Table 4. Optimal spacing of releases.
p0 = 0.6 | p̂ = 0.2 | p̂ = 0.3 | ||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
Dispersal | D | RI | Rcrit | Tmin | D | RI | Rcrit | Tmin |
Gaussian | 13.06 | 3.30 | 2.48 | 17.60 | 16.26 | 4.10 | 3.19 | 30.22 |
Laplace | 12.21 | 3.08 | 2.35 | 17.95 | 16.22 | 4.09 | 3.06 | 31.13 |
ExpSqrt | 11.30 | 2.85 | 1.99 | 19.54 | 15.11 | 3.81 | 2.64 | 34.87 |
| ||||||||
p0 = 0.8 | p̂ = 0.2 | p̂ = 0.3 | ||||||
| ||||||||
Dispersal | D | RI | Rcrit | Tmin | D | RI | Rcrit | Tmin |
| ||||||||
Gaussian | 11.26 | 2.86 | 2.05 | 14.17 | 13.43 | 3.39 | 2.61 | 24.26 |
Laplace | 10.25 | 2.60 | 1.97 | 14.57 | 13.39 | 3.38 | 2.52 | 25.09 |
ExpSqrt | 9.34 | 2.36 | 1.62 | 16.25 | 12.18 | 3.07 | 2.16 | 28.59 |
All distances are measured in units of σ. Assuming releases over 20% of the target area (i.e., ρ = 0.2 and p0 = 0.6 or 0.8), we compare the spacing, D (distance between adjacent release centers), that produces the shortest time (in generations), Tmin, required to reach 80% coverage as a function of p0, initial infection frequency in release areas, p̂ and dispersal shape. The initial radius of these optimal releases, , is compared to the minimum radius, Rcrit, required to initiate an expanding wave for the specified p0 and p̂.