Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1968 Oct;16(10):1489–1496. doi: 10.1128/am.16.10.1489-1496.1968

Antiviral Activity of Carbobenzoxy Di- and Tripeptides on Measles Virus

F A Miller 1,2, G J Dixon 1,2, G Arnett 1,2, J R Dice 1,2, W A Rightsel 1,2,1, F M Schabel Jr 1,2, I W Mclean Jr 1,2
PMCID: PMC547690  PMID: 4971720

Abstract

A series of simple carbobenzoxy peptides showed high and consistent antiviral chemotherapeutic activity in cell culture. In general, greatest activity was found against the measles-distemper or herpesvirus groups, or both, but various representatives of the series had quantitatively and qualitatively different antiviral activities. Several of the compounds, showing the highest antimeasles activity, were investigated extensively. In human cell culture plaque assays, these compounds were active against measles virus at levels of from 15 to 500 μg/ml. At single doses of about 250 to 500 mg/kg, orally in three animal species, significant serum levels of drugs were detected in virus cell culture assays. The mode of action appeared to be therapeutic, as an effect was seen in cell systems infected for at least 24 hr before treatment.

Full text

PDF
1492

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer D. J. Clinical experience with the antiviral drug marboran (1-methylisatin 3-thiosemicarbazone). Ann N Y Acad Sci. 1965 Jul 30;130(1):110–117. doi: 10.1111/j.1749-6632.1965.tb12545.x. [DOI] [PubMed] [Google Scholar]
  2. Dice J. R., Rightsel W. A., Schabel F. M., Jr, McLean I. W., Jr Experiences in developing potential antiviral compounds. Ann N Y Acad Sci. 1965 Jul 30;130(1):24–30. doi: 10.1111/j.1749-6632.1965.tb12535.x. [DOI] [PubMed] [Google Scholar]
  3. EAGLE H. The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med. 1955 Nov 1;102(5):595–600. doi: 10.1084/jem.102.5.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ehrlich J., Sloan B. J., Miller F. A., Machamer H. E. Searching for antiviral materials from microbial fermentations. Ann N Y Acad Sci. 1965 Jul 30;130(1):5–16. doi: 10.1111/j.1749-6632.1965.tb12533.x. [DOI] [PubMed] [Google Scholar]
  5. KAUFMAN H. E. Clinical cure of herpes simplex keratitis by 5-iodo-2-deoxyuridine. Proc Soc Exp Biol Med. 1962 Feb;109:251–252. doi: 10.3181/00379727-109-27169. [DOI] [PubMed] [Google Scholar]
  6. KAUFMAN H., MARTOLA E. L., DOHLMAN C. Use of 5-iodo-2'-deoxyuridine (IDU) in treatment of herpes simplex keratitis. Arch Ophthalmol. 1962 Aug;68:235–239. doi: 10.1001/archopht.1962.00960030239015. [DOI] [PubMed] [Google Scholar]
  7. Larin N. M., Copping M. P., Herbst-Laier R. H., Roberts B., Wenham R. B. Antiviral activity of gliotoxin. Chemotherapy. 1965;10(1):12–23. doi: 10.1159/000220389. [DOI] [PubMed] [Google Scholar]
  8. MILLER F. A., RIGHTSEL W. A., SLOAN B. J., EHRLICH J., FRENCH J. C., BARTZ Q. R., DIXON G. J. ANTIVIRAL ACTIVITY OF TENUAZONIC ACID. Nature. 1963 Dec 28;200:1338–1339. doi: 10.1038/2001338a0. [DOI] [PubMed] [Google Scholar]
  9. MOORE A. E., SABACHEWSKY L., TOOLAN H. W. Culture characteristics of four permanent lines of human cancer cells. Cancer Res. 1955 Oct;15(9):598–602. [PubMed] [Google Scholar]
  10. Nicolaides E., DeWald H., Lipnik M., Westland R., Posler J. Potential antiviral agents. Carbobenzoxy di- and tripeptides active against measles and herpes viruses. J Med Chem. 1968 Jan;11(1):74–79. doi: 10.1021/jm00307a016. [DOI] [PubMed] [Google Scholar]
  11. RIGHTSEL W. A., DICE J. R., McALPINE R. J., TIMM E. A., McLEAN I. W., Jr, DIXON G. J., SCHABEL F. M., Jr Antiviral effect of guanidine. Science. 1961 Aug 25;134(3478):558–559. doi: 10.1126/science.134.3478.558. [DOI] [PubMed] [Google Scholar]
  12. RIGHTSEL W. A., SCHNEIDER H. G., SLOAN B. J., GRAF P. R., MILLER F. A., BARTZ O. R., EHRLICH J., DIXON G. J. ANTIVIRAL ACTIVITY OF GLIOTOXIN AND GLIOTOXIN ACETATE. Nature. 1964 Dec 26;204:1333–1334. doi: 10.1038/2041333b0. [DOI] [PubMed] [Google Scholar]
  13. RIGHTSEL W. A., SCHULTZ P., MUETHING D., MCLEAN I. W., Jr Use of vinyl plastic containers in tissue cultures for virus assays. J Immunol. 1956 Jun;76(6):464–474. [PubMed] [Google Scholar]
  14. ROSETT T., SANKHALA R. H., STICKINGS C. E., TAYLOR M. E., THOMAS R. Studies in the biochemistry of micro-organisms. 103. Metabolites of Alternaria tenuis auct; culture filtrate products. Biochem J. 1957 Nov;67(3):390–400. doi: 10.1042/bj0670390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ST GEME J. W., Jr DISRUPTION OF VIRUS BIOSYNTHESIS IN VITRO WITH 6-MERCAPTOPURINE. I. EFFECT ON DNA- AND RNA- VIRUSES. Proc Soc Exp Biol Med. 1964 May;116:228–231. doi: 10.3181/00379727-116-29210. [DOI] [PubMed] [Google Scholar]
  16. THOMPSON R. L., MINTON S. A., Jr, OFFICER J. E., HITCHINGS G. H. Effect of heterocyclic and other thiosemicarbazones on vaccinia infection in the mouse. J Immunol. 1953 Mar;70(3):229–234. [PubMed] [Google Scholar]
  17. UEDA T., TOYOSHIMA S., TSUJI T., SETO Y NOMOTO J. The antiviral effect of guanidine and its derivatives. II. The inhibitory effect of guanidine on several viruses including measies virus. Antibiot Chemother (Northfield) 1962 May;12:330–336. [PubMed] [Google Scholar]
  18. WILBRANDT W., ROSENBERG T. The concept of carrier transport and its corollaries in pharmacology. Pharmacol Rev. 1961 Jun;13:109–183. [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES