly over the same period, from approximately 10% to 20% (142). In that study,
fusidic acid was mainly mediated by fusC, encoded within SCC elements, again high-
lighting the potential for coselection of genetically linked resistance mechanisms, such
as fusC and mecA. In addition, a recent study from New Zealand also assessed the trends
of topical antimicrobial use and correlated these with resistance patterns (108). Be-
tween 1993 and 2012, there was a significant increase in topical fusidic acid use in the
New Zealand community setting (108). Concurrent with this increase in usage, the
prevalence of fusidic acid resistance in S. aureus in New Zealand increased from 17% in
1999 to 29% in 2013 (108). Although the authors of the study noted the “limitations in
ecological correlations of antimicrobial prescribing and the development of resistance,”
they hypothesized that the considerable increase in fusidic acid resistance was driven
by high usage of fusidic acid in the New Zealand community (108). This hypothesis is
supported by low rates of fusidic acid resistance in other countries that have low or
negligible use of fusidic acid. In particular, fusidic acid resistance rates in S. aureus
isolates are extremely low in the United States (0.3%), where fusidic acid is not yet
widely used systemically and has not been used topically (125, 150).

In addition to population-level associations between fusidic acid use and resistance,
several studies have assessed the development of fusidic acid resistance at the patient
level, mainly in dermatology patients who have previously received topical fusidic acid
therapy. For example, Shah and Mohanraj conducted a retrospective review of all
dermatology patients with a positive S. aureus culture during a 4-month period in 2001
in a hospital in Yorkshire in the United Kingdom (151). They found that nearly
two-thirds of all dermatology patients had used topical fusidic acid in the 6 months
preceding the study period and that a significantly larger proportion of isolates from
dermatology patients than that from other patients was fusidic acid resistant (51%
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versus 9.6%). Moreover, among patients who were infected with fusidic acid-resistant
or -susceptible S. aureus isolates, 96% and 29%, respectively, had used topical fusidic
acid therapy in the previous 6 months, suggesting an association between prior use
and resistance. Similar findings were noted by Ravenscroft et al. in the United Kingdom
(152) and Peeters et al. in the Netherlands (153). In particular, Peeters et al. observed an
increase in fusidic acid resistance among S. aureus isolates from patients with atopic
dermatitis, from 9.7% in 1995 to 23.4% in 2001, and they suggested that this increase
was due to patients in this population receiving courses of topical fusidic acid to treat
infected eczema lesions or to eradicate S. aureus carriage (153). Similarly, Sule et al.
conducted a study of dermatology outpatients with atopic eczema and S. aureus
colonization, and they observed a significant correlation between recent exposure to
topical fusidic acid and the presence of fusidic acid-resistant S. aureus (154).

Although fusidic acid resistance in clinical isolates of S. aureus is well described,
there is a scarcity of studies describing clinical failures of fusidic acid therapy (either
systemic or topical). However, as discussed in a previous review (155), widespread and
unregulated topical fusidic acid monotherapy should not be considered justifiable
given the likelihood of resistance developing. This is particularly important given the (as
yet) current utility of systemic fusidic acid in combination with other antimicrobials
(e.g., rifampin) in the treatment of MRSA infections (156).

Neomycin

Neomycin is an aminoglycoside antimicrobial that is produced by Streptomyces
fradiae and was first described in 1949 (157). Neomycin comprises three major chem-
ically related compounds, namely, neomycin A (neamine), neomycin B (framycetin; also
called neomycin sulfate), and neomycin C, with the quantity of each varying with the
manufacturing process (158).

Due to its relative toxicity when administered systemically, neomycin is generally
used only topically, either alone or in combination with other antimicrobials, particu-
larly polymyxin B and/or bacitracin (see below). Topical preparations are available in a
variety of formulations, such as gels, solutions, eye drops, and eardrops. Neomycin is
active against staphylococci and most aerobic Gram-negative bacteria, although strep-
tococci and Gram-positive bacilli are resistant.

Similar to other aminoglycosides, neomycin acts by binding to the 30S subunit of
the bacterial ribosome to inhibit protein synthesis. Resistance is mediated through a
number of mechanisms, with the most significant being enzymatic inactivation of the
drug by chromosomally or plasmid-encoded aminoglycoside-modifying enzymes (159).
Based on data from EUCAST, the MIC90 values of neomycin against S. aureus and CoNS
isolates are 1 �g/ml and 0.25 �g/ml, respectively (www.eucast.org).

Topical neomycin-containing formulations are most commonly used for treatment
of localized skin infections due to staphylococci and Gram-negative bacilli. In general,
however, neomycin formulations perform less well than other topical antimicrobials,
such as fusidic acid and mupirocin, for the treatment of common skin infections, such
as impetigo (12). In addition, one of the major concerns regarding the use of topical
neomycin is the apparently high prevalence of allergic contact dermatitis, which has
been estimated at 1% to 6% but is thought to be higher in patients with a compro-
mised skin barrier (160). Moreover, systemic complications, such as ototoxicity, can
occur following topical neomycin therapy, including instances of severe ototoxicity in
patients with eardrum perforation receiving neomycin eardrops (161).

Bacitracin

Bacitracin is a cyclic polypeptide antimicrobial, derived from the bacterium Bacillus
subtilis, that is FDA approved for adults for the treatment of superficial bacterial skin
infections. It is bactericidal by complexing with C55-isoprenyl pyrophosphate (IPP),
which is a bacterial cell wall component that normally transports peptidoglycan across
the bacterial cell membrane. Inhibition of IPP subsequently blocks cell wall formation
(162).
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Bacitracin is predominantly active against Gram-positive organisms, particularly S.
aureus and S. pyogenes. In vitro studies suggest that other beta-hemolytic streptococci
are either resistant or display reduced susceptibility (163), and this is occasionally used
in the diagnostic microbiology laboratory as a distinguishing feature among certain
beta-hemolytic streptococci (group A streptococcus usually appears to be susceptible
to a 0.04-IU disc on blood agar). In general, Gram-negative bacteria are resistant,
although the pathogenic Neisseria species (N. gonorrhoeae and N. meningitidis) and
Haemophilus influenzae are usually susceptible (164).

Due to systemic toxicity (predominantly nephrotoxicity and thrombophlebitis), the
use of bacitracin in humans is restricted to topical use. As such, there are no definitive
pathogen-specific interpretive criteria for bacitracin susceptibility testing, although
EUCAST data suggest that the wild-type distribution cutoff for Enterococcus faecalis and
Enterococcus faecium is 32 �g/ml (www.eucast.org). The lack of definitive breakpoints
means that there are few surveys of bacterial resistance to bacitracin, although resis-
tance in human isolates of staphylococci and streptococci is thought to be low (165).
Bacitracin can be administered alone or, more commonly, in combination with other
topical antimicrobials, particularly polymyxin B (Polysporin) and/or neomycin (Neosporin)
(163). It has previously been used for the treatment of minor skin, ear, or eye infections
(165) but has strongly been associated with contact allergy, particularly in patients with
preexisting skin conditions (165). As such, contemporary use of bacitracin has been
superseded by use of other, safer topical agents.

Polymyxin B

Polymyxins are a group of antimicrobials that are products of Bacillus polymyxa and
are active only against Gram-negative bacteria (166, 167). As cationic compounds, they
are believed to interact with lipopolysaccharide, thereby disrupting the cell membrane,
leading to cell death. Only polymyxin B and polymyxin E (colistin) are used clinically.
According to the CLSI, the MIC cutoff for polymyxin B against Enterobacteriaceae is �2
�g/ml (82), although this is not commonly tested for in the clinical setting, as the
limited Gram-positive spectrum of activity precludes the use of polymyxin B alone for
bacterial skin infections. Polymyxin B is most often used in topical preparations
alongside neomycin and bacitracin as a TAO (163). Although it has been available
over-the-counter in the United States since the 1970s, a previous study demonstrated
that rates of resistance to the three components of TAO among staphylococci, Enter-
obacteriaceae, and P. aeruginosa were generally low (163).

Retapamulin

Retapamulin belongs to the pleuromutilin class of antimicrobials, which are derived
from Clitophilus scyphoides, an edible mushroom (168). Retapamulin is a semisynthetic
member of this class, and similar to other members of this class, it has a novel
mechanism of action in that it inhibits translation by binding to domain V of the 50S
ribosomal subunit, acting at a site that is distinct from other agents, thus reducing the
likelihood of cross-resistance (169). Pleuromutilin antibiotics (tiamulin and valnemulin)
have been used in veterinary medicine for almost 30 years, predominantly in swine and
poultry (170), but retapamulin has been registered for human use only since 2007 (171).

Retapamulin is licensed as a 1% ointment in the United States (Altabax) for the
treatment of impetigo due to MSSA or S. pyogenes and in Europe (Altargo) for impetigo
and infected minor wounds (172, 173). It has demonstrable in vitro activity against
staphylococci and streptococci, with wild-type distribution cutoffs of 0.5 and 0.125
�g/ml for S. aureus and S. pyogenes, respectively. In vitro, development of resistance in
multipassage studies can occur, with two studies reporting an increase in MIC values
against S. aureus in serial passage studies (169, 174). Moreover, a small number of
isolates with cross-resistance to linezolid or daptomycin were observed in one study
(169). At the molecular level, retapamulin resistance in S. aureus has been associated
with mutations in the rplC gene, which encodes ribosomal protein L3, and also with
mutations in the 23S rRNA gene (175). In addition, resistance can be mediated by efflux
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pumps, such as VgaA or a variant, VgaAv (176), encoded by the vgaA or vgaAV gene,
respectively. These genes are found on mobile genetic elements, and their products
(belonging to the ATP-binding cassette protein family) are also associated with resis-
tance to streptogramin A and lincosamide antibiotics (176). In addition, acquired
retapamulin resistance can also be mediated by the cfr (chloramphenicol-florfenicol
resistance)-encoded methyltransferase, which methylates the 23S rRNA subunit and
prevents interaction with retapamulin (177).

To date, there are limited data on the global prevalence of retapamulin resistance
among clinical isolates of S. aureus and S. pyogenes. One study from the United
Kingdom in 2008 observed a resistance rate of �1% in S. aureus; notably, most of the
strains included in this study were MRSA and were resistant to other topical agents,
specifically mupirocin and/or fusidic acid (178). Similarly, a 2013 study from the United
States evaluated retapamulin against 155 MRSA clinical isolates, including isolates
resistant to vancomycin, linezolid, daptomycin, and mupirocin, and observed a resis-
tance rate of 2.6% (179). More recently, however, a U.S. study evaluated S. aureus
isolates from 400 children with SSTIs and identified 38 isolates (9.5%) that were
resistant to retapamulin, with two isolates (0.5%) displaying cross-resistance to reta-
pamulin and linezolid (180). In addition, four isolates were found to contain genes
encoding the VgaA/Av efflux pumps, and all four of these isolates were also resistant
to clindamycin, highlighting the potential for cross-resistance with acquired resistance
mechanisms (180).

EMERGING TOPICAL ANTIBACTERIAL AGENTS

In response to rising rates of resistance to conventional antimicrobial agents, several
compounds have emerged as potentially useful new topical agents, including some
which have been repurposed from previously used agents. For example, ebselen is a
synthetic organoselenium compound that was previously investigated for its anti-
inflammatory and antioxidant activities (181). Previous in vitro preclinical work showed
that ebselen displays bactericidal activity against multidrug-resistant clinical isolates of
S. aureus, including MRSA and vancomycin-resistant S. aureus (VRSA) isolates (182, 183).
Moreover, when it was evaluated in a mouse model of staphylococcal skin infection,
topically applied ebselen significantly reduced bacterial loads and levels of proinflam-
matory cytokines (183). Ebselen is thought to act as a mimic of glutathione peroxidase,
and potentially as an inhibitor of bacterial thioredoxin reductase (184); however, the
exact mechanism of action remains unknown.

More recently, a number of antimicrobial peptides (AMPs) have been assessed for
their antimicrobial efficacy. AMPs are naturally occurring, short (generally 5 to 15 amino
acids) peptides that have attracted increasing attention as therapeutic agents for
infections (185). AMPs are widely distributed in nature (185) and have broad-ranging
antimicrobial activity in addition to potential host immunomodulatory effects (186).
One promising topical compound is PXL150, a short, synthetic, broad-spectrum AMP
that has activity against Gram-positive and Gram-negative pathogens (187, 188). An in
vitro preclinical study suggested that PXL150 may have anti-inflammatory effects in a
human monocytic cell line (187). Moreover, when it was used in a murine model of
surgical wound infection, the application of topical PXL150 reduced the S. aureus load
compared to that with placebo (189).

As topical antimicrobial agents, both ebselen and PXL150 are still in preclinical
development. However, another emerging topical antimicrobial agent is pexiganan, a
cationic peptide that is in phase 3 clinical development for topical use (190, 191).
Clinically, pexiganan has been evaluated against systemic ofloxacin for the treatment of
mildly infected diabetic foot ulcers, and it demonstrated clinical and microbiological
equivalence in one study involving 835 patients (192). Pexiganan has a broad spectrum
of activity against Gram-positive and Gram-negative pathogens (193), and it is thought
to act by interacting with the negatively charged lipid bilayer, inducing toroid-like pore
formation and subsequent disruption of the bacterial membrane (194). In vitro studies
have shown good activity against S. aureus, CoNS, and S. pyogenes, with minimal
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development of resistance on serial passage at sub-MIC concentrations and no appar-
ent cross-resistance to other commonly used topical agents, such as mupirocin and
fusidic acid (190, 191).

TOPICAL BIOCIDES

Biocides are used extensively as disinfectants and antiseptics in topical and surface
applications, including in the prevention of skin infections. They are key components of
hospital infection control and cleaning programs and play an important role in the
prevention of nosocomial infections. Biocides generally have a much broader spectrum
of activity than those of antibiotics and typically have multiple nonspecific cellular
targets. This broader target tropism may explain why resistance to biocides is far less
prevalent than that to antibiotics, particularly at the high concentrations used in health
care settings. Despite their widespread use, however, our understanding of the mech-
anisms of antimicrobial activity of these agents is often limited, and surveillance
activities necessary for the identification and characterization of biocide-tolerant or-
ganisms are lacking. Importantly, the routine use of biocides is far less regulated than
antibiotic use, leading to concern about the development of biocide resistance and the
possible role that these agents may play in driving the emergence of multidrug-
resistant pathogens (195). The following sections review the major topical biocides
used in the prevention and treatment of bacterial skin infections.

Chlorhexidine

Chlorhexidine is a divalent cationic biguanide molecule that was first described in
1954 (196). Clinically, chlorhexidine has become the mainstay biocide in the prevention
of health care-associated infections, and its role in decolonization regimens was
recently extensively reviewed (5). Several different forms of chlorhexidine are used
clinically, but the most common is the water-soluble form, chlorhexidine gluconate
(197). Chlorhexidine can be incorporated into many products for use on the body, such
as hand rubs, body washes, and antiseptic mouthwashes (198). Chlorhexidine can also
be impregnated into wound dressings (199) and central line catheters (200) and is
generally regarded as an extremely safe topical agent (201). Mild adverse effects
include skin irritation and, more rarely, allergic reactions that include severe anaphy-
laxis (202, 203).

Chlorhexidine is most often used at concentrations of 0.5% to 4%, with the specific
concentration dependent on the clinical indication. For example, hand disinfectants
generally contain between 0.5% and 4% chlorhexidine (204), while MRSA decoloniza-
tion is most often performed using a 1% chlorhexidine powder or with a 4% liquid
(205). Presurgical skin disinfection often utilizes a 2% liquid suspension in 70% isopro-
pyl alcohol (206), while bathing of ICU patients is normally performed using 4% liquid
(207). There has been increasing adoption of the use of universal decolonization (using
a combination of chlorhexidine bathing and intranasal mupirocin) of ICU patients to
reduce health care-associated infections (208), raising concerns about the potential
impact on bacterial resistance rates (209). To date, however, there is conflicting
evidence regarding an increase in resistance to mupirocin and/or chlorhexidine as part
of decolonization regimens (210, 211).

Mechanism and spectrum of action. Chlorhexidine is a broad-spectrum biocide
that also displays long-lasting residual activity in comparison to other biocides (212). It
is most active against Gram-positive bacteria but also possesses activity against Gram-
negative bacteria, some enveloped viruses, and fungi (213–215). However, it shows
poor activity against nonenveloped viruses, and chlorhexidine is inactive against
bacterial spores (201). Some bacterial species, such as mycobacteria (216), are intrinsi-
cally resistant to chlorhexidine because their outer membranes present an imperme-
able barrier that chlorhexidine cannot cross. Biofilm (217) and spore (197) formation
also enables certain bacterial species to survive in the presence of chlorhexidine.

Chlorhexidine has both bacteriostatic and bactericidal activity, depending on the
concentration used (218). Chlorhexidine is positively charged and, as such, binds to the
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negatively charged bacterial cell membrane and cell wall (197). At low concentrations,
association of chlorhexidine with the cell membrane results in a loss of osmoregulatory
and metabolic capacity, leading to the loss of cytosolic potassium ions, with subse-
quent inhibition of cellular respiration (197). At higher concentrations, chlorhexidine
results in a complete loss of membrane integrity, with subsequent leakage of cellular
contents from the cell and, ultimately, cell lysis and death.

Reduced susceptibility to chlorhexidine. There are no standardized methods for
chlorhexidine susceptibility testing, making comparability of data from published
studies difficult. Numerous methods, including agar dilution, time-kill, and broth-based
MIC and minimal bactericidal concentration (MBC) assays, have been used to pheno-
typically assess chlorhexidine susceptibility. Chlorhexidine has a low diffusion rate
through solid agar, which precludes the use of disc diffusion susceptibility testing (205).
Moreover, the antimicrobial effect of chlorhexidine may be overestimated if appropri-
ate neutralization is not performed prior to susceptibility testing (219).

Efflux pumps are the most widely reported mechanism of resistance to chlorhexi-
dine, and these protein complexes are able to actively pump chlorhexidine from the
cell in an energy-dependent manner (220). In the majority of cases, efflux pumps have
a broad range of substrates in addition to chlorhexidine (197). For example, Qac
proteins, encoded by the quaternary ammonium compound (qac) genes, are multidrug
efflux pumps that are distributed widely among Gram-positive and Gram-negative
bacteria (221). They can broadly be split into two unrelated families, with QacA and
QacB belonging to the major facilitator superfamily (MFS) and QacC (also referred to as
Smr), QacE, QacEΔ1, QacF, QacG, QacH, QacJ, and QacZ belonging to the small
multidrug resistance (SMR) family (221). However, apart from that of QacA, the role that
Qac efflux systems play in chlorhexidine resistance has not yet been rigorously inves-
tigated.

The QacA protein is the most extensively studied of the Qac efflux systems and has
been associated with increased tolerance to chlorhexidine (222, 223). It is usually found
in Gram-positive bacteria, particularly staphylococci (221), although the qacA gene was
also recently identified in clinical isolates of carbapenem-resistant Klebsiella pneu-
moniae displaying increased chlorhexidine tolerance (224). The qacA gene was first
identified on S. aureus plasmid pSK1 (225) but has since been found on numerous other
S. aureus plasmids, including pSK105, pSK107, pSK4032, pSK4769, pSK638, and pSK57
(205). Expression of qacA is under the regulatory control of a transcriptional regulator
known as QacR (226). The gene encoding QacR (qacR) is located upstream of the qacA
gene, and qacR and qacA are divergently transcribed (226). QacR acts as a repressor of
qacA expression by binding to an operator sequence that overlaps the transcriptional
start site of qacA, thus inhibiting expression (226). When an appropriate substrate (such
as chlorhexidine) enters the cell, it binds to QacR, resulting in dissociation from DNA,
which in turn relieves the repression of qacA gene expression (227).

Prevalence of chlorhexidine resistance. In the absence of true clinical breakpoints,
accurate determination of chlorhexidine susceptibility is challenging. Nevertheless,
several studies have attempted to phenotypically assess the prevalence of reduced
susceptibility to chlorhexidine among common skin pathogens, particularly staphylo-
cocci. For example, one U.S. study performed between 2010 and 2012 to assess clinical
and colonizing MRSA isolates from the community found that only 1.6% of isolates
were phenotypically nonsusceptible to chlorhexidine (228) by standard broth dilution
assay. In contrast, some studies have reported relatively high rates of phenotypic
resistance; for example, a study from Iranian hospitals conducted in 2012 and 2013
observed chlorhexidine MICs of 8 to 16 �g/ml in 30% of MSSA and 70% of MRSA
isolates by broth dilution assay (229). Similarly, in a Taiwanese hospital study, 47.5% of
MRSA isolates collected in 2005 were phenotypically nonsusceptible to chlorhexidine
by agar dilution assay (230). Importantly, in the same study, the rate of chlorhexidine
nonsusceptibility in isolates collected during 1990 was estimated to be only 1.7%,
leading the authors of the study to suggest that chlorhexidine nonsusceptibility might
be increasing (230). Like that in S. aureus, reduced chlorhexidine susceptibility in S.
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epidermidis has also been reported. One Swedish study using 143 isolates retrospec-
tively collected between 1993 and 2011 from a single hospital used agar dilution and
observed chlorhexidine tolerance in 37.5% of S. epidermidis isolates (231). A more
recent Scottish study included 25 S. epidermidis isolates obtained between 2007 and
2014 from a single hospital intensive care unit, and it showed a chlorhexidine tolerance
rate of 12% by agar dilution assay. In both studies, there was an association between
increased chlorhexidine tolerance and the carriage of qacA/B genes (231, 232).

In addition to phenotypic resistance, numerous studies have assessed the rates of
carriage of qac and smr genes in staphylococci (205). The prevalence of carriage is
highly variable and is dependent on the geographical and epidemiological background
of the study population. For example, in one U.S. study assessing MRSA isolates from
a regional health care network in the District of Columbia, the carriage of the qacA/B
genes was found to be �1% (5/493 isolates) (233). Similarly, another study assessing
the prevalence of qacA/B in 86 MRSA isolates collected from prisoners of the Rikers
Island jail system in the United States found an even lower prevalence, with no
evidence of qacA/B in any of the collected isolates (234). In contrast, qacA/B genes were
detected in 50/60 (83%) MRSA isolates in a 2009 study from a Malaysian hospital (235).
Moreover, the prevalence of smr carriage can vary widely, with one Canadian study
reporting a prevalence of approximately 7% for 334 MRSA isolates collected from two
intensive care units between 2005 and 2009 (236), while another study, conducted
between 2005 and 2008 in Chinese hospitals, observed an smr prevalence of approx-
imately 77% (41/53 MRSA isolates) (237). Importantly, however, many studies that have
assessed qacA and/or smr carriage have not performed parallel phenotypic suscepti-
bility testing, precluding meaningful genotypic/phenotypic correlations with chlorhexi-
dine nonsusceptibility. Previous work has demonstrated that carriage of these genes
does not always result in phenotypic nonsusceptibility (238). As such, prevalence
studies based on rates of gene carriage alone may overestimate rates of chlorhexidine
tolerance, which may therefore limit the clinical usefulness of these studies.

Triclosan

Triclosan, a member of the bisphenol group of compounds, exhibits a broad
spectrum of antimicrobial activity (201) and is found in numerous health care and
hygiene products, including soaps, surgical scrubs, clinical hand washes, toothpastes,
and mouthwashes (239). Clinically, triclosan has been used predominantly in MRSA
decolonization regimens, although it has largely been superseded by chlorhexidine.
Triclosan has also been incorporated into a range of fabrics and plastics, such as those
used in surgical drapes, toothbrush handles, wound sutures, mop handles, and even
children’s toys (240). Much recent work has demonstrated the lack of efficacy of
triclosan in household soap products, prompting the U.S. FDA to recently announce
that, effective September 2017, the use of triclosan and 18 other biocidal chemicals
would be prohibited in “consumer antiseptic products” (6).

Mechanism of action. Triclosan exhibits broad-spectrum antimicrobial activity pre-
dominantly against bacteria, but it is also active against some viruses and fungi (241).
For many years, triclosan was thought to target the cell membrane in a nonspecific
manner, akin to some other biocides (242). However, several independent studies have
demonstrated that triclosan acts on a defined target within the bacterial fatty acid
biosynthetic pathway known as FabI (243–245), or InhA in Mycobacterium spp. (246).
These essential proteins are NADH-dependent enoyl-acyl carrier protein reductases
which are involved in the elongation cycle of fatty acids, an important step of lipid
metabolism (247). Triclosan forms a stable complex with the amino acids of the FabI
enzyme active site, where it acts as an inhibitor by mimicking the natural FabI substrate
(244). The specific inhibition of FabI by triclosan results in the arrest of fatty acid
biosynthesis within the cell. This in turn adversely affects a multitude of different
cellular processes, including the synthesis of lipopolysaccharide, phospholipids, and
lipoproteins (248), which may explain why triclosan was originally thought to target the
cell membrane. However, it has also been suggested that triclosan may have nonspe-
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cific activity at higher concentrations, such as those used in topical antiseptics, where
triclosan may cause cell lysis through effects on RNA and protein synthesis, leading to
adverse effects on membrane integrity (240).

Mechanisms and prevalence of triclosan resistance. Similar to the case for other
biocides, there is no standardized method for triclosan susceptibility testing, and there
are no defined susceptibility breakpoints. Nevertheless, resistance to triclosan is de-
scribed in the literature, with a number of different mechanisms reported. Some
organisms, such as P. aeruginosa, are inherently resistant to the biocide, while others,
such as S. aureus, may become resistant following exposure (241). Resistance to
triclosan is generally mediated by mutations within the fabI gene, encoding the
enoyl-acyl carrier protein reductase. For example, in Escherichia coli, mutations that
affect the active site of FabI are known to interfere with triclosan binding, leading to
increased levels of triclosan resistance (244). Similarly, mutations in the fabI genes of S.
aureus (249) and Acinetobacter baumannii (250) and the inhA gene of mycobacterial
species (246) have been shown to confer increased tolerance to triclosan. In addition,
mutations leading to increased FabI expression have also been shown to result in low
and intermediate levels of triclosan resistance in A. baumannii (250) and S. aureus (251),
respectively. In S. aureus, these mutations were found to arise most often in the
upstream promoter region of the fabI gene (251). However, high-level resistance was
observed only in strains that overexpressed mutant rather than wild-type FabI proteins,
suggesting a synergistic effect of FabI mutation and overexpression in relation to
triclosan resistance (251).

A recent study demonstrated that triclosan resistance in several staphylococcal
species was mediated by the acquisition of a heterologous copy of the fabI gene known
as sh-fabI, which is thought to have originated in Staphylococcus haemolyticus (252).
Similarly to mutations that result in overexpression of fabI in other organisms, the
acquisition of sh-fabI is thought to result in increased levels of FabI within the cell due
to expression of both the native fabI gene and the acquired gene (252). Subsequent
screening of available whole-genome sequences revealed the presence of variant
sh-fabI alleles that contained single nucleotide polymorphisms (SNPs) predicted to
confer triclosan resistance in a range of staphylococcal species (252). It was a concern
that sh-fabI was located on a novel mobile genetic element, TnSha1 (253). The
acquisition of sh-fabI in S. aureus was almost exclusively associated with a single copy
of TnSha1 that was integrated into the chromosome, while in S. haemolyticus the sh-fabI
gene was generally found to be part of a larger plasmid-borne IS1272-type element,
TnSha2 (253). S. epidermidis was found to commonly carry both the TnSha1 and TnSha2
elements (253). IS-mediated transposition of TnSha1 and TnSha2 therefore represents
a concerning example of horizontally acquired triclosan resistance determinants.

To date, there have been very few studies assessing the prevalence of triclosan
resistance in clinical isolates of common skin pathogens. Although phenotypic testing
for triclosan resistance was not performed, an in silico screen of �4,000 S. aureus and
300 S. epidermidis genomes revealed that the sh-fabI resistance gene was present in
approximately 1.5% of S. aureus and 14% of S. epidermidis isolates (253). The finding of
acquired triclosan resistance within staphylococcus isolates is of concern and, given the
environmental ubiquity of triclosan, warrants ongoing investigation.

Povidone-Iodine

Iodine was originally discovered by Courtois in 1811, and although its potential as
an antiseptic was recognized soon after its discovery, its use was limited by poor
solubility, limited stability, and toxicity (254). Early medicinal iodine compounds, such
as Lugol’s solution and iodine tinctures, overcame some of these issues by combining
free iodine with potassium iodide salts and alcohol, which greatly improved the
solubility (255). However, a breakthrough occurred in the 1950s, when complexation of
iodine with large organic polymers was found to result in the release of free iodine in
aqueous systems. These iodophor complexes have since become the most common
class of medicinal iodine compounds (254). Povidone-iodine is one such iodophor,
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which consists of complexed iodine and polyvinylpyrrolidone (PVP), or povidone (256).
It is commonly used as a skin antiseptic, particularly prior to injections, surgery, and
other invasive procedures. Although 10% povidone-iodine solutions are generally used
for presurgical skin disinfection (257), lower concentrations, such as 5%, may be used
for ophthalmic procedures (258). In addition, the use of more dilute solutions (less than
2%) may be effective for the prophylaxis and treatment of childhood conjunctivitis
(259). Several studies have also proposed a use for dilute povidone-iodine in the
management of chronic, nonhealing wounds (260, 261). However, the clinical efficacy
of povidone-iodine in the management of such wounds remains controversial (262).

Mechanism of action and resistance. In povidone-iodine preparations, PVP acts as
a water-soluble carrier that releases the free iodine in solution (256). Although iodine
is considered the bactericidal component, PVP is known to increase the antimicrobial
efficiency of iodine as a consequence of its affinity for lipid membranes, which enables
PVP to release free iodine in close proximity to the cell membranes of target microor-
ganisms (257). Like chlorine, iodine is a powerful oxidizing agent that can quickly
penetrate the cell membrane (201). Although the mechanism is not completely under-
stood, once inside the cell, free iodine destabilizes membrane integrity, denatures
nucleic acids, and can rapidly kill microorganisms by nonspecifically inhibiting essential
cellular processes, including electron transport, cellular respiration, and protein syn-
thesis (257).

Povidone-iodine has perhaps the broadest spectrum of activity of any antiseptic,
with good activity against a range of bacteria, fungi, and protozoa, including Pseu-
domonas, Staphylococcus, Mycobacterium, Candida, and Trichophyton species (201). It
also displays virucidal activity and can eradicate viruses such as influenza virus, HIV, and
Ebola virus (263, 264). Some reports also suggest that, with increased exposure time,
povidone-iodine may display sporicidal activity (265).

As with other biocides, there is no consensus on a standard method for povidone-
iodine susceptibility testing. However, one previous study found that povidone-iodine
activity was not detectable in susceptibility agar, suggesting that agar-based method-
ologies might not be appropriate for testing of this biocide (266). As with chlorhexidine,
povidone-iodine must be neutralized appropriately before susceptibility is assessed in
order to avoid overestimates of antimicrobial activity (267). Despite the widespread
clinical use of povidone-iodine over many decades, as well as extensive testing of
isolates, there have so far been no reports of resistance or increased tolerance to
povidone-iodine in any laboratory-derived or clinical isolates (268). However, the
clinical use of povidone-iodine in surgical antisepsis and decolonization regimens has
generally been superseded by the use of chlorhexidine, particularly given the pro-
longed residual activity of chlorhexidine compared to that of povidone-iodine (269).

Alcohol

Alcohol-based biocides are widely used for surface disinfection and skin antisepsis
and are commonly found in many antibacterial hand washes, being a mainstay of many
hospital hand hygiene programs (270, 271). Alcohols are also often combined with
other biocides, such as chlorhexidine (272, 273), which display residual activity follow-
ing evaporation of the alcohol or with excipients that can lower the rate of alcohol
evaporation and therefore increase the contact time and antimicrobial efficacy (274).
Many different alcohols display potent antimicrobial activity; however, ethyl alcohol,
isopropyl alcohol, and n-propanol are most commonly used as biocides (201). Alcohols
are rapidly bactericidal and exhibit a broad spectrum of activity, particularly against
vegetative bacteria. In addition, they are active against Mycobacterium, fungi, and
viruses but have no activity against bacterial spores. The activities of both ethyl and
isopropyl alcohols are highly dependent on the concentration used, with the bacteri-
cidal activities of both agents dropping sharply when the agents are diluted to below
a 50% concentration. In general, optimal bactericidal activity is achieved at a concen-
tration of 60% to 90% (275). Absolute alcohol is less bactericidal than alcohol which has
been diluted to the optimal (60% to 90%) range with water (275). The specific
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mechanism by which alcohol achieves its antimicrobial activity is not well understood
but may be related to protein denaturation (201) or to inhibition and uncoupling of
mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase
(276). This process ultimately results in membrane damage, interference with essential
metabolic pathways, and a loss of cellular integrity, leading to a loss of viability (201).

Resistance to alcohol. There are no standardized susceptibility testing methods to
assess alcohol tolerance, although the generation of enhanced biofuel-producing
bacteria demonstrates that tolerance to alcohols, including ethanol and butanol, can
readily be achieved (277–279). However, in the context of clinical usage, alcohol
tolerance in bacteria such as staphylococci and streptococci has not been reported, and
acquired resistance mechanisms to alcohol have not yet been identified. As with other
biocides, this may be reflective of the nonspecific mode of bactericidal action. Alcohol
exposure may also result in the increased production of biofilm for a number of
clinically relevant species, including S. aureus (280), S. epidermidis (281), and A. bau-
mannii (282). In addition, exposure of A. baumannii to low levels of alcohol can
modulate the virulence response of the organism, leading to more severe disease in
animal models of infection (282, 283). The clinical relevance of this observation to
human disease, however, remains unknown.

Hydrogen Peroxide

Since its discovery in 1818 by Louis Thenard, hydrogen peroxide has become a
widely used antiseptic agent that can be used in both liquid and gas forms (284). It is
considered a potent and broad-spectrum antimicrobial that is active against all forms
of microorganisms, including bacteria, viruses, and protozoa (285, 286). Importantly, it
is also active against bacterial spores, protozoal cysts, and prions (287–289). In liquid
form, hydrogen peroxide can be used on the skin as an antiseptic at concentrations of
3% to 6% (vol/vol) (284). It is also commonly used in dental disinfectants at concen-
trations between 0.4% and 1% and is often the active ingredient in contact lens
solution, in which it is generally used at a concentration of 3% (290, 291). One recent
study suggested that hydrogen peroxide and iodine may act synergistically against S.
aureus, with lower concentrations of both agents required to effect killing (292).

The mechanism of action of hydrogen peroxide is not fully understood but is
thought to be associated primarily with its oxidation activity. Hydrogen peroxide can
rapidly cross the cell membrane; once it is inside the cell, the presence of trace metals,
such as iron, catalyzes the production of highly reactive hydroxyl radicals, which results
in the formation of lesions and nicks in cellular DNA, the cleavage of nucleic acid and
protein backbones, and subsequent damage to the cell membrane (293, 294). This
oxidative damage results in the impairment of many cellular processes, including RNA,
DNA, and protein synthesis pathways, disruption of cellular homeostasis, and a loss of
cellular integrity, which ultimately lead to a loss of viability (201).

Resistance to hydrogen peroxide. There is no standard method for hydrogen
peroxide susceptibility testing, nor any recognized breakpoints, although methods
such as broth microdilution have been used to assess MIC and MBC values (295). Even
though hydrogen peroxide has been used widely as a biocide for many years, the
development of significant levels of tolerance among clinical isolates does not seem to
have arisen. However, there are a small number of reports in the literature detailing
hydrogen peroxide tolerance in several clinically relevant bacterial species, predomi-
nantly in organisms that produce catalase. Catalase is an enzyme that catalyzes the
decomposition of hydrogen peroxide to oxygen and water (296). It is important in
protecting cells from oxidative damage caused by reactive oxygen species (ROS) and is
produced by almost all aerobic bacteria (297, 298). Although tolerance to exogenous
hydrogen peroxide is rare, in some species the production of catalase may be associ-
ated with tolerance to hydrogen peroxide. For example, in one study, exposure of S.
aureus to hydrogen peroxide was found to result in an increased frequency of SCV
formation (299). Notably, the SCVs produced under these conditions expressed ele-
vated levels of the KatA catalase enzyme, which rendered them tolerant to high levels
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of external hydrogen peroxide (299). Similarly, in E. faecalis, the production of the KatA
catalase provided partial protection of the organism against environmental challenge
with hydrogen peroxide (300), while in A. baumannii and Acinetobacter nosocomialis,
the production of the KatG and KatE catalases is known to confer high-level tolerance
to biocidal hydrogen peroxide (301). Although some organisms possess an intrinsic
tolerance to hydrogen peroxide which can render the biocide ineffective, as described
above, acquired resistance has not yet been reported.

CONCLUSIONS AND FUTURE CONSIDERATIONS

In summary, with the exception of impetigo and nasal decolonization of S. aureus,
there are limited clinical data to support the widespread use of topical antimicrobials,
including in the prevention and treatment of chronic wound infections. Importantly,
widespread and indiscriminate use of topical agents, particularly mupirocin and fusidic
acid, has led to the emergence of bacterial resistance, predominantly in staphylococci.
In particular, the dissemination of acquired resistance mechanisms within and across
staphylococcal species is of concern. Despite the fact that most topical agents are not
used systemically, in the case of fusidic acid, resistance generated by topical use has
largely precluded systemic use in some settings, such as New Zealand. Although agents
such as retapamulin offer promise, resistance has already begun to emerge in staph-
ylococci, with concerning reports of cross-resistance to systemic agents. In order to
avoid further increases in resistance, consideration should be given to restricting the
use of topical agents (e.g., to specialist-only prescribing).

Although antiseptics offer a possible alternative to the use of topical antimicro-
bials, robust clinical efficacy data are presently lacking, and the lack of standardized
susceptibility testing limits monitoring of the development of tolerance and cross-
resistance to other antimicrobial agents. Future work in this field should include
trials undertaking head-to-head comparisons of topical antimicrobials and antisep-
tics in the treatment of impetigo, particularly in settings with a high prevalence of
resistance to topical agents. Moreover, as universal decolonization regimens are
increasingly implemented in health care settings, it is important that regular,
systematic surveillance be conducted to identify any increase in resistance to
mupirocin and/or chlorhexidine.
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