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Abstract

High-throughput sequencing technology, coupled with the use
of conserved marker genes, has allowed for the understanding of
communities of microbes (both culturable and unculturable)
as well as their phylogenetic placement. The recent explosion of
sequencing data prompted the development of software that
could process the vast amount of data generated and
phylogenetically differentiate groups of samples. Host-associated

microbial studies have revealed that microbes are highly varied
between individuals and fluctuate within an individual. Large-
scale studies are being undertaken that include collection of
extensive environmental data to help uncover the forces that
shape microbial communities.
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When Antonie van Leeuwenhoek peered
through a handcrafted microscope at
a complex community of “animalcules”
from a tooth scraping, the science of
microbiology was born (1). The rich
diversity and interactions between these
microbes and their environment is still
being explored over three centuries since
Leeuwenhoek’s initial observation. A
human can be considered to be a super
organism (2): the human cells and
genomic content are far outweighed by
microbial cells (3) and microbial genes
(4). Consequently, understanding the
relationships between these complex
communities and human physiology
will be vital to progress in treating
a range of human disease. In this review,
we discuss some of the classical techniques
for analyzing microbial communities, as
well as current methods and future
directions.

Classical microbiology primarily
consisted of isolating microbes, growing
these as pure cultures, and identifying
biochemical properties of these organisms,

such as cell wall structure by gram staining,
oxygen tolerance, and carbon or nitrogen
sources that supported their growth. The
entirety of bacteria and archaea were joined
together as a grouping under “prokaryotes”
on the basis of these observations, and the
phylogenetic relationships between these
microbes and eukaryotes was unknown.
Carl Woese and George Fox (5) changed
this picture by using the ribosomal small
subunit (SSU) gene as a phylogenetic
marker. The variants of this gene,
which makes up a critical component
of the ribosome that is found in all cells,
are named according to their size: 16S
ribosomal RNA (rRNA) in bacteria and
archaea, 18S rRNA in eukaryotes. By
comparing shared nucleotide fragments
in the SSU gene, Woese and Fox showed
that archaea (then called archaebacteria)
was a distinct domain of life. This study
involved laborious purification of SSU
RNA, followed by RNase digestion and
two-dimensional gel electrophoresis, to
establish shared SSU sequence identity by
the resulting fragment locations. Acquiring

SSU genes soon became much easier.
The dideoxynucleotide termination
sequencing method (i.e., “Sanger”) (6)
became available in 1977, and, along with
other advances, such as the PCR in 1985
(7), the number of known SSU sequences
grew exponentially (Figure 1). Norman
Pace and colleagues (8) observed that
the SSU gene was not only found in
all organisms, but also contained sites
that were either universally conserved, or
conserved in large groups of organisms.
This led to the important discovery that
organisms not amenable to cultivation
can still be detected in the environment
by amplifying and sequencing the SSU
gene from environmental samples directly.

Throughout the latter part of the 20th
century, and beginning of the 21st, Sanger
sequencing was the dominant sequencing
technology, and had been improved by
parallelization and by automated fluorescent
detection of nucleotide termination.
Bacterial cloning of the SSU PCR amplicon
product is used for Sanger sequencing,
which has the practical effect of limiting
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these sorts of microbial studies to the range
of tens to hundreds of sequences due to
its expense and the need to clone each
sequence into a separate bacterial culture.
This limitation was escaped in the middle
of the first decade of the 21st century,
when newer high-throughput sequencing
became commercially available, such as 454
(now Roche [F. Hoffman-La Roche AG,
Basel, Switzerland]) company’s GS20 and
the Illumina sequencing-by-synthesis
Genome Analyzer (Illumina, San Diego,
CA), which yielded orders of magnitude
greater sequencing depth than was
previously available (9, 10). A comparison
of the capabilities of these next-generation
technologies is shown in Table 1 (modified
from Ref. 11). These new technologies
caused an explosion in the number of
SSU-based studies and, as a result, the
sequenced SSU genes, as shown in Figure 1
(note that this figure only shows
deposition into GenBank, not into the
Short Read Archive where much next-
generation sequencing data is deposited).
Sanger-based studies would often group

sequences using closest BLAST hits
in GenBank, or using alignments and
phylogenetic trees to illustrate the
placement of detected novel sequences
compared with known taxa. Barring specific
knowledge of the taxa present, these trees
can be difficult to glean meaning from (e.g.,
Figures 3–12 in the article be Hongoh and
colleagues [12]). A study by Ley and
colleagues (13) yielded a phylogenetic tree,
which shows a clear qualitative pattern in
phylogenetic differences between mice and
human gut communities as shown in
Figure 2. However, this tree only shows the
differences between humans and mice as
a whole, not the differences between the
40 individual samples from humans and
mice included in this study, which are
not accessible to visual inspection.
Consequently, there was a clear need to
understand the similarities and differences
among communities, not just to detect
that two communities were statistically
significantly different. Large Sanger-based
surveys, like that of Ley and colleagues’
and a plethora of next-generation SSU

sequences, motivated the development of
a metric to compare microbial communities
while taking into account phylogeny.
The UniFrac (14) metric addressed this
issue, and uses unique- and shared-branch
length to calculate distances between
communities. Nonphylogenetic metrics
have existed for quite some time, but
a phylogenetic metric is arguably more
accurate in that it does not assume that
all taxa are equally different. This was
illustrated by patterns observed
in environmental samples clustering by
salinity, which were obscured when using
nonphylogenetic metrics, but were very
clear with UniFrac (15).

Another issue that arose from the
deluge of next generation sequences was
the handling of the sequences themselves.
Processing a few hundred sequences by
hand was possible, but not tenable with
tens of thousands or millions of sequences.
Replicating results across laboratories
with in-house methods for processing
data is also unviable. Automated pipelines
for processing marker genes, such as mothur

Figure 1. Total ribosomal small subunit sequences in GenBank by year. The nucleotide database was queried with ribosomal rRNA (rRNA; Feature key),
“X” (publication date), and 16S (title) for each year from 1993 to 2012.
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(16) and QIIME (17), as well as more
metagenomic-oriented software (e.g.,
Megan [18] and MG-RAST [19]),
answered this issue by providing
pipelines that both democratized access
to these analyses and allowed for
reproducibility between groups. An
outline of the quality filtering and
processing pipeline that these software
packages generally follow is described by
Kuczynski and colleagues (11). Briefly,
raw input sequences are assigned to
samples according to barcodes, quality
filtered, clustered according to sequence
identity into operational taxonomic
units (OTUs), compared against
a reference database to establish
taxonomic identity, and put into a table
form of counts per OTU. This OTU table
is then used for downstream analyses of
diversity and of statistically significant
differences in taxa among groups.
Alternative reference databases may be
used for clustering and taxonomic
assignment, and one should keep this in
mind when comparing results across
multiple studies.

Using deep sequencing data of
microbial communities, many important
discoveries have been made. A “core” set
of human gut- or skin-associated
microbes shared by most humans does
not appear to exist at the genus or OTU
level (20, 21), and essentially any taxon
that is common in or on one person is
absent in others when enough people are
examined. There is variability over time
for adult individuals, and the extent of
this variation depends upon the body
site (22). The mode of delivery
(Caesarian section versus vaginal) has
been associated with the immune
disorder asthma, and the initial
colonization of newborn babies is largely
dependent upon the mode of birth, as
shown by Dominguez and colleagues
(23), which could play a role in training
the immune system. These studies
suggest that a combination of stochastic,
microbial exposure, and selective
pressure (e.g., diet, immune system, gut
environment) shapes microbial
communities in human hosts: this
combination is perhaps unsurprising,
and a key challenge moving forward is
to quantify the relative importance of
these factors, both for the human
microbiota overall and specifically for
the components that affect health, whichT
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may differ in different people. Efforts to
uncover the defining factors that shape
the available microbial and overall
community structure are being
undertaken in large-scale projects like the
Earth Microbiome Project (24) and the
American Gut Project (25). These projects
include extensive and standardized
metadata collection, sampling, extraction,
and sequencing protocols. Once there is
a clear understanding of the defining
forces that shape particular communities,
we should have the ability to perturb these
systems to our advantage.

Looking to the future, a common
question is whether SSU rRNA gene
sequence analysis is sufficient, or whether
we are missing important information
from this level of analysis. Shotgun
metagenomics, in which total DNA is
extracted and sequenced, has the advantage

that all the genes can be observed directly
(this is especially important in cases where
gene content is highly plastic, because of
pathogenicity islands or other mobile
genetic elements), and is often thought to
be the future of sequencing (but see Ref. 26
for a dissenting view). Interestingly, in
the cases in which direct comparisons
have been made, the SSU rRNA gene
profiles identify very similar patterns of
clustering to the shotgun metagenomics
(e.g., Refs. 27–29). Shotgun metagenomics
is especially difficult in heavily host-
contaminated samples, such as those
from lung biopsies, because most of the
DNA is human, and many studies of
environments with low bacterial biomass,
including studies of indoor air, have mostly
resequenced the human genome in a very
expensive way. Metatranscriptomics, the
study of RNA transcripts, perhaps holds

more promise, and has identified functional
patterns where SSU rRNA gene sequencing
and shotgun metagenomics failed (e.g.,
Ref. 30). Metabolomics, the study of
small-molecule metabolites produced by
a community, is also very exciting, and
has, for example, been used to link
microbial communities to individual
responses to drugs (31, 32). The
appropriate level of analysis for a given
study is, however, still a very active topic
of investigation, and likely depends on
the timescale and nature of the phenomena
being investigated.

As the cost of generating sequence data
continues to decline, one very exciting shift
in the field has been the transition from
attempting to detect differences between
sets of samples (e.g., healthy versus diseased
people) toward predictive modeling
and detailed spatial and temporal
characterization of sites on the body
(33, 34). In particular, showing that two
groups of people differ in their microbial
communities cannot reveal whether those
microbial differences are causal, simply
reflect a microbial response to pre-existing
damage, or whether a feedback relationship
exists in which a changed environment
changes the microbes, which then changes
the environment further. Identifying
causality thus poses a major challenge for
the field; however, the recent discovery
that features of individual human
metabolic phenotypes can be recaptured
in germ-free mice that are then colonized
with stool samples from those individual
people (29) provides a powerful
paradigm for mechanistic studies.
Especially for studies of the lung, the
combination of the ability to colonize
animals with defined microbial
communities, assay the transcription of
those communities and the metabolites
they produce, and deduce causal
mechanistic pathways for how specific
microbes may influence the lung itself
or the host immune system provides very
high potential for insight into a range of
medical conditions. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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