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In many cases relevant to biomedicine, a variable time, which features a certain distribution, is required for objects of interest
to pass from an initial to an intermediate state, out of which they exit at random to a final state. In such cases, the distribution
of variable times between exiting the initial and entering the final state must conform to the convolution of the first distribution
and a negative exponential distribution. A common example is the exponentially modified Gaussian (EMG), which is widely used
in chromatography for peak analysis and is long known as ex-Gaussian in psychophysiology, where it is applied to times from
stimulus to response. In molecular and cell biology, EMG, compared with commonly used simple distributions, such as lognormal,
gamma, andWald, provides better fits to the variabilities of times between consecutive cell divisions and transcriptional bursts and
has more straightforwardly interpreted parameters. However, since the range of definition of the Gaussian component of EMG
is unlimited, data approximation with EMG may extend to the negative domain. This extension may seem negligible when the
coefficient of variance of the Gaussian component is small but becomes considerable when the coefficient increases. Therefore,
although inmany cases an EMGmay be an acceptable approximation of data, an exponentiallymodified nonnegative peak function,
such as gamma-distribution, can make more sense in physical terms. In the present short review, EMG and exponentially modified
gamma-distribution (EMGD) are discussed with regard to their applicability to data on cell cycle, gene expression, physiological
responses to stimuli, and other cases, some of which may be interpreted as decision-making. In practical fitting terms, EMG and
EMGD are equivalent in outperforming other functions; however, when the coefficient of variance of the Gaussian component of
EMG is greater than ca. 0.4, EMGD is preferable.

“Essentially, all models are wrong, but some are useful.”
Box G. E. P. and Draper N. R. (1987), Empirical Model Building and Response Surfaces, John Wiley & Sons, NY, p. 424.

1. Introduction

The normal (Gaussian) and the exponential are probably
the most widely known distributions and quite ubiquitous,
too. No wonder that situations are possible where they are
expected to meet each other. The resulting composite distri-
butions have been suggested to be relevant, for example, to
times between consecutive cell divisions [1–4] in cell biology
and to times from stimulus to response [5–8] in psychophys-
iology.

Generally speaking, when the times of the passages of
certain type objects from their initial to their final state
are composed of variable times of their transition to an

intermediate state and of their dwelling in the intermediate
state, out of which they exit at random to their final state,
then the random variable that represents the overall passage
time of any such object is the sum of two independent
random variables, the transit time and the dwell time, and
the distribution of the overall passage times is defined as the
convolution of the distributions of its summands [9]. The
convolution of a Gaussian distribution and a negative expo-
nential distribution is known as the exponentially modified
Gaussian (EMG). Its generic plot is shown in Figure 1, and the
approximations of empirical datasets with EMG are shown in
Figures 2, 3, and 5.
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Figure 1: The plots of a Gaussian 𝑔(𝑡) and an exponential distribu-
tion 𝑓(𝑡) and of the result of their convolution 𝑛(𝑡) (EMG) at 𝑆 = 10,𝜎 = 5, and 𝑘 = 0.07. The plot may also be regarded as showing
the result of the deconvolution of an EMG into its exponential𝑓(𝑡) and Gaussian 𝑔(𝑡) components. The Gaussian component may
significantly extend to the negative domain even if 𝑛(𝑡) (EMG) may
seem to be all nonnegative, which may be especially misleading if
data points at small 𝑡, for example, within 5 time units, are lacking.
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Figure 2: Data on intervals between the transcriptional bursts of
the prolactin gene [19] approximated with EMG (solid line) and
EMGD (dotted line). The data are shown with open circles. In the
source paper [19], data were represented with histogram bars. The
middle points of their tops are plotted here on an arbitrary vertical
scale because only 𝑋-scale (time, h.) is what matters in the present
context.

EMG has been introduced about 40 years ago in chro-
matography (see [10]) and psychophysiology (see [5]). In
both cases, each accounting for about 100 entries in the
Scopus database, EMG seems preferable over other skewed
distributions, such as lognormal, gamma, Weibull, and Wald
(inverse Gaussian), not only because of its better formal
fits to data but, also and no less importantly, because of its
straightforwardly interpretable parameters.
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Figure 3: Data on response time distribution (RTD) picked up from
[20] (open circles), which are approximated with EMG (thick solid
line), EMGD (dots), and Wald distribution (thin solid line). The
vertical scale is irrelevant.

More recently, EMG was suggested to be applicable to
time distributions related to cell proliferation and differen-
tiation [1, 2] and to distinct transcriptional states of active
genes [2, 11]. Other novel EMG applications may be found in
physiology [12], physics [13], and computer science [14].

However, there are cases when the deconvolution of an
apparent EMG yields a Gaussian whose significant portion
extends to the negative domain, which makes no physical
sense. In such cases, nonnegative peak functions must be
more appropriate for being convoluted with the negative
exponent. In particular, a closed form expression for the
exponentially modified gamma-distribution (EMGD) has
been suggested and shown to be relevant to at least some
of such cases [3]. In the present short review, the recent
expansion of EMG applicability is considered in comparison
with EMGD.

2. On Notations and Calculus

Exponentially modified functions result from applying the
mathematical operator called convolution to nonmodified
functions. The conventional definitions and notations for
convolution are as follows:

𝑦 (𝑥) = 𝑔 (𝑥) ∗ 𝑓 (𝑥) = ∫+∞
−∞

𝑓 (𝑥󸀠) 𝑔 (𝑥 − 𝑥󸀠) d𝑥󸀠
= ∫+∞
−∞

𝑓 (𝑥 − 𝑥󸀠) 𝑔 (𝑥󸀠) d𝑥󸀠, (1)

where 𝑔(𝑥) is a nonmodified function; 𝑓(𝑥) is, in the present
context, a negative exponential function (however, generally
speaking, itmay be any function);𝑥󸀠 is an accessory (dummy)
variable, which may be interpreted as the extent of shifting
the plot of one function relative to the plot of the other
function along the axis representing their common argument𝑥; and 𝑦(𝑥) captures the resulting changes in the common
area under the two plots.

When the domain of any of the convoluted functions is
other than (−∞, +∞), the limits of the convolution integral
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must be changed, respectively. Being treated in different
mathematical contexts, for example, [15–17], these relation-
ships may be a source of confusion, especially with regard to
integration limits, in using EMG in biomedicine and related
fields, for example, chromatography (see below Section 3.1).

In probability theory, convolution is used to define the
probability density function (PDF) of the sum ℎ of two
independent stochastic variables, say 𝜉1 and 𝜉2. In this case,
according to Feller [9, p. 6],

ℎ (𝑠) = ∫+∞
−∞

𝑓 (𝑦) 𝑔 (𝑠 − 𝑦) d𝑦, (2)

where 𝑓 and 𝑔 are the PDFs of 𝜉1 and 𝜉2, respectively, 𝑦 is
the value of the stochastic variable 𝜉1, and 𝑠 is the value of the
sum of the stochastic variables 𝜉1 + 𝜉2.

Integration limits in (2) are −∞ and +∞. However,
as pointed out, for example, in [9, p. 7] and [18, p. 216],
integration limits must be different when at least one of the
stochastic variables has nonzero probability densities only
within a limited domain.

If probability densities of one of the variables are zero in
the negative domain, then

ℎ (𝑠) = ∫𝑠
−∞

𝑓 (𝑦) 𝑔 (𝑠 − 𝑦) d𝑦. (3)

If probability densities of both variables are zero in the
negative domain, then [9]

ℎ (𝑠) = ∫𝑠
0

𝑓 (𝑦) 𝑔 (𝑠 − 𝑦) d𝑦. (4)

For the subsequent discussion, notations will be chosen
to account for the biological meanings behind them. In
particular, the stochastic variable is time 𝑡 in most cases.
Another point is that empirical distributions in biology are
usually obtained starting from a counting procedure, for
example, by counting of cells having intermitotic periods or
of subjects showing response times within certain intervals
of 𝑡. Therefore, the notation 𝑛(𝑡) is chosen for the respective
PDFs:

𝑛 (𝑡) = lim
Δ𝑡→0

[ 𝑁 (𝑡) − 𝑁 (𝑡 − Δ𝑡)Δ𝑡 ] , (5)

where 𝑁 is the normalized number of counts.
Using this notation, the convolution of a normal distribu-

tion and an exponential distribution is written as

𝑛 (𝑡) = 𝑔 (𝑡) ∗ 𝑓 (𝑡) , (6)

where 𝑡 is time (in the present context); 𝑛(𝑡) is the probability
density of events of interest; that is, 𝑛(𝑡)d𝑡 is the normalized
number of objects that have experienced this event in the
time interval (𝑡, 𝑡 + d𝑡), for example, the number of cells
that, after having simultaneously emerged by the division
of their mother cells, have divided within the time interval(𝑡, 𝑡 + d𝑡); 𝑔(𝑡) = (1/𝜎√2𝜋) × exp (−(𝑆 − 𝑡)2/2𝜎2) is Gaussian
probability density function, its domain being (−∞, +∞), 𝑆
being themean of aGaussian, and𝜎2 being the dispersion of a

Gaussian; and𝑓(𝑡) = 𝑘 exp(−𝑘𝑡) is an exponential probability
density function, its domain being (0, +∞) and 𝑘 being the
rate parameter (1/𝑘 is themean of an exponential distribution
and 1/𝑘2 is its dispersion).

The computation of a closed form solution of 𝑔(𝑡) ∗ 𝑓(𝑡)
using a dummy variable 𝑡󸀠 (to make one of the convoluted
functions shifted relative to the other by 𝑡󸀠) starts with the
integral:

𝑛 (𝑡) = 𝑔 (𝑡) ∗ 𝑓 (𝑡)
= 𝑘𝜎√2𝜋 ∫𝑡

−∞

exp(− (𝑡 − 𝑆 − 𝑡󸀠)22𝜎2 ) exp (−𝑘𝑡󸀠) d𝑡󸀠. (7)

It may be solved by introducing the error function erf,
which is not representable with elementary functions:

erf (𝑧) = 2√𝜋 ∫𝑧
0

𝑒−𝑡2d𝑡. (8)

The resulting closed form solution of (7) is

𝑛 (𝑡) = 𝑘√𝜋
⋅ exp[𝑘 (𝑆 − 𝑡) + (𝑘𝜎)22 ] [1 − erf ( 𝑆 − 𝑡 + 𝑘𝜎2√2𝜎 )] . (9)

A generic plot of EMG built according to (9) is shown in
Figure 1, where the convoluted distributions are also shown.
Notably, approximating an experimental dataset with (10)
allows making estimates of the parameters of the convoluted
functions, including their mean values, for example, mean
transit time and mean dwell time (see Section 1).

The equivalents of (9) having multipliers to account for
differences in peak height are inbuilt in curve-fitting software
designed for chromatographic analysis, such as Fityk or SAS
Fit, or for more general purposes, such as TableCuve2D,
which is used throughout this paper.

A problem with (9) is that, strictly speaking, it is
inapplicable to cases where negative time domains have no
physical sense (in other words, above-zero 𝑛(𝑡) at 𝑡 = 0 is
physically impossible). This relates to almost any biologically
relevant situation where measured 𝑡 values are times between
sequential events, for example, from stimulus to response
(Section 3.2), from cell birth to cell division (Section 3.3), or
from termination to resumption of transcription at a defined
active gene (Section 3.4). Figure 2 illustrates this point using
times from termination to resumption of transcription (see
Section 3.4) as an example.

It has been suggested [3] that in such cases the gamma-
distribution may be more appropriate for convolution with a
negative exponential distribution. The result of the convolu-
tion may be termed as the exponentially modified gamma-
distribution (EMGD).
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The convolution integral for EMGDmay be written as

𝑛 (𝑡) = 𝑔 (𝑡) ∗ 𝑓 (𝑡) = ∫𝑡
0

𝑓 (𝑡 − 𝑡󸀠) ⋅ 𝑔 (𝑡󸀠) ⋅ d𝑡󸀠
= ∫𝑡
0

𝑒−(𝑡−𝑡󸀠)/𝜏𝜏 ⋅ 𝑡󸀠𝑐−1𝑒−𝑡󸀠/𝑏𝑏𝑐Γ (𝑐) ⋅ d𝑡󸀠,
(10)

where 𝑔(𝑡) = 𝑡𝑐−1𝑒−𝑡/𝑏/𝑏𝑐Γ(𝑐) is the gamma-distribution,
whose domain is (0, +∞), Γ(𝑐) = ∫∞

0
𝑡𝑐−1𝑒−𝑡d𝑡 is the gamma-

function, and 𝑓(𝑡) is the negative exponential function.
The gamma-distribution is a generalization of the Erlang

distribution 𝑔(𝑡) = 𝑡𝑐−1𝑒−𝑡/𝑏/𝑏𝑐(𝑐 − 1)!, which is essentially
the convolution of 𝑐 identical exponential distributionswhose1/𝑘 = 𝑏. In the gamma-distribution, the values of 𝑐 are not
limited to integers.

The negative exponential component of (10) is expressed
as 𝑓(𝑡) = (1/𝜏) exp(−(1/𝜏)𝑡), where the dimensionality of 𝜏
is the same as that of 𝑏. Both, 𝜏 and 𝑏, are interpreted here as
the mean (characteristic) times of objects dwelling in states
out of which they exit at random. EMGD can approximate
this situation when 𝜏 ≫ 𝑏max ≫ (𝑏max − 𝑏min). The rationale
for this condition is discussed in [3].

The solution of the improper integral by (10) may be
written as

𝑛 (𝑡) = 𝑒−𝑡/𝜏 ⋅ 𝑏−𝑐 ⋅ ( 𝜏 − 𝑏𝜏 ⋅ 𝑏 )−𝑐 ⋅ [𝜏 ⋅ Γ (𝑐)]−1
⋅ [Γ (𝑐) − Γ (𝑐, 𝜏 − 𝑏𝜏 ⋅ 𝑏 𝑡)] , (11)

where Γ(𝑐, ((𝜏 − 𝑏)/(𝜏 ⋅ 𝑏))𝑡) = ∫∞
((𝜏−𝑏)/(𝜏⋅𝑏))⋅𝑡

𝑒−𝑡 ⋅ 𝑡𝑐−1 ⋅ d𝑡 is an
upper (complementary) incomplete gamma-function.

Algorithms for numerical treatment of incomplete
gamma-functions are included in standard curve-fitting
software tools, such as TableCurve 2D used in the present
paper and earlier [1–3].

Figure 2 illustrates the application of EMG and EMGD
to fitting data on the duration of intervals between the
transcriptional bursts of the prolactin gene.

Although fits to data according to the determination coef-
ficient (𝑟2) are very good and virtually identical for EMGD
(0.997) and EMG (0.993), EMG extends to the negative
domain and if treated as a PDF, it will not be integrated
to unity on the physically valid domain (0, +∞); therefore,
EMGD is preferable for physical reasons even though there
are cases when its fit to transcriptional data is poorer than
that of EMG [3].

With all that, data points related to an empirical distri-
bution may be, and often are, located on the time axis so
far from its origin that EMG and EMGD become equivalent
as analytical approximations. This is illustrated in Figure 3
where data on distribution of times from stimulus to response
in humans are shown (see Section 3.2 for more details).

In Figure 3, EMG and EMGD look virtually identical.
This is no surprise because the distance of EMGD peak from
the origin is defined by the parameter 𝑐 of the gamma-
distribution. With increasing 𝑐, the shape of a gamma-
distribution approaches that of a Gaussian (in conformance
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Figure 4: Increasing the height of the intersection of EMG (see (9))
with 𝑦-axis (𝑛 at 𝑡 = 0) upon increasing the coefficient of variance
(𝜎/𝑆) of its Gaussian component. A greater height is associated with
a more prominent extension of EMG to the negative domain.
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Figure 5: Fitting data on an amperometric spike produced by
adrenaline release from adrenal medulla cell synaptic vesicle. Data
points (open circles) are obtained by manual tracking of an
amperometric trace presented in [36]. Scales are arbitrary. EMGD:
thick solid line; EMG: dotted line; shifted gamma-distribution: thin
solid line; lognormal distribution: symbols ×. Fits by determination
coefficient (𝑟2): EMGD (0.993)>EMG (0.991)> lognormal = shifted
gamma (0.990).

with the central limit theorem). However, with decreasing
the distance, no part of EMGD will extend to the negative
domain; and 𝑛(𝑡) at 𝑡 = 0 will be zero. By contrast, with
EMG, the interception of its plot with abscissa will increase
with increasing the coefficient of variance of its Gaussian
component, that is, the ratio of 𝜎 to 𝑆. The height of the
interception of EMG plot with the ordinate will become
appreciable at 𝜎/𝑆 above 0.4 (Figure 4).

3. Applications and Implications of
Exponentially Modified Peak Functions
in Different Disciplines

3.1. Chromatography. In chromatography, EMG is employed
since mid-1960s to describe chromatographic peaks, whose
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shape is presumably determined by the diffusion-caused
Gaussian blur of a compound during its passage through a
column and by extracolumn effects of its exponential dilution
in a detector cell [10, 21, 22]. The superposition of these two
processes will skew an almost Gaussian symmetrical peak,
whose width depends on diffusion, into a peak, whose skew-
ness depends on detector cell volume. Importantly, confor-
mance to EMGwas demonstrated for the absorbance profiles
of the bands of substances during their passage through a col-
umn. In this case, extracolumn effects are excluded, and EMG
may be thought of as being generated by a combination of
processes that include substance transfer (transit time) by the
liquid phase and substance retention (dwell time) by the solid
phase, from which the substance dissociates by a first-order
process [23].

Different authors suggest a bewildering variety of mathe-
matical expressions for EMG to be used in chromatography.
The list compiled by Di Marco and Bombi [10] includes 18
very differently looking functions, amongwhich 12 are judged
as essentially correct and equivalent to each other, except for
representing different steps towards the closed form solution
of the convolution integral of EMG and/or implying different
integration limits (see Section 2).

Hanggi and Carr [21] discussed potentially important
problems arising upon different assumptions concerning the
integration limits and suggested a solution for EMG where
the lower limit is assumed to be zero and the upper limit to be
the independent variable. The rationale of this assumption is
that the domain of any component function of a convolution
used in chromatography must be nonnegative, otherwise
meaningless above-zero concentration values at elution time𝑡 = 0may be yielded when integration limits (−∞, 𝑡) are used
to compute EMG, and these values may become practically
considerable at 𝜎/𝑆 greater than about 0.4 (see Figure 4).
However, both approaches to integration limits are equiva-
lent, in practice, at low 𝜎/𝑆.

At present, (9) modified by a multiplier accounting for
peak amplitude is used in commercial software packages,
such as TableCurve2D, PeakFit, Fityk, and SASfit, devised for
curve fitting or peak analysis.

3.2. Psychophysiology. The first attempts to use EMG in a
biological context, which date back to early 1960s, relate to
response time distributions (RTD) in psychophysiological
studies (reviewed in [6, 20]). However, probably because the
result of convolution of aGaussian and a negative exponential
function has been termed ex-Gaussian in this field, this
approach has been developed independently from EMG
usage in chromatography, which has started at about the
same time. The idea that the positively skewed distributions
of times from stimulus to response are consistent with the
ex-Gaussian is based on the premise that times-to-response
may include exponentially distributed periods needed for
making a decision to respond and normally distributed
periods needed to respond according to the decision (the
alternative possibility, that is, that decision time is distributed
normally and execution time is distributed exponentially, is
also considered [5]). The belief that ex-Gaussian (=EMG)
is appropriate to RTD is evidenced by the development of

dedicated software tools intended for finding best-fit EMG
parameters of experimental RTD and for comparing EMG
with other functions common in this field [20]. Remarkably,
there has been no whatever crosstalk between chromatog-
raphy and psychophysiology in designing software tools
intended for very similar purposes.

The conformance of EMG and EMGD to an exemplary
RTD presented in [20] is shown in Figure 3. The figure also
shows an approximation of datawithWald (inverseGaussian)
distribution, which is also suggested for RTD data.

The use of EMG in psychophysiology was motivated by
the intent to attribute a physiological significance to observed
changes in RTD shapes. In particular, the centroid (𝑆) was
associated with the decision-making phase, whereas the rate
constant (𝑘)was associated with either the phase of execution
of a decision or the phase or information processing required
for a decision. The use of EMG was disputed by the propo-
nents of another positively skewed PDF, that is,Wald (inverse
Gaussian) distribution, based on other underlying premises
rather than on a better or poorer fit (in the particular case
shown in Figure 4, the fit of theWald distribution is obviously
inferior to those of EMG and EMGD). This controversy was
discussed by Matzke and Wagenmakers [6] who concluded
that EMG anyway remains a useful descriptive tool.

Some recent examples of using the deconvolution of
EMG (ex-Gaussian) for distinguishing the different phases
of psychophysical processes include cognitive changes that
occur upon normal brain aging and Alzheimer disease [7]
and in anxiety patients [24] and cocaine abusers [8] and
variabilities found in word pronunciation time [25], eye
fixation time during reading [26], and visual response time
[5].

3.3. Cell Biology. It has been shown [1] that cell number
distributions over times between sequential cell divisions
(interdivision period, IDT) usually conform to EMG better
than to traditionally used positively skewed distributions,
such as lognormal or gamma. Subsequently, EMGD was
shown to be no less appropriate as a descriptive model
and more reasonable in biological (physical) terms, both
EMG and EMGD outcompeting other positively skewed
distributions [3].

The incentive to try EMG for fitting IDT was prompted
by the transition probability model of cell cycle [27]. The
model implies that, in a cycling cell population, daughter
cells after having been born by their mother cell divisions
will follow the courses of their cell cycles until reaching at
different almost normally distributed times a state out which
they exit at random; therefore, cell dwelling times in this state
will be distributed exponentially. In a cell population, the exits
of cells from this state will constitute a first-order process. If
so, the overall IDT distribution in a cell population must be
generated by the convolution of a Gaussian and a negative
exponential function.

The intermediate state, which is mapped to G1 and
is exited by cells at random, may be associated with the
restriction point (RP) of cell cycle ([1, 2, 28] and references
therein) and has been suggested to provide a time for cell fate
to be determined, that is, whether a cell will pass its RP to
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divide in its current state or will become committed, upon
passing its RP, to change its state so as to make itself or its
progeny different, up to the loss of the ability to divide, such
as upon a terminal differentiation [1, 2].

EMGD has been shown to approximate IDT distribution
as well as EMG does [3]. In technical terms, EMG may be
more convenient for IDT decomposition into the probabilis-
tic and the deterministic part of the cell cycle according to
the transition probability model. However, EMGD is more
appropriate in physically meaningful terms [3].

3.4. Molecular Biology. EMG has been suggested to be rele-
vant to possible transcriptionalmechanisms of the events that
are associated with the restriction point of the cell cycle and
can determine cell fate [2, 11].

The events are thought to result from discrete random
changes in gene activity. The rationale for this suggestion is
detailed elsewhere [2, 11, 29] based on published data about
the direct observation of nascent mRNA association with
cyclin D1 gene in single cells [30, 31] and on inferences from
mathematical analysis of protein level fluctuations in single
cells [19, 32, 33], in combination with some common-sense
reasoning [29]. The available evidence reviewed in [3, 11, 33]
supports the view that the activity of, at least, some genes con-
sists of random bouts of their engagement in mRNA produc-
tion, which alternate with periods of gene idleness occurring
at gene-specific mean frequencies. All authors who address
this issue agree that the engagement periods, whatever they
are called, are distributed exponentially consistent with that
they are terminated by the dissociation of transcription
preinitiation complexes of transcription factors from gene
promoters.The distribution of idleness periodswas suggested
[32, 33] to be generated by a process consisting of two first-
order steps, therefore being consistentwith the convolution of
two exponential functions. Checking published distribution
histograms for their fits to different functions shows that the
EMG and EMGD provide better fits than the exponentially
modified exponent (EME) or simple gamma-distribution
does [3]. However, EMG almost invariably showed above-
zero intercepts of plots with ordinates (see Figure 2), which
is hard to interpret in physically meaningful terms.

The process of preparation of an idle gene to the next bout
of its transcriptional engagement, which is switched on by
the complete assembly of a proper preinitiation complex at
gene promoter, is likely to involve more than two steps, and
this will make several sequential first-order processes at a cell
population level.Therefore, the overall time distributionmust
conform to the convolution of several exponents, which if the
exponents are identical, is described with the Erlang distribu-
tion, a particular case of the gamma-distribution. When one
of the processes stands out of all others in having a far lower
rate constant, the overall distribution will be the convolution
of an exponent, which is generated by this process, with the
distribution collectively generated by all other processes (see
Section 2 and [3]).When a gamma-distribution is used for an
Erlang distribution in the convolution with an exponent, the
parameter 𝑐 of the gamma-function may prompt an estimate
of the number of steps required to resume transcription after
its interruption at an active gene [3].

The same must be true for the cell cycle where reaching
an RP-associated state is likely to be brought about by a
combination of numerous loosely correlated events, each
constituting, at the cell population level, a process having a
much higher rate compared with the process associated with
cell passage through the RP.

In either case, EMG- or EMGD-based analysis of time
distributions makes it possible to distinguish influences on
the slowest process, such as cell passage through RP, from
influences on the other constituents of the overall process.
With regard to cell proliferation, the importance of such
distinction follows from the possibility of the involvement of
cell dwelling in the RP-associated state in cell differentiation
[1]. This approach has also been proposed to distinguish
between themodes of action of different anticancer drugs [4].

3.5. Other Cases of Applicability of Exponentially Modified
Peak Functions. The conformance of a distribution to an
exponentially modified peak function is an indication that
the underlying processes collectively generate transit times,
whose distribution is peaked, and exponentially distributed
dwell times and that the mean dwell time is much longer
than the mean characteristic time of any of the processes
that determine the transit time. It has been shown [1] that
EMG does not perform well when there are no reasons to
expect that a distribution may be generated in that way.
However, situationswhere such reasons do existmust be quite
common. This ubiquity, which is not limited to the areas
discussed above, is illustrated below with cases where fits to
EMG and/or EMGD are observed outside the original fields
of the applicability of these distributions.

In a study of microtubule growth in living cells by
confocal fluorescencemicroscopy, the profiles of fluorescence
intensity of complexes of microtubule-end binding protein
with green fluorescent protein were fit to EMG based on the
premise that these profiles are generated by a convolution of
exponential decay with point Gaussian blur associated with
microscopy [34]. Indeed, itmay be confirmed that the profiles
presented in [34] correspond to EMG better than to other
positively skewed peak functions (not shown).

EMG was used to model human skin conductance
changes in response to stimuli, such as noise or image [12].
Both EMG and EMGDmay be found at the top of ranked lists
of fits of different peak functions to skin conductance versus
time plots (not shown).

In several studies of neurosecretion [35, 36], it was
assumed that amperometric spikes, which result from the
release of secreted substances from exocytotic vesicles, can be
described by the convolution of a Gaussian with a decreasing
exponential, which is partially governed by the diffusion of
the substances towards the electrode. Figure 5 shows that such
spikes may be fitted with EMG and EMGD equally well.

More remote to the initial field of EMG applicability
are studies where EMG was used to model channel holding
time distribution in public telephony systems [37] and packet
payload lengths for two-player first-person shooter games in
the server-to-client direction [14]. In physics, EMG emerged
in an analysis of excited state lifetime distributions [13] and
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was used to describe ion flight time distribution in a detector
[38].

Searching for other cases where EMG may be applicable
to time distributions for reasons discussed above shows that
this may be true for some situation related to city traffic, such
as that described in the paper [39] where the distribution of
bus dwelling time at bus stops was fitted with a lognormal
function; however, a better fit according to several goodness-
of-fit criteria is obtained with EMG and EMGD (not shown).

4. Discussion

Making inferences from the shapes of distributions of vari-
able parameters is a routine approach in physics; however, it
has long been limited in biomedicine by enormous amounts
of calculations.The state of things changes in recent years due
to the availability of user-friendly software designed for this
purpose.

A significant, in this regard, difference between biol-
ogy and physics is that, in physics, distributions are often
observed directly, whereas in biology they are generated by
counting procedures, such as single-cell tracking, which may
be very time-consuming and laborious. This problem will
hopefully be ameliorated with the advent of novel automated
single-cell tracking and other single-event monitoring tech-
niques, which are increasingly introduced in biomedicine.

In the biological context, EMG and EMGD are useful as
models, which suggest that, in a population of some objects
there is, among the processes that generate the distribution
of times required for each of the objects to pass between
two observed consecutive states, a first-order process whose
rate constant is much lower compared with those of all
other processes. This slow process may be regarded as being
generated by randomdiscrete events that occur at a frequency
making the mean interevent time comparable with the mean
time between the two apparent consecutive states of the
objects in question [1–3]. This interevent time is consistent
with object dwelling in an unobservable intermediate state
between the two observed states. Both, EMG and EMGD,
make it possible to estimate the rate constant of this slow
process, that is, the mean time of object dwelling in the
intermediate state, and the contribution of all other processes
to the overall time between the initial and final states and to its
variance. Other similarly looking skewed distributions, such
as lognormal or gamma, are not adequate to such cases.

However, nomodel can account for everything; therefore,
any model is a compromise between physical (biological)
relevance and mathematical tractability. To reiterate the epi-
graph to this writing: “. . . all models are wrong; the practical
question is how wrong do they have to be to not be useful”
(G. E. P. Box and N. R. Draper, 1987, p. 74). In this regard,
EMG, which extends to the negative domain, is essentially
wrong when it is applied to interevent time distributions;
however, because of its easier mathematical tractability and
the availability of ready-to-use curve-fitting tools, it is still
useful as a descriptive option when the variation coefficient
of its Gaussian component is low, within ca. 0.4. When
the coefficient is higher than that, the use of EMGD is
warranted. The failure of a distribution related to a class of

phenomena, to which EMG or EMGD has been found to be
generally applicable, to conform to them in a specific case
may prompt that there is either amethodological bias or some
unrecognized factor at work.

The use of EMG and/or EMGD in cell biology may help
to supplement the assessment of the duration of different
phases of cell cycle (G1, S, and G2) based on DNA content
distributions with the assessment of the probabilistic and the
deterministic part of cell cycle, according to the transition
probability model, based on interdivision time distributions
[1, 2]. This approach was used to discriminate between the
modes of action of anticancer drugs [3, 4]. The importance
of such discrimination follows from the suggestion that the
rate of cell differentiation depends on the mean probabilistic
rather than deterministic part duration, the former being
associated with the restriction point of the cell cycle and
suggested to provide cells with time for making a decision,
by random choice, whether to continue proliferation or to
become committed to withdrawal from the cell cycle [1].

Similarly, in psychophysiology, EMG or EMGDmay help
to distinguish between a phase required tomake a decision to
respond to a stimulus and a phase required to either execute
the decision or to become prepared to make it [5, 6].

Based on the apparent pervasiveness of exponentially
modified peak functions, such as EMG and EMGD, in dif-
ferent biological context—frommolecular through cellular to
physiological—it is tempting to suggest that this is a reflection
of a common biological strategy of making decisions, for
example, whether to commence or not to a next burst of
gene transcription, cycle of cell proliferation, or response to a
stimulus, each time there being alternative options chosen at
random. As far as the probabilities of such choices depend on
conditions, a population of biological systems can thus come
to an optimal balance of different ways of coping with the
unforeseeably changing world around them.
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