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Abstract

We consider the Brownian motion of a particle and present a tutorial review over the last 111 years 

since Einstein’s paper in 1905. We describe Einstein’s model, Langevin’s model and the 

hydrodynamic models, with increasing sophistication on the hydrodynamic interactions between 

the particle and the fluid. In recent years, the effects of interfaces on the nearby Brownian motion 

have been the focus of several investigations. We summarize various results and discuss some of 

the controversies associated with new findings about the changes in Brownian motion induced by 

the interface.

1 Introduction

Soon after the invention of the microscope, the incessant and irregular motion of small 

grains suspended in a fluid had been observed. It was believed for a while that such jiggling 

motion was due to living organisms. In 1827, the botanist Robert Brown systematically 

demonstrated that any small particle suspended in a fluid has such characteristics, even an 

inorganic grain.1 Therefore, the explanation for such motion should resort to the realm of 

physics rather than biology. Since then this phenomenon has been named after the botanist 

as “Brownian motion”.2 In the classical sense, the phenomenon refers to the random 

movement of a particle in a medium, e.g., dust in a fluid. However today, its theory can be 

also applied to describe the fluctuating behavior of a general system interacting with the 

surroundings, e.g., stock prices.

It was not until 1905 that physicists such as Albert Einstein,3 William Sutherland,4 and 

Marian von Smoluchowski5 started to gain deep understanding about Brownian motion. 

While the existence of atoms and molecules was still open to objection, Einstein explained 

the phenomenon through a microscopic picture. If heat is due to kinetic fluctuations of 

atoms, the particle of interest, that is, a Brownian particle, should undergo an enormous 

number of random bombardments by the surrounding fluid particles and its diffusive motion 

should be observable. The experimental validation of Einstein’s theory by Jean Baptiste 

Perrin unambiguously verified the atomic nature of matter,6 which was awarded the Nobel 

Prize in Physics in 1926. Since the seminal works in the 1900s, this subject has fostered 

many fundamental developments on equilibrium and non-equilibrium statistical physics,7,8 

and enriched the applications of fluid mechanics such as the rheology of suspensions.9–11 It 
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also motivated mathematically rigorous developments of probability theory and stochastic 

differential equations,12–14 which in turn boosted the stochastic modeling of finance. For 

example, one of its remarkable achievements is the Black–Scholes–Merton model for the 

pricing of options,15 which was awarded the Nobel Memorial Prize in Economical Sciences 

in 1997. More recently, Brownian motion has been playing a central and fundamental role in 

the studies of soft matter and biophysics,16,17 shifting the subject back to the realm of 

biology. Other areas of intensive research driven by Brownian motion include the 

microrheology of viscoelastic materials,18–21 artificial Brownian motors22 and self-

propelling of active matter,23,24 fluctuation theorems for states far from equilibrium,25–27 

and quantum fluctuations.28,29

In this work, we focus on the classical aspect of Brownian motion based on selective 

references from 1905 until 2016, which spans the last 111 years. More specifically, we 

attempt to interpret previous theories from a hydrodynamic perspective. To this end, we 

mainly consider a spherical particle of sub-micrometer size suspended in a fluid and the 

particle is subject to free and constrained Brownian motion. Special focus will be given to 

the velocity autocorrelation function (VACF) of the particle, denoted by C(t) = 〈v(0)·v(t)〉 
with the equilibrium ensemble average 〈 〉. It measures how similar the velocity v after time 

t is to the initial velocity.30 In general, due to its interaction with the surrounding fluid, the 

particle’s velocity becomes randomized and the magnitude of 〈v(0)·v(t)〉 diminishes as t 
increases. Compared to the well-known mean-squared displacement (MSD), which is 

denoted by 〈Δr2(t)〉 with the displacement Δr(t) = r(t) − r(0), the VACF contains equivalent 

dynamical information. This can be clearly seen by the following relation:31,32

(1)

which suggests that the VACF can be calculated from the second derivative of the MSD. 

Nevertheless, the VACF reveals the dynamics in a more direct way; over several time scales 

of different orders involved, characteristic behaviors of disparate scales may not be clearly 

differentiated in the MSD, but easily distinguished in the VACF, as will be shown in Fig. 3 

of Section 4.

In an order of progressively more accurate hydrodynamic interactions between the particle 

and the fluid, we organize various theoretical models as follows. At first in Section 2 we 

introduce the pure diffusion model corresponding to Einstein’s microscopic picture. 

Subsequently, we describe the Langevin model in Section 3, which considers explicitly the 

inertia of the Brownian particle. We describe the hydrodynamic model in Section 4, which 

further includes the inertia of the fluid and takes into account the transient hydrodynamic 

interactions between the particle and the fluid. The persistent VACF from this model has far-

reaching consequences for physics. In Section 5, we explore the hydrodynamic model in 

confinement, with its subtle hydrodynamic interactions among the particle, the fluid and the 

confining environment. The results of the confined Brownian motion are significant, since 

the passive microrheology using a Brownian particle to determine interfacial properties has 

become more and more popular due to its non-intrusive properties. Along the presentation, 
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we shall focus mainly on the analytical results of the theoretical models and make short 

excursions to experimental observations and numerical studies. Controversial results will be 

highlighted. Finally, we conclude this work with some perspectives in Section 6.

2 Pure diffusion

In this section, we summarize Einstein’s seminal work in 1905,†3 which has two innovative 

aspects. The first part formulates the diffusion equation to relate the mass diffusion to the 

MSD, which is a measurable quantity. This relation was also discovered by von 

Smoluchowski,5 but with a slightly different factor. The second part is to connect two 

transport processes: the mass diffusion of the particle and the momentum diffusion of the 

fluid. Hence, the diffusion coefficient can also be expressed in terms of the fluid properties. 

The connection between the two transport processes was also obtained by Sutherland 

independently.4 In the end of this section, we discuss the validity of the model. By 

considering the VACF, we demonstrate the limitations of the model and clarify its 

underlying assumptions.

2.1 Diffusion equation and mean-squared displacement

The probability density function (PDF) f (x,t) of a Brownian particle satisfies the following 

diffusion equation in the one-dimensional case:

(2)

where D is the diffusion coefficient of the Brownian particle. This equation is derived under 

Einstein’s microscopic picture by assuming that the difference between f(x,t + Δt) and f(x,t) 
results from the position change Δx of the particle due to random bombardments. D may be 

expressed in terms of the second moment of Δx and higher moments are dropped off.

For a Brownian particle initially located at the origin, the formal solution to eqn (2) is a 

Gaussian distribution with mean zero and variance 2Dt:

(3)

Eqn (3) represents that the PDF of the particle evolves from a Dirac delta function δ(x) at t = 

0 to a Gaussian distribution with an increasing variance for t > 0. Accordingly, the MSD of 

the particle, which is the second moment of the PDF, increases linearly with time:

(4)

†Einstein’s works on Brownian motion are collected and translated.33
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Here, Δx(t) = x(t) − x(0) and the brackets denote the ensemble average over the equilibrium 

distribution. For the three-dimensional case, we have 〈Δx2〉 = 〈Δy2〉 = 〈Δz2〉 and, therefore, 

for r = {x,y,z},

(5)

For a random walk like Brownian motion, both the velocity and displacement of the particle 

are averaged to be zero. Therefore, the simplest but still meaningful measurement is the 

MSD, which determines the diffusion coefficient via eqn (4).

2.2 Stokes–Einstein–Sutherland equation

In a dilute suspension of Brownian particles, the osmotic pressure force acting on individual 

particles is −∇V, where V is a thermodynamic potential. Hence, the steady flux of particles 

driven by this force is –ϕμ−1∇V, where ϕ is the particle volume concentration and μ is the 

mobility coefficient of individual particles. At equilibrium, the flux due to the potential force 

must be balanced by a diffusional flux as:

(6)

Moreover, the concentration should have the form of  at equilibrium, where kB 

is Boltzmann’s constant and T is the temperature. By substituting the expression of ϕ into 

eqn (6), we obtain Einstein’s relation:

(7)

The mobility coefficient μ is the reciprocal of the friction coefficient ξ. Here, the definitions 

of μ and ξ arise from a situation where the particle moves at terminal drift velocity vd in a 

fluid under a weak external force Fext: μ = ξ−1 = vd/Fext.

According to Stokes’ law,‡34 the mobility of a sphere in an incompressible fluid at steady 

state is

(8)

where η is the dynamic viscosity of the fluid, a is the radius of the particle, and α is the 

friction coefficient at the solid–fluid interface. Note that the Navier slip length is defined as 

b = η/α.35 For α = 0, it corresponds to a perfect slip interface, whereas α = ∞ corresponds 

to the no-slip boundary condition originally adopted by George Gabriel Stokes in 1851.36 

‡Stokes’ law is valid for the Knudsen number Kn = λ/a ≪ 1, where λ is the mean free path of fluid particles.37
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The mobility of a sphere with partial slip may also be determined in eqn (8) by the slip 

length b.

By combining eqn (7) and (8), we arrive at the celebrated Stokes–Einstein–Sutherland 

formula3,4

(9)

This equation establishes the connection between the mass transport of the particle and 

momentum transport of the fluid. Therefore, one can attain one unknown quantity from the 

other available quantities via eqn (9). For example, given the known values of kBT and η, 

and further D from eqn (5), one may determine the radius a of the Brownian particle.3

Alternatively, if a is known, Avogadro’s number NA can be determined by using the fact kB 

= Rg/NA, where Rg is the gas constant.3 Jean Baptiste Perrin actually followed this proposal 

and determined Avogadro’s number (N = 6.022 × 1023 mol−1) A within 6.3% error,6 which 

settled the dispute about the theory on the atomic nature of matter.

2.3 Limitations and underlying assumptions

The main criticism of the diffusion model, as Einstein himself realized later,38,39 is that the 

inertia of the particle is neglected. This implies that an infinite force is required to change 

the velocity of the particle to achieve a random walk at each step. Therefore, its velocity 

cannot be defined and its trajectories are fractal, as illustrated on the right in Fig. 1. Since an 

apparent velocity is deduced by two consecutive positions, it really depends on the time-

resolution of the observations.40,41 If the observations are separated by a diffusive time scale 

as in Einstein’s model, the particle appears to walk randomly. From the MSD of the 

diffusion, we may determine an effective mean velocity over a time interval as 

. As Δt → 0, this effective velocity diverges and cannot 

represent the real velocity of the particle. This also explains the early controversial 

measurements on the actual velocity of the particle.42,43

This unphysical feature can also be seen by calculating the VACF from eqn (1) and (5): 

〈v(0)·v(t)〉 = 3Dδ(t), where δ(t) is the Dirac delta function. This means that even after an 

infinitesimal time, the velocity becomes completely uncorrelated with the previous one. A 

mathematical model corresponding to this case is a Gaussian white noise process for the 

velocity. Then, x(t) corresponds to a Wiener process, which is continuous but nowhere 

differentiable in time.13

Physically, however, we should be able to find a time scale t < τb for the ballistic regime,§39 

where the velocity does not change significantly, that is, Δx(t) ≈ v(0)t, as illustrated on the 

left in Fig. 1. In Einstein’s model, τb can be chosen from the time scale for the duration of 

§In general, the ballistic time scale τb is proportional to the Knudsen number.
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successive random bombardments. From the equipartition theorem, we have 〈v2〉 = kBT/m, 

where m is the mass of the particle. Hence, we obtain the MSD expression in the ballistic 

regime:

(10)

In Einstein’s model, the time scale τb is neglected (i.e., assuming τb → 0) and the MSD is a 

completely linear function in time. A century ago, Einstein also did not expect that it would 

be possible to observe the ballistic regime in practice due to the limitation of experimental 

facilities. Remarkably, such measurements have recently become realistic in rarefied gas,44 

normal gas45 and liquid,46,47 with increasing difficulty for fluids with elevated density due 

to the diminishing of τb. However, the experiment on Brownian particles in a liquid is subtle, 

as it is currently still difficult to resolve time below the sonic scale.41 Therefore, the 

equipartition theorem can only be verified for the total mass of the particle and entrained 

liquid, but not at the single particle level.46,47 We shall further discuss the effect of the added 

mass in Section 4.

In summary, Einstein’s pure-diffusion model considers only the independent random 

bombardments on the particle, but nothing else. Although the resulting MSD expression of 

eqn (4) or (5) is always valid at a large time, the model has the single time scale of the mass-

diffusion process τD = a2/D, which is denoted as the diffusive or Smoluchowski time 

scale.48 Moreover, the model disallows a definition of velocity, possesses no ballistic regime, 

and its VACF does not contain any dynamical information. These issues will be resolved in 

Langevin’s model.

3 Langevin equation

A remedy for the unphysical feature of Einstein’s model at the ballistic time scale was 

proposed by Paul Langevin,49 which takes into account the inertia of the particle.¶ In 

Langevin’s formulation, which was thought to be “infinitely simpler” according to himself, 

the equation of motion for the Brownian particle is formally based on Newton’s second law 

of motion as

(11)

where m is the mass of the particle, ξ is the friction coefficient defined earlier, and  is a 

random force on the particle. In this mode, the velocity of the particle  is well-

defined and it is subject to two different types of forces exerted by the surrounding fluid: a 

friction force and a random force. It is further assumed that the random force is an 

independent Gaussian white noise process. Hence,  satisfies

¶Langevin’s work is translated.50
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(12)

(13)

where t ≥ t′ and the noise strength Γ is to be determined below.

From a mathematical point of view, eqn (11) is a stochastic differential equation. Compared 

to Einstein’s model, x(t) has better regularity; x(t) is now differentiable. However, v(t) is 

continuous but not differentiable just as x(t) in Einstein’s model. In general, special care 

needs to be taken to handle a stochastic differential equation, as the ordinary calculus may 

not hold. However, since eqn (11) is subject to an additive independent noise , we can 

still legitimately apply the ordinary calculus to calculate the MSD and the VACF from eqn 

(11).

3.1 Two regimes of mean-squared displacement

We first derive an expression for the MSD and obtain from it two asymptotic limits at both 

short-time and long-time scales.

Without loss of generality, we take x(0) = 0. After multiplying eqn (11) by x and using the 

fact that  and , we have

(14)

By taking the average and using eqn (13), we obtain a differential equation for :

(15)

where the equipartition theorem, m〈v2〉 = kBT, was applied. Since 〈z(0)〉 = 2 〈x(0)v(0)〉 = 0, 

the solution to eqn (15) is

(16)

By integrating eqn (16), we obtain an expression for the MSD over the entire time range 

as:51–53
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(17)

On the one hand, for t ≫ τB = m/ξ, the exponential term becomes negligible, and we retrieve 

Einstein’s result eqn (4) from eqn (17):

(18)

This may also be directly obtained by dropping off the exponential term in eqn (16).

On the other hand, for t ≪ τB or t → 0, by using the power series  we 

obtain from eqn (17)

(19)

which is identical to the ballistic regime of eqn (10) discussed in Section 2.3. Hence, we 

clearly see that Langevin’s model can explain the ballistic regime as well as Einstein’s long-

time result of the MSD. The new relevant time scale is the relaxation time of Brownian 

motion, τB = m/ξ.

3.2 Fluctuation-dissipation theorem, velocity autocorrelation function and diffusion 
coefficient

Now we turn to the velocity of the Brownian particle, which is the new element in 

Langevin’s model. Furthermore, we may characterize the full dynamics of the particle by the 

VACF.

Let us rewrite the Langevin equation in terms of velocity:

(20)

which is a first-order inhomogeneous differential equation and has the formal solution:53,54

(21)

From this solution, we observe that the average of squared velocity 〈v2(t)〉 has three 

contributions: the first one is 〈v2(0)〉e−2ξt/m and the second one is the cross term 
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, which becomes zero due to eqn (13). The third 

contribution is of second order in  and, by making use of eqn (13), we have

(22)

Therefore, the mean-squared velocity is

(23)

At the long-time limit, we expect the equipartition theorem, 〈v2(t)〉 = kBT/m, to be valid. 

Hence, the equality

(24)

must hold. This represents a fundamental relation named as the fluctuation-dissipation 

theorem (FDT).55–57 Roughly speaking, the magnitude of the fluctuation Γ must be balanced 

by the strength of the dissipation ξ so that temperature is well defined in Langevin’s model. 

Therefore, the pair of friction and random forces acts as a thermostat for a Langevin system. 

It should not come as a surprise that the frictional force and the random force have such a 

relation, since they both come from the same origin of interactions between the particle and 

the surrounding fluid molecules.

From the solution of velocity in eqn (21), we can also calculate the VACF of the particle. 

After multiplying eqn (21) by v(0), and further taking the average, we obtain

(25)

Here, the random force term vanished due to eqn (13) and the equipartition theorem was also 

used. It is simple to see that C(t) decays exponentially and the relevant time scale is the 

Brownian relaxation time, τB = m/ξ.

If we take the time integral of the VACF, we find

(26)

which is just the diffusion coefficient obtained by Einstein. The relation in eqn (26) is not 

fortuitous, but known as the simplest example of the fundamental Green–Kubo 

relations.58–61 These relate the macroscopic transport coefficients to the correlation 
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functions of the variables fluctuating due to microscopic processes.62 Such relations were 

also postulated by the regression hypothesis of Lars Onsager,63,64 which states that the 

decay of the correlations between fluctuating variables follows the macroscopic law of 

relaxation due to small nonequilibrium disturbances.‖ The 1968 Nobel Prize in Chemistry 

was awarded to Onsager to glorify his reciprocal relations in the irreversible process, which 

also formed the basis for further development of nonequilibrium thermodynamics by Ilya 

Prigogine and others.54,65–67

Similarly to the diffusion in the long-time limit, we may define the time-dependent diffusion 

coefficient as

(27)

Note that the equivalence of the two definitions in terms of the VACF and the MSD also 

follows from eqn (1). For Langevin’s model, this equality can be explicitly verified by using 

eqn (17) and (25).

3.3 Limitations and underlying assumptions

The Langevin model not only recovers the long-time result of Einstein’s model, but also 

produces the correct ballistic regime at a short-time limit. An essential ingredient in the 

model is that the Brownian particle has an inertia, that is, mass m. As a result, the velocity 

and the VACF become well-defined and continuous in time. By considering a very small 

relaxation time m/ξ → 0 in eqn (20), the Langevin dynamics degenerates to be the 

overdamped Brownian dynamics of Einstein’s model.

The limitations of the Langevin model can be revealed by considering a corresponding 

microscopic model, that is, the Rayleigh gas,68 which contains ideal gas particles and a 

massive particle. Several attempts were made to derive the Langevin equation from this 

microscopic model in the early 1960s.69,70 It was realized that the derivation is possible if 

the interaction between the Brownian particle and any gas particle takes place only for a 

short microscopic time.68,70 This condition can be rigorously verified under the ideal gas 

assumption and the infinite mass limit of the Brownian particle (i.e., m → ∞), and thus the 

microscopic justification of the Langevin equation can be provided through the Rayleigh gas 

model. For Brownian motion in a real gas or a liquid, a mathematically rigorous justification 

is intractable. One of the reasons is that if the fluid particles interact among themselves, a 

collective motion (e.g., correlated collisions) of the fluid particles can occur, which implies 

that the aforementioned condition may not hold.

We will see in Section 4 that the Langevin description is valid only if the Brownian particle 

is sufficiently denser than the surrounding fluid, where the inertia of the fluid may be 

neglected. This fact was exploited in a recent experiment,45 where a silica bead is trapped by 

‖Coincidentally, the work of Onsager on Brownian motion and linear response laws was conducted when he was teaching at Brown 
University, although the latter Brown refers to the businessman and philanthropist Nicholas Brown, Jr.
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a harmonic potential53 in air and the experimental VACF corroborates well the results of the 

Langevin model.71 For a general case of arbitrary density, the collective motion of the fluid 

particles and their inertia should be reconsidered carefully.

4 Hydrodynamic model

Although the VACF of a Brownian particle was never explicitly measured in the first half of 

the twentieth century due to experimental limitation, it was widely believed to decay 

exponentially. When a new era of computational science began in the 1950s, this belief was 

put to the test and it marked the failure of the molecular chaos assumption.72

4.1 Observation of algebraic decay in VACFs

Using molecular dynamics (MD) simulations, some pioneers started to realize that the VACF 

of molecules does not follow strictly an exponential decay, but has a slowly decreasing 

characteristic. This long persistence was found in fluids described by both the Lennard-

Jones potential73,74 and the hard-core potential.75,76 A milestone took place in 1970 when 

Alder and Wainwright77 delivered a definite answer for the long persistence of the VACF as 

an algebraic decay, that is, C(t) ~ t−d/2 for t → ∞. Here d is the dimension of the problem. 

Meanwhile this scaling was confirmed by independent numerical simulations of Navier–

Stokes equations, which indicate that a (transient) vortex flow pattern forms around a tagged 

particle.76,77

These observations from computer simulations led to many intriguing questions as to what is 

missing in the Langevin model. The most suspicious assumption of the Langevin model (and 

also of the Einstein model) is probably that the friction coefficient ξ is taken as the solution 

of the steady Stokes flow, whereas a Brownian particle undergoes erratic movements 

constantly. Therefore, the steady friction may be valid only if the surrounding fluid becomes 

quasi-steady immediately after each movement, or less strictly, before the relaxation time τB 

= m/ξ of the Brownian particle. This deficiency was already pointed out in the early lectures 

of Hendrik Lorentz:**78 ξ = 6πηa is a good approximation only when the mass density 

ratio ρ/ρB of the fluid and the Brownian particle is so small that the fluid inertia is 

negligible. We shall discuss later why this is true.

Since the seminal work of Alder and Wainwright, it was very soon widely acknowledged 

that unsteady hydrodynamics plays a significant role in the dynamics of the Brownian 

particle. This motivated many theoretical physicists to work on this subject from various 

perspectives, and so the algebraic decay was understood by several approaches: a purely 

hydrodynamic approach based on the linearized Navier–Stokes equations,80,81 a generalized 

Langevin equation approach based on the fluctuating hydrodynamics,82–84 the mode-

coupling theory,85–87 and the kinetic theory.88 Although these methodologies have different 

perspectives and mathematical sophistication, all of them respect the inertia of the 

surrounding fluid and corroborated the same scaling of the asymptotic decay on the VACF.89

**Lorentz’s lectures are translated,79 see page 93 of the translation.

Bian et al. Page 11

Soft Matter. Author manuscript; available in PMC 2017 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The bold assumption of quasi-steady state in the Langevin model can be examined only if 

we consider the unsteady solution of the hydrodynamics, which has been available for more 

than a century from the independent works of Basset and Boussinesq.

4.2 Boussinesq–Basset force

For a spherical particle undergoing unsteady motion influenced by the inertia of the 

surrounding fluid, its resistant force was known to Boussinesq and Basset:90–93

(28)

where  is the mass of the fluid displaced by the particle. Note that eqn (28) is 

obtained by linearizing (dropping the v·∇v term) the incompressible Navier–Stokes 

equations together with the no-slip boundary condition on the particle. For a stationary 

motion , only the first term on the right-hand side remains, which is just the Stokes 

friction in eqn (11). The second term is due to the added mass of an inviscid incompressible 

origin, while the third term is the memory effect of the viscous force from the retarding 

fluid, which is referred to as the Bousinesq–Basset force.

Now let us discuss when the Bousinesq–Basset force becomes as important as the Stokes 

friction. Since the former is expressed as a convolution integral, we may understand it better 

in the frequency domain. By taking the Laplace transform of eqn (28), that is, 

, we obtain  with82

(29)

From the transformation, we note that any model with only the steady friction should be 

considered to be a zero-frequency theory.80 If we compare the first and third terms on the 

right-hand side of eqn (29), the latter becomes larger than the former for frequency ω > η/

ρa2, or equivalently for time t < ρa2/η. Since the relaxation time in Langevin eqn (11) is τB 

= m/ξ = 2ρBa2/9η, the fluid inertia has non-negligible effects on the dynamics of the 

Brownian particle for t < (9ρ/2ρB)τB. Hence, if 9ρ/2ρB ≪ 1, the fluid inertia is negligible, 

which also confirms the insightful remark made earlier by Lorentz.

Alternatively, we may realize the significance of the fluid inertia more directly by 

considering the vorticity ω = ∇ × u, which satisfies the diffusion equation ∂ω/∂t = v∇2ω,94 

where the kinematic viscosity v = η/ρ. The time scale for the vorticity to travel a distance of 

the radius of the Brownian particle is τv = a2/v. For the Langevin model to be valid, it must 

be τv ≪ τB or 9ρ/2ρB ≪ 1 so that the transient behavior of the fluid plays a negligible role in 

the particle dynamics. This hydrodynamic argument is also in agreement with the analysis of 

the molecular theory.70
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In summary, while the Langevin equation provides a fair approximation for 9ρ/2ρB ≪ 1, 

e.g., a dense particle in gas, it does not apply well to the case of 9ρ/2ρB ~ 1, for example, a 

pollen particle in water, that is the historic observation recorded by Robert Brown.

4.3 Generalized Langevin equation

Now that the importance of the fluid inertia is recognized, we may discuss the equation of 

motion for the Brownian particle. For a rigid particle suspended in a continuum fluid 

described by the fluctuating hydrodynamics,93 the following generalized Langevin equation 

can be formulated:83,84

(30)

Compared to the original Langevin eqn (20), eqn (30) is non-Markovian as the friction force 

is history-dependent. The memory kernel ξ(t) is the inverse Laplace transform of eqn (29). 

In addition, the random force  is non-white or colored, which can be observed via the 

fluctuation-dissipation relation57

(31)

At first glance, eqn (30) seems to be simple. We note, however, that the form is quite general 

and all the complicated information is hidden in the memory kernel ξ(t) or in the statistics of 

the random force .

Although theoretically well known, the colored power spectral density of the thermal noise, 

which is the Fourier transform of eqn (31), has been confirmed by experiments only 

recently.95,96 We also note that the same form of equation as eqn (30) can be obtained from 

microscopic equations of motion for a Hamiltonian fluid through the Mori–Zwanzig 

formalism.97–102 In fact, the emergence of a non-Markovian process is a typical scenario 

when insignificant variables (fast fluid variables in our case) are eliminated in a Markovian 

process under coarse-graining.54

4.4 Heuristic derivations of the algebraic decay

Here, we discuss how the algebraic decay appears in the generalized Langevin eqn (30), and 

how it can be explained from a hydrodynamic perspective. The first question can be 

answered by deriving a differential equation that the VACF C(t) = 〈v(0)·v(t)〉 satisfies. After 

multiplying eqn (30) by v(0) and taking averages, we obtain the Volterra equation (also 

known as the memory function equation103)

(32)
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It is known that if either C(t) or ξ(t) decays algebraically, then the other also decays 

algebraically with the same power law and the opposite sign.104 From the  term of ξ(ω) 

in eqn (29), we know that ξ(t) decays like t−3/2 with negative values at large time t. 
Therefore, it is expected that C(t) also decays like t−3/2 but with positive values at large time 

t. This mathematical argument shows that no matter how small ρ/ρB is, the asymptotic decay 

of the VACF is always algebraic rather than exponential. However, for smaller ρ/ρB, the 

exponential decay yields to algebraic decay later in time and the Langevin model becomes a 

better approximation.

The persistent scaling of the VACF can also be easily understood by a heuristic 

hydrodynamic argument. Suppose a particle has initial velocity v0, due to viscous diffusion, 

after time t, a vortex ring (d = 2) or shell (d = 3) with radius  develops. The total 

mass within the influenced zone is M* ~ ρrd. If the surrounding fluid is entrained and moves 

with the particle at time t, by momentum conservation we have . 

Then, it is simple to see that C(t) ~ (vt)−d/2. The argument above assumes that the particle 

does not move when the vortex forms. If the particle moves evidently as the vortex develops, 

we may still extend this hydrodynamic argument by adding in the self-diffusion constant D 
of the tagged particle into the scaling so that we have C(t) ~ [(v + D)t]−d/2. In fact, by 

introducing the evolution of the probability distribution function of the tagged particle, the 

following expression was derived rigorously (one-dimensional case):87

(33)

This power law scaling is demonstrated by dissipative particle dynamics simulations in Fig. 

2.

If the momentum diffusion is much stronger than the mass diffusion or if the Schmidt 

number Sc = v/D is very large (e.g., a solid particle suspended in a liquid), we can ignore the 

contribution of D. Under this condition, which is favored by the linearized hydrodynamics, 

the full expression of C(t) was derived from the fluctuating hydrodynamics of an 

incompressible fluid for a neutrally buoyant particle:83,107

(34)

Other than the integral form of eqn (34), an alternative closed form of C(t) is also 

available.82,108,109

We compare the VACF from the hydrodynamics theory with that of Langevin’s model in 

Fig. 3(a). We observe that the Langevin model underestimates the decay rate of the VACF at 

short time (t ≲ τv) while overestimates it at long time (t ≳ τv).
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4.5 Diffusion coefficient and mean-squared displacement

The time-dependent diffusion coefficient D(t) of a Brownian particle can be obtained 

directly by integrating eqn (34) as shown in eqn (27). Furthermore, the MSD may also be 

obtained by further integrating D(t) or directly from the VACF as110,111

(35)

The non-diffusive signatures of the MSD and the time-dependent diffusion coefficient due to 

hydrodynamic memory have been validated for Brownian particles in a suspension probed 

by dynamic light scattering.††107,111 More recently, to avoid any (weak) hydrodynamic 

interactions between particles, optical trapping interferometry has been applied to a single 

micrometer particle112 which is trapped in a weakly harmonic potential.113 Consequently, 

the hydrodynamic theory for the non-diffusive regime has been explicitly confirmed with 

excellent accuracy.112 We compare the time-dependent diffusion coefficients and MSDs 

from different theoretical models in Fig. 3(b) and (c). We observe that the D(t) from 

Langevin’s model approaches exponentially fast to Einstein’s diffusion coefficient, whereas 

it takes a substantially longer time for the hydrodynamic model to reach a plateau value.

It is worth noting that even when the fluid inertia is important for the dynamics such as the 

asymptotic decay of C(t) of the Brownian particle, the equation for the diffusion coefficient 

 always holds. This means that the steady motion or the zero-

frequency mobility component provides the largest displacement and dominates the diffusive 

process.83,109 Therefore, the Stokes–Einstein–Sutherland formula in eqn (9) is still correct 

for a diffusive process, which is universally captured by Einstein’s model, Langevin’s model 

and the hydrodynamic model.

4.6 Limitations and underlying assumptions

The heuristic approach above assumes that the long-time decay of the VACF for the particle 

is solely affected by the dynamics of vortex formation driven by the transversal component 

of the hydrodynamic equations.89,116 The longitudinal component drives compressibility 

effects, which vanish in a sonic time scale, and therefore, they do not contribute to the long-

time behavior of the dynamics.87 If the short-time dynamics is of interest, the 

compressibility should be reconsidered.

When the fluid is considered mathematically to be incompressible, the particle mass m is 

augmented by an induced mass M/2, where M is the mass of the fluid displaced by the 

particle.93 Due to this mathematical treatment, for any infinitesimal time δt, C(δt) = kBT/(m 
+ M/2). However, the equipartition theorem requires that C(t) starts with C(0) = kBT/m. 

Therefore, the incompressible assumption generates a discontinuity of C(t) at short time and 

violates the equipartition theorem of statistical physics.‡‡117,118 A similar paradox was 

recognized when inverse-transforming eqn (29) to get ξ(t), which is singular at t = 0 and 

††An analytical work on the non-diffusive MSD from the physics community of the former Soviet Union seems to predate other 
relevant works,114 and it has been recently translated.115
‡‡Another contemporary work by Giterman and Gertsenshteiň119 was recently brought to attention.115

Bian et al. Page 15

Soft Matter. Author manuscript; available in PMC 2017 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



leads to a substantial difference between v(0) and v(δt) in the case of impulsive particle 

motion.89,93 The unphysical consequences at short time may be alleviated by realizing that 

every fluid is (slightly) compressible. Therefore, we may find a reconciliation of the 

dynamics from short to long time by considering the propagation of sound waves and 

incorporating a frequency dependent friction at a frequency similar to the inverse of the 

sound speed cs.80,117,118 For a neutrally buoyant particle, the sound wave dissipates 1/3 of 

the total energy and the contribution on the VACF from the compressibility effects 

reads109,117,118

(36)

We may see in Fig. 3(a) that adding the compressible correction of eqn (36) to the 

incompressible VACF of eqn (34) indeed respects the equipartition theorem at short time. 

The effects of the compressibility are not so apparent for the diffusion coefficient or MSD, 

as indicated in Fig. 3(b) and (c).

Another interesting phenomenon at the short-time scale due to sound propagation is the 

“backtracking”, which may contribute negatively to the overall friction experienced by the 

particle.120,121 From the ratio of the added mass and the particle mass , it is simple 

to see that for a lighter fluid the compressibility becomes less important for the particle 

dynamics.

Similarly any viscoelasticity effects may be incorporated into the generalized friction at a 

different frequency after introducing a new relaxation time scale.80 Moreover, one would 

need to select a suitable viscoelastic model and also determine its relaxation time by other 

means. The problem is that viscoelasticity includes a vast range of time scales, but most 

models do not.

The hydrodynamic theory is based on continuum-fluid mechanics, which necessarily cannot 

resolve the ballistic motion over δt > 0 accurately. This fact is indicated in the inset of Fig. 

3(c), where the Langevin model shows a finite period for the ballistic regime, whereas the 

hydrodynamic model deviates from it quickly. In the hydrodynamic model (also in Langevin 

and Einstein models), we consider only the continuous friction such as the Stokes or 

Bousinesq–Basset drag on the particle, but ignore the Enskog friction on the Brownian 

particle due to molecular collisions with the solvent.122,123

Here we focused on the translational motion of a single spherical particle with the no-slip 

boundary condition. There are various extensions based on this simple scenario. For 

example, for a sphere with the slip or partial-slip boundary condition, the magnitude but not 

the scaling of the asymptotic decay changes.80 The dynamics for a particle with an arbitrary 

shape can be formulated as a similar problem.83,108,124 The VACF of the angular velocity 

for a rotating particle may also be calculated with an asymptotic behavior as CR(t) ∝ 
t−5/2,§§83,125,126 and the non-spherical shape alters only its magnitude but not the power 
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law.127 For a test particle immersed in a suspension of particles, the asymptotic power law 

does not change and its magnitude is obtained by replacing the fluid viscosity with the 

suspension viscosity.128,129 The unsteady equation of motion for a sphere in a nonuniform 

flow is also available.130 For a Brownian particle of molecular size, the value of its radius or 

slip length on the surface is always conceptually subtle in a continuum description131 and 

needs extra care.

5 Effects of confinement

In the past few decades, the effects of an interface on a nearby Brownian particle have been 

attracting a lot of attention. On the one hand, it is physically interesting to study the 

dynamics of the Brownian particle in a confined environment, where the momentum 

relaxation of the fluid is influenced by the interface. On the other hand, it is practically 

beneficial to deduce the interfacial properties from the observed dynamics of the Brownian 

particle, which is analogous to the passive microrheology technique for unbounded 

viscoelastic characterization.18 Different from the unbounded case, the motion of a 

Brownian particle near an interface is strongly influenced by its hydrodynamic interactions 

with the interface, and its studies date back as early as Hendrik Lorentz’s reciprocal 

theorem.133,134

From the unbounded motion of a Brownian particle, we learnt that the diffusive process is 

dominated by the steady or zero-frequency mobility. This is still true in the confined case. 

Therefore, at first we may ignore the thermal agitations of the fluid and describe the mobility 

of a spherical particle immersed in Stokes flow bounded by a plane wall in Sections 5.1 and 

5.2. Due to the linearity of Stokes flow, the particle’s parallel and perpendicular motions to 

the wall can be decomposed and handled separately. Subsequently, we will discuss the 

diffusion and VACFs of a Brownian particle near a wall in Section 5.3, followed by other 

more sophisticated scenarios revealed in Section 5.4.

5.1 Mobility with no-slip interface

When no-slip boundary conditions are assumed on the surfaces of both the particle and the 

wall, Hiding Faxén derived an expression for the mobility coefficient μ‖ of the parallel 

motion using the method of reflection in his PhD dissertation135–137

(37)

which includes the effects of a second reflection; μ∞ is the Stokes mobility coefficient 

(denoted above as μ) and h is the distance from the center of the sphere to the wall surface. 

Following the method of reflection applied by Shōichi Wakiya,138 the mobility coefficient 

μ⊥ of the perpendicular motion can also be obtained as139

§§A slightly earlier work132 on the rotating motion from the physics community of the former Soviet Union has been recently 
translated.115
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(38)

Eqn (37) and (38) represent a hindered motion due to the presence of the wall compared to 

the mobility coefficient μ∞ in the unbounded case. If we truncate eqn (37) and (38) at the 

first order of a/h, we recover the earlier approximations obtained by the Lorentz’s image 

technique.134 From these first-order approximations, it is simple to deduce that the 

perpendicular motion is impeded more strongly than the parallel one. Both the image 

technique and the method of reflection are only accurate for a ≪ h.

For the parallel motion, there is no closed form for the solution of mobility over the entire 

range of h. Instead, Perkin and Jones started out with the Green tensor for a semi-infinite 

fluid and matched a series result (at large h) with an asymptotic one derived from lubrication 

theory (at small h) to get the mobility valid for a wide range of h140,141

(39)

which is more accurate than eqn (37) for small h.

For the perpendicular motion, an exact solution can be obtained using the bi-polar 

coordinates142,143

(40)

where α = cosh−1(h/a). Although eqn (40) was immediately validated by experiments,144 it 

is expressed as an infinite series, which is inconvenient as a reference solution. An 

appropriate form as a good approximation to eqn (40) may be obtained by the regression 

method145,146

(41)

We summarize different approximations for the mobility hampered by a no-slip plane wall in 

Fig. 4. The results from different methods agree with each other at the intermediate and large 

distance, that is, μ‖ with h/a ≳ 1.5 and μ┴ with h/a ≳ 3. Differences appear only at the short 

distance; Lorentz’s image technique is not accurate for either μ‖ or μ┴. The method of 

reflection improves the accuracy of μ‖, but fails at the lubrication regime (h/a < 1.1), which 
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is covered by eqn (39) of Perkins and Jones. The method of reflection in eqn (38) 

overcompensates the deviation on μ┴ from Lorentz’s image technique. Adding only a few 

terms of the series in eqn (40) already provides a convergent value for μ┴, which is readily 

represented by the regression form of eqn (41).

5.2 Mobility with slip interface

Although the no-slip boundary condition on the fluid–solid interface cannot be justified from 

first principles, classical experiments over several decades indeed support its validity, and 

the no-slip boundary condition has become a cornerstone of continuum-fluid 

mechanics.31,37,147,148 However, many recent experiments indicate violations of the no-slip 

boundary condition in micro-channels even of the micrometer scale.149–152 Since the slip 

length of the interface may depend on the shear rate153 and dynamic response of gas 

bubbles,154 any external perturbation from measurements, such as shear flow, could affect 

the intrinsic properties of the interface. A passive Brownian particle may be an effective 

probe to sense the interfacial properties locally, as it only leads to a minimal intrusion to the 

natural environment near the interface.

We again start with a spherical particle immersed in Stokes flow bounded by a single plane 

wall. The no-slip boundary condition still applies to the particle surface, whereas for the 

plane wall we define the slip-length b from its boundary condition as35,148

(42)

where n is the normal direction to the wall. This is the same definition as for the slip length 

of a particle in eqn (8); the normal component of the velocity vanishes at the interface, 

whereas the tangential component extrapolates linearly to vanish at distance b inside the 

solid. For a small slip length b ≪ h, Lauga and Squires applied the image technique (a ≪ h) 

to obtain155

(43)

(44)

where the mobility coefficients are now functions of both a/h and b/h. For a no-slip wall b = 

0, eqn (43) and (44) reduce to eqn (37) and (38) to the first order of a/h.

For a large slip length b ≫ h (and a ≪ h), another asymptotic limit is obtained155
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(45)

(46)

For b → ∞, the terms of h/b disappear in eqn (45) and (46) and the mobility for a perfect 

slip wall is recovered. In this case, eqn (46) corroborates the pioneering work of Brenner.142

The higher-order terms are not included in these solutions and the results are accurate only 

to the first order of a/h and b/h (small slip length) or h/b (large slip length). We summarize 

the first-order modifications for the mobility of a particle near a wall with a slip boundary 

condition in Fig. 5. Due to the image technique, the further away from the wall the particle is 

located (larger h/a), the more accurate are the solutions. In general, the larger the slip length 

of the wall is, the stronger mobility a nearby particle has. It is worthwhile to note that a large 

slip length b/h > 1 (e.g., b/h = 50 or ∞) may cause the parallel mobility coefficient to be 

even greater than that of the unbounded case as shown in Fig. 5(a), whereas it does not affect 

the perpendicular mobility significantly as indicated in Fig. 5(b). Therefore, we suggest that 

the parallel motion of the particle should be probed preferably to determine the interfacial 

properties, as it is more sensitive to the slip length of the interface and provides a much 

wider range of mobility coefficients for measurements.

So far, we have assumed that the particle surface has a no-slip boundary condition. Even if 

the particle–fluid interface also possesses a slip length, the Stokeslet (Green’s function) in 

the image technique does not change.155 Therefore, the mobility modifications due to the 

slip wall in eqn (43)–(46) still hold. In this case, we only need to replace μ∞ in these 

equations by the one presented in eqn (8), which takes into account the modifications 

induced by the slip length at the particle surface.

5.3 Diffusion coefficient and asymptotic decay of VACFs

From the mobility coefficients we may write down the diffusion coefficients for a particle in 

the vicinity of a plane wall as

(47)

(48)
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For the diffusion coefficients of a spherical particle near a plane wall with the no-slip 

boundary condition, these analytical expressions have been corroborated by 

experiments,141,156,157 and fluctuating-hydrodynamics simulations.158 For a partial-slip 

wall, the analytical results on parallel mobility are also verified by deterministic continuum 

simulations.159

In Section 4, we have seen that the friction due to the transient dynamics of the fluid plays a 

significant role in the VACF of the Brownian motion. This is still true in the confined case 

but more involved. For the unsteady motion of a sphere in viscous flow bounded by a plane 

wall, where the no-slip boundary condition applies to both solid interfaces, Wakiya 

calculated the parallel mobility160,161 and Gotoh and Kaneda worked out the mobility 

perpendicular to the wall.162 Further extending the work of Hauge and Martin-Löf83 based 

on fluctuating hydrodynamics of the unbounded case, Gotoh and Kaneda obtained the 

asymptotic VACFs in the confined case with dominant terms as162

(49)

(50)

These solutions are valid for t ≫ τh = h2/v, which is the time for the vorticity propagation 

between the sphere and the wall.

The power laws of t−5/2 and t−7/2 for the confined VACFs were verified by lattice Boltzmann 

simulations.163 However, Felderhof recently claimed that these analytical results are 

erroneous and the simulations are also too short to achieve an asymptotic limit.164 Instead, 

Felderhof performed the calculation himself and found that VACFs behave asymptotically at 

large t as164

(51)

(52)

For the parallel motion, the magnitude is slightly different from that of eqn (49). For the 

perpendicular motion, however, it is even qualitatively different; the long-tail is dominated 

by a scaling of t−5/2 with negative values as in eqn (52) rather than t−7/2 with positive values 

as in eqn (50).

Bian et al. Page 21

Soft Matter. Author manuscript; available in PMC 2017 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In a recent μs-long molecular dynamics (MD) simulation with Lennard-Jones interactions, 

the asymptotic scaling of the parallel motion is again confirmed to be t−5/2.165 Furthermore, 

Huang and Szlufarska utilized a more general result than eqn (51) for a denser particle to 

validate the magnitude of the asymptotic decay.165 However, there was still no direct 

evidence to confirm whether the magnitude in eqn (49) or eqn (51) is more accurate. The 

Brownian motion was also employed by Huang and Szlufarska to detect a breakdown of the 

no-slip boundary condition at short time, which demonstrates the capability of a Brownian 

particle as a probe for the wettability at a liquid–solid interface.

It is still quite challenging to obtain the confined VACFs with a great accuracy from 

experiments. Available experimental results157,166 exhibit non-negligible noises, from which 

neither the scaling nor the magnitude of the VACFs could be conclusive. Therefore, this 

dispute is yet to be settled.

5.4 Limitations and underlying assumptions

We focused on the mobility of a particle due to a single nearby wall. Effects due to two-wall 

confinements or two-particle interactions are more involved, but can be 

tackled.139,156,159,167–170 We have assumed an incompressible fluid and ignored any 

compressible behavior of the fluid. For the short-time dynamics, however, sound 

propagation also plays a decisive role for the Brownian motion in a confined 

environment,171–175 just as in the unbounded case.

The random force on a Brownian particle in confinement is also non-white as in the 

unbounded case. Moreover, the intensity of the power spectral density on position 

fluctuation or thermal noise is shifted by the wall, as measured experimentally.96 However, a 

recent analytical calculation from Felderhof176 on the spectrum of position fluctuations, 

where a static wall-slip length is assumed, does not agree with the experimental results. This 

disagreement suggests that the slip length on the wall is dynamic and introducing a 

frequency-dependent slip length could potentially improve the modeling based on the 

continuum fluid mechanics.153,154,177–181 Nevertheless, it is not certain that this 

hypothesized continuum boundary condition may faithfully reflect the Brownian motion in a 

confined fluid at molecular length-time scales, where locking and delayed relaxation caused 

by the epitaxial ordering of the fluid structure near the interface may be significant.165,182 

Furthermore, the mobility of a Brownian particle due to the atomistic collisions confined in 

a microscale channel183 may not always be described by the linearized hydrodynamic 

equations.

6 Summary and perspectives

We summarized three theoretical models for a Brownian particle suspended in a fluid: 

Einstein’s model, Langevin’s model, and the hydrodynamic model and its extensions near a 

confined interface. From the perspective of hydrodynamic interactions between the particle 

and the fluid, each model is more elaborate than its preceding one.

It is simple to differentiate the capability of different models by taking into account the 

disparate time scales involved. Einstein’s model considers only the diffusive time scale τD= 
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a2/D, when the particle undergoes a random walk, and thus a statistical description of its 

displacements is feasible without involving the momentum coordinates of either the particle 

or the fluid. Langevin’s model introduces the inertia of the particle, and therefore an extra 

time scale is introduced, τB = m/ξ, where ξ is the friction coefficient due to the viscous fluid 

at steady state. Hence, the model separates two asymptotic regimes, that is, the ballistic 

regime t ≪ τB and the diffusive regime t ≫ τB. Moreover, due to the particle inertia its 

velocity is well-defined and the velocity autocorrelation function (VACF) encodes the full 

dynamics of the particle with an exponential decay. If the relaxation time of the viscous fluid 

τv = a2/v is comparable to or larger than τB, that is 9ρ/2ρB ≳ 1, which is a typical scenario 

for a colloidal suspension (e.g., a pollen particle in water), the inertia of the fluid must be 

explicitly taken into account. The hydrodynamic model is based on the solution of the 

linearized Navier–Stokes or unsteady Stokes equations, which is employed to calculate the 

full dynamics (signified by the VACF) of a Brownian particle. The coupling between the 

inertias of the particle and the fluid is mediated by their transient hydrodynamic interactions, 

and this leads to an algebraic decay of the particle’s VACF. The power law scaling indicates 

significant implications, such as the failure of the molecular chaos assumption, which is 

expected from Langevin’s model.

When a Brownian particle jiggles near an interface, the relaxation of the fluid due to vortex 

development is affected by its encounter with the interface. Naturally, this introduces a new 

time scale τh = h2/v, which indicates the time of vorticity propagation between the particle 

and the wall. For t ≫ τh, the asymptotic limit of the VACFs (including parallel and 

perpendicular components) for the particle may be calculated and they still follow the power 

law scalings. However, the actual magnitude and power law from analytical approaches 

remain controversial. Existing results from experiments are also imperfect for a consensus. 

Perhaps new experimental techniques illustrated by Raizen’s and Florin’s groups46,47 may 

provide a definite answer for the asymptotic limit in the near future. Furthermore, if the 

sonic time scales in a liquid such as  and  are to be considered for the 

dynamics of a Brownian particle, perhaps extra innovations in experimental facilities are yet 

to be developed.

Besides the analytical and experimental works, we also wish to emphasize the effectiveness 

of various numerical methods on the study of Brownian motion. Some popular methods to 

study the dynamics of a (non-)Brownian suspension include Brownian dynamics,184 

Stokesian dynamics,185,186 and the force-coupling method,187–189 which are very efficient 

for the bulk rheology at quasi-steady state. However, these methods are semi-analytical and 

rely on the solutions of steady Stokes flow. Therefore, they may not be appropriate for 

studying the dynamics of Brownian motion involving time scales τv or . An alternative 

numerical method being able to consider τv explicitly is the boundary integral method,94 

which solves the unsteady Stokes equations. Nevertheless, it is generally difficult to include 

the compressibility (related dynamics at the sonic time scale ) and Brownian motion into a 

boundary integral implementation. With the increasing capacity of parallel computing, it 

might be tempting to simulate the Brownian motion of a particle by molecular dynamics 

(MD),190,191 which may cover the ballistic regime, the sonic time scale as well as the 

momentum relaxation time of the fluid. A typical colloid of radius 1 μm in water at room 
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temperature diffuses over its own radius distance in about 5 s. To resolve the stiff vibrations 

of water molecules in a MD simulation, a numerical time step must be about 10−15 s for 

stability. Therefore, it is still impractical to simulate such a simple scenario with a full 

atomistic description. The most realistic class of numerical methods to study the Brownian 

motion and its relevant areas seems to be the mesoscopic methods, which may cover a wide 

range of spatial-temporal scales. This category includes the mesh-based methods, such as 

finite difference,192 finite volume,193–195 and lattice Boltzmann,196,197 and also the particle-

based methods, such as dissipative particle dynamics,198 smoothed particle 

hydrodynamics,158,199 and stochastic rotation dynamics/multiple-particle collision 

dynamics.200–202
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Fig. 1. 
Fractal trajectory of Brownian motion according to Einstein’s diffusion model in two 

dimensions. On the left is the actual trajectory of a particle. On the right are the observed 

locations of the particle on diffusive time scales. Arrows indicate the apparent velocities of 

the particle.
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Fig. 2. 
Asymptotic limit of the velocity autocorrelation function for a diffusive particle. Eqn (33) 

with or without diffusion coefficient D is compared with the results of tagged fluid particles 

in dissipative particle dynamics (DPD) simulations. The inset shows the long-time limit in 

the logarithmic scale. Input parameters of DPD are taken from a previous work,105,106 which 

correspond to a fluid with kBT = 1, ρ = 3, v = 0.54, and D = 0.15 in DPD units.
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Fig. 3. 
C(t), D(t), and 〈Δx2(t)〉 of a Brownian particle (1D) according to the Langevin model, 

incompressible viscous hydrodynamics, and its correction due to compressible effects at the 

short time scale. Relevant time scales are sonic time , viscous time τv = a2/v, 

Brownian relaxation time τB = m/ξ, and diffusive time τD = a2/D∞. The definitions of 

variables are in the text. For a demonstrative purpose their values are a = 1, cs = 50, ρ = ρB = 

1, v = 1, and kBT = 1 in reduced units. Hence , τB = 0.22, τv = 1.0, and τD = 18.85.
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Fig. 4. 
Mobility of a sphere near a no-slip wall. The results from Lorentz’s image technique are 

taken up to the first order of a/h in eqn (37) and (38); the results from the method of 

reflection are the complete expressions in eqn (37) and (38). The prediction of μ‖ in eqn (39) 

from Perkins and Jones is shown to be more accurate at the short distance, as indicated in the 

inset. The prediction of μ⊥ with series solution is taken from eqn (40) up to n = 10 and 

including higher n does not change the sum of series significantly. The regression 

approximation for μ⊥ in eqn (41) is almost identical to the series solution.
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Fig. 5. 
Mobility of a sphere near a slip wall.
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