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Abstract

Emotion dysregulation is an important aspect of many psychiatric disorders. Brain-computer 

interface (BCI) technology could be a powerful new approach to facilitating therapeutic self-

regulation of emotions. One possible BCI method would be to provide stimulus-specific feedback 

based on subject-specific electroencephalographic (EEG) responses to emotion-eliciting stimuli.

To assess the feasibility of this approach, we studied the relationships between emotional valence/

arousal and three EEG features: amplitude of alpha activity over frontal cortex; amplitude of theta 

activity over frontal midline cortex; and the late positive potential over central and posterior mid-

line areas. For each feature, we evaluated its ability to predict emotional valence/arousal on both 

an individual and a group basis.

Twenty healthy participants (9 men, 11 women; ages 22–68) rated each of 192 pictures from the 

IAPS collection in terms of valence and arousal twice (96 pictures on each of 4 days over 2 

weeks). EEG was collected simultaneously and used to develop models based on canonical 

correlation to predict subject-specific single-trial ratings. Separate models were evaluated for the 

three EEG features: frontal alpha activity; frontal midline theta; and the late positive potential. In 

each case, these features were used to simultaneously predict both the normed ratings and the 

subject-specific ratings.

Models using each of the three EEG features with data from individual subjects were generally 

successful at predicting subjective ratings on training data, but generalization to test data was less 

successful. Sparse models performed better than models without regularization. The results 

suggest that the frontal midline theta is a better candidate than frontal alpha activity or the late 

positive potential for use in a BCI-based paradigm designed to modify emotional reactions.

A brain-computer interface (BCI) is a system that measures central nervous system (CNS) 

activity and converts it into an artificial output that replaces, restores, enhances, 
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supplements, or improves natural CNS output (Wolpaw & Wolpaw, 2012). A number of 

studies have been successful in training individuals to control EEG signals to replace lost 

communication or control (e.g., Wolpaw et al., 1991; Pfurtscheller et al., 1993; Kostov & 

Polak, 2000; McFarland et al., 2010). More recently there has been increased interest in 

developing BCI methods for improving motor, cognitive, or emotional function (e.g., 

Pichiorri et al., 2015; Daly & Sitaram, 2012). These efforts logically begin with studies that 

establish the relationships between specific EEG features and specific functions.

Most studies of the correlations between emotionally relevant stimuli and EEG features have 

adopted one of two approaches. One approach has examined the relationships between 

emotion and well-defined EEG features such as frontal asymmetry in alpha (8–13 Hz) 

activity (e.g., Coan & Allen, 2004, Gable & Poole, 2014), frontal midline theta (4–7 Hz) 

activity (e.g., Aftanas et al., 2001; Knyazev et al., 2009), and the late positive potential over 

central and posterior midline areas (e.g., Leite et al., 2012; Cuthbert et al., 2000). In contrast, 

the second approach has used machine learning methods to evaluate the relationships 

between emotion and classifiers that incorporate many EEG features (e.g., the powers in 

many frequency bands at many scalp locations (e.g., Liu et al., 2014; Yoon & Chung, 

2013)). For example, Liu et al. (2014) reported the accuracies of several classifiers that used 

theta, alpha, low beta, high beta and gamma band powers from 62 scalp-recording channels 

to predict emotion. The specific channel-frequency combinations that contained the 

information were not identified. However, there are notable exceptions to these trends. For 

example, Wang et al. (2014) evaluated several classifiers at each of 5 spectral bands.

The use of many EEG features without regard to physiological considerations could possibly 

result in the inadvertent use of non-brain artifacts, signal features that are not generated by 

the brain. For example, emotional stimuli are known to elicit changes in muscle tension that 

can be detected with EMG recording (Baur et al., 2015). High-frequency activity recorded at 

the scalp is largely EMG activity (Pope et al., 2009), particularly at recording sites along the 

edge of typical scalp montages (Goncharova et al, 2003). In this regard, it is of interest that 

Wang et al. (2014) report that scalp-recorded gamma (30–50 Hz) activity resulted in the best 

classification of emotional stimuli. While EMG activity can be a useful index of emotional 

reactivity, if the goal is to develop a BCI-based method to improve emotional function, the 

focus must be on EEG features associated with emotion. EMG or other non-brain artifacts 

must be excluded.

This consideration suggests that BCI methods that use well-defined EEG features might be 

more promising. Furthermore, with this approach, the methods used for feature extraction 

and training could be optimized more readily. For example, signal processing for lower-

frequency features such as theta activity might benefit from longer window lengths and 

different spatial filter designs than higher frequency features or time-domain features. In 

addition, learned control of such EEG features might have feature-specific consequences on 

emotional function.

Base on this rationale, the present study compares the ability of frontal alpha activity, frontal 

midline theta activity, and the late positive potential to predict emotional responses on 
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individual trials. In addition, high-frequency features from electrodes located at the edge of 

the montage are also evaluated to assess the ability of EMG activity to predict emotion.

Methods

Participants

The participants were 20 adults (9 men, and 11 woman, ages 22 to 68, median= 31). All 

gave informed consent for the study, which had been reviewed and approved by the New 

York State Department of Health Institutional Review Board.

Stimuli and Procedure

One hundred and ninety-two color pictures were selected from the International Affective 

Picture System (IAPS)(Lang et al., 2008) that represented a range of content as assessed by 

the reported norms for valence and arousal. Average valence ratings for the normed sample 

of the selected items ranged between 1.78 and 8.34 with a mean of 5.30. Arousal ratings 

ranged between 2.00 and 7.29 with a mean of 4.53. Both scales went from 1 to 9.

The participant sat in a reclining chair facing a 94×53-cm video screen 1.5 m away. EEG 

was recorded with 9-mm tin electrodes embedded in a cap (ElectroCap, Inc.) at 64 scalp 

locations according to the modified 10–20 system of Sharbrough et al. (1991). The 

electrodes were referenced to the right ear and their signals were amplified and digitized at 

256 Hz by g.USB amplifiers. BCI operation and data collection were supported by the 

BCI2000 platform (Schalk et al., 2004; Schalk & Mellinger, 2014). Data was collected 

during four daily sessions spread over 1–3 weeks. Each session consisted of 8 runs lasting 

approximately 3 min. each. In each session, the participant rated 96 pictures. Each of the 192 

pictures was rated twice: once in one of the first two sessions and once in one of the last two. 

The participant was given the same instructions used by Lang et al. (1999) (except that the 

numerical ratings were entered on a wireless keypad rather than with paper and pencil). 

During each run, the participant was presented with 12 pictures, each lasting 6 sec, after 

which s/he was prompted to rate the picture on an Unhappy (1) to Happy (9) Scale (i.e., 

valence) and then prompted to rate it on a Calm (1) to Excited (9) scale (i.e., arousal). 

Subjects had up to 12 sec to respond and there was a variable 3–5 sec interval between trials. 

EEG was recorded continuously during the runs.

Offline Analysis

EEG signals from the 64 scalp electrodes were re-referenced according to a Laplacian 

transform with 6-cm inter-electrode spacing (McFarland et. al. 1997). Three frequency 

domain and one time domain feature sets were produced, each consisting of 48 features. 

These features were selected to represent frontal midline theta (2–7 Hz) activity, frontal 

alpha (8–13 Hz) activity, frontal high-frequency (30–55 Hz) activity, and the late positive 

potential.

For the frequency-domain features, the data was evaluated with a 64th-order autoregressive 

spectral analysis (McFarland and Wolpaw, 2008). Amplitudes for 1-Hz-wide spectral bands 

were computed for 1000-msec sliding windows that were updated every 62.5 msec and 
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included the entire 6 sec. of stimulus presentation. The theta feature set included channels 

AFz, F1, Fz, F2, FC1, FCz, FC2 and Cz with 1-Hz bins between 2–7 Hz. The alpha feature 

set included channels F5, F3, F4, F6, FC5, FC3, FC4 and FC6 with 1-Hz bins between 8–13 

Hz. The frontal high-frequency feature set included channels Fp1, Fp2, AF7, AF8, F7, F8, 

FT7, and FT8 with 5-Hz wide bins between 30–55 Hz.

The late positive potential (LPP) data set included channels Fz, FCz, Cz, CPz, Pz, and POz. 

These data were first baseline-corrected using the 100-msec period immediately prior to 

stimulus presentation. Then a 64 point running average was computed and the resulting 

signal was sampled once for each of 8 successive 750-msec intervals beginning with 

stimulus presentation.

Each data set was used to predict valence and arousal ratings by a sparse canonical 

correlation algorithm (Witten et al., 2009) with the R package PMA downloaded from 

CRAN.r-project.org. Both individual and normed ratings were included in the model since 

the sparse algorithm would select those features best predicted by the EEG. The subjective 

ratings were based on 9-point scales which are more readily modeled with regression than 

classified as discrete categories, an issue we have previously discussed (e.g., McFarland and 

Krusienski, 2012). Data from the first two training sessions served as the training set and 

data from the second two sessions served as the test set. Both the training set and the test set 

consisted of ratings on the entire set of 192 pictures. This sparse canonical algorithm is:

(1)

where X is the matrix of predictors (i.e., EEG features), Y is the matrix of values to be 

predicted (i.e., subjective ratings) and u and v are referred to as canonical variates. P1 and 

P2 are the sums of the absolute values for u and v respectively. The terms, c1 and c2 are 

penalties that tend to produce sparse solutions with good correlation when appropriate 

values are selected. For each subject we compared models with the L1 penalty with models 

without a penalty. The PMA package uses a closed-form solution for u and v involving 

eigenvectors. In all of our analyses we evaluated the correlation between the first eigenvector 

of X and that of Y since these account for the most variance. We determined the values of c1 

and c2 using only the training data with the k-fold cross-validation option in the PMA 

package using the default of 7 folds. The canonical correlation algorithm as applied here 

uses what is common to the EEG features to predict what is common to the rating scales. 

The general form of the canonical correlation model is shown in Figure 1.

Results

Table 1 shows the correlations between subjective ratings for the individual participants. 

Correlations between individual valence ratings at time 1 (sessions 1 and 2) and time 2 

(sessions 3 and 4) are all positive and highly significant, indicating that these ratings are 

reliable for each individual. Correlations between the normed (Lang et al., 2008) and 

individual valence ratings are also all positive and highly significant, indicating that our 

sample evaluated these pictures much like the norming sample. This same pattern was 
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present for arousal ratings, although overall the correlations were somewhat lower and in 

one case not significant. Individual correlations between valence and arousal ratings were 

generally similar between time 1 and time 2, but highly variable across subjects. As for the 

normed ratings (Lang et al., 2008), almost all the individual valence/arousal correlations are 

negative (average: r=−0.39, p < 0.0001), but a few are significantly positive (e.g., subjects R 

and O) and a few are essentially non-existent (e.g., subjects L and P). In one person (subject 

N), the correlation between valence and arousal ratings is nearly perfect, suggesting that this 

subject did not treat the two scales differently. Thus, valence and arousal ratings correlate 

differently in different subjects.

The average correlations between time 1 and time 2 were 0.83 for valence and 0.60 for 

arousal. For session 1, the average correlations with the normed values were 0.76 for valence 

and 0.47 for arousal. For session 2, they were 0.81 for valence and 0.47 for arousal. These 

differences between individual and normed ratings were evaluated with repeated-measures 

ANOVAs and are significant for both valence (df= 2/38, F= 8.80, p<0.0007) and arousal 

(df= 2/38, F= 15.29, p< 0.0001) with individual ratings showing higher reliability than their 

correlations with the norms, particularly for arousal ratings. Thus, individual’s ratings were 

in general similar to the normed ratings, but more similar to their own ratings at a different 

time.

Figure 2 shows average topographies of the correlations between valence and arousal ratings 

for four EEG features: frontal midline theta activity, frontal alpha activity, frontal high-

frequency activity, and the LPP. As Figure 2 shows, frontal theta is positively correlated with 

valence ratings in the most frontal sites and negatively correlated with arousal ratings over 

central regions. Similar trends are apparent for frontal alpha. The LPP shows a negative 

correlation with arousal ratings over frontal midline sites and a positive correlation with 

arousal ratings over more posterior midline sites. Finally, high frequency activity shows 

positive correlations with both ratings over temporal sites. For each of these feature sets, 

correlations of all of the features used in modeling were averaged for each subject using 

Fisher’s z-scores. The resulting averages for each feature set were then evaluated with t-tests 

to determine whether this average was significantly different from zero. Only the average 

correlation of theta with arousal was significantly different from zero (df=19, t=−2.62, 

p<0.02). The average correlation of LPP with both valence and arousal were not 

significantly different from zero. For alpha, the correlations with valence and arousal 

averaged over left channels were not significantly different from those averaged over right 

channels.

Figure 3 shows the mean of the first canonical correlation of subjective ratings (i.e., optimal 

weighted average of valence and arousal) for frontal theta, frontal alpha, and the LPP. These 

results were evaluated with an ANOVA with repeated measures on features (theta, alpha, 

LPP), phase (training vs test), and penalty (optimized vs none). As Figure 3 shows, the 

predictions for the training set were considerably higher than those for the test set (df= 1/19, 

F= 231.57, p < 0.0001). Also, frontal theta produced better prediction of subjective ratings 

than the other two features, resulting in a significant main effect for feature type (df= 2/38, 

F= 4.14, p<0.0237). The interaction between these two effects was not significant. The effect 
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of penalty interacted with phase (df= 1/19, F= 9.50, p<0.0061), with the penalized models 

performing slightly better in the training phase.

Table 2 shows validation sample predictions of subjective ratings by the three EEG features 

based on the results of sparse canonical correlation analysis. Also included are results for 

high-frequency frontal activity. Six of the 20 subjects had significant correlations with the 

validation sample models for theta, two for alpha, none for LPP, and two for high-frequency 

activity. Thus, the frontal theta feature produced significant validation sample results in more 

individuals. While the high-frequency feature produced significant results in several 

individuals, the possibility that this may reflect scalp EMG activity cannot be ruled out. Note 

that these high frequency features were all located along the frontal and temporal edges of 

the montage, areas associated with EMG activity (Goncharova et al., 2003).

Table 3 shows validation sample predictions of subjective ratings by the three EEG features 

separately for valence and arousal ratings. Two of the 20 subjects had significant correlations 

with the validation sample models for valence and theta, two for valence and alpha and three 

for valence and LPP. Four of the 20 subjects had significant correlations for arousal and 

theta, none for arousal and alpha, and one for arousal and LPP.

Table 4 shows validation sample predictions of alpha asymmetry scores computed by 

subtracting amplitudes at each frequency of electrodes on the right side of the scalp from 

corresponding values on the left side of the scalp. These are presented for valence, arousal, 

and combined ratings. Two of the 20 subjects had significant correlations with the validation 

sample models for combined ratings, one for the valence ratings, and two for the arousal 

ratings.

Discussion

In the present study, the participants reliably rated IAPS pictures in terms of valence and 

arousal as indexed by within-subject test-retest correlations. However, the relationship 

between valence and arousal ratings varied considerably between individuals. This high 

inter-individual variation in the correlations between valence and arousal ratings has also 

been described in a review of the IAPS by Kuppens et al. (2013) who suggest that the 

meaning of these scales varies between subjects. This fact motivates the use of the canonical 

correlation used in the present study that maximizes the covariance between subjective 

ratings with EEG features. Since the meaning of the rating scales may vary between 

individuals, use of the canonical correlation with individual data insures that the optimal 

relationship with EEG features will be used by the model. Using this methodology, we 

found that reliable prediction of emotional ratings occurred in a subset of subjects. At the 

same time, these correlations are not large.

Frontal midline theta produced significant validation sample results in more individuals in 

the present study. This finding would not have been apparent from a review of the 

psychophysiology literature where effects of group averages are reported since these 

analyses do not provide a way to evaluate the extent to which EEG features predict the 

variance in individual ratings. On the other hand, due to the complexity of interpreting 
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multivariate models (McFarland, 2013), studies that combine many EEG features into a 

complex prediction algorithm do not provide a means of identifying specific EEG features 

with superior prediction accuracy. This is an important issue for any approach that attempts 

to use EEG features for practical purposes. Our concern is with identifying features that 

might be used to modify individuals’ emotional reactivity to specific classes of stimuli. 

Being able to quantify individuals’ reactivity would also be important for other uses of EEG, 

such as clinical diagnosis and treatment evaluation.

Only a fraction of the participants in this study generated models that generalized to new 

data. This is also likely to be the case in group studies that consider average results. The 

fraction of subjects that produce models that generalize to a significant extent probably 

reflects both the emotional reactivity of the subjects as well as the current methodology to 

detect EEG features associated with emotion. The fact that only a fraction of subjects show 

moderate correlations between EEG features and ratings may account for inconsistencies in 

the literature. For example, anterior alpha asymmetry is observed in some studies (e.g., 

Gable & Pool, 2014; Kline et al., 2007) but not others (e.g., Parvaz et al., 2012; Uusberg et 

al., 2014). To some extent this may depend upon the reactivity of subjects (e.g., Gable & 

Pool, 2014; Kline et al., 2007). In the present study, only two out of twenty subjects showed 

significant correlation of frontal alpha with valence ratings and the group mean laterality 

effect was not significant. While we did not explicitly use a difference score, the canonical 

correlation algorithm should have produced model weights that reflect hemispheric 

differences if these were indeed optimal for predicting ratings.

The reaction of individuals to emotional pictures may also vary with the nature of the 

material. For example, Schienle et al (2008) report that individuals with spider phobia have 

more pronounced LPP responses to pictures of spiders than controls, while not differing in 

their response to other materials. Likewise, individuals with cocaine use disorders produced 

an enhanced LPP response to drug-related pictures and a blunted response to pictures 

considered pleasant by controls (Dunning et al., 2011). These examples illustrate the 

idiosyncratic nature of emotional responses to affective pictures. The IAPS collection is a 

heterogeneous group of images that probably elicits quite varied reactions across individuals 

and items. At the same time, this richness of expression is exactly what one might expect 

(and use for personalized medicine purposes) given the varied nature of human emotional 

disorders. Finally, Mauss and Robinson (2009) suggest that there are individual differences 

in awareness (e.g., alexithymia) and willingness (e.g., individuals high in social desirability) 

to report emotional states.

Two of the subjects in the present study showed significant correlations between subjective 

ratings and high frequency features (30–55Hz) located along the frontal-temporal periphery 

of the topography. We selected these sites and frequency ranges to represent what is most 

probably EMG activity (Goncharova et al, 2003). A number of previous studies have used 

high frequency surface recorded EEG activity to evaluate emotion induction by affective 

picture stimuli (e.g., Kang et al., 2014; Martini et al., 2012; Muller et al, 1999). EMG is one 

of the many recordable responses to emotional stimuli (e.g., Baur et al., 2015; Jackson et al., 

2000) and represents a valid marker for emotionality. However, when the intent is to record 

brain activity and use it to modify function, muscle activity is simply a source of artifacts 
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that must be recognized and ignored. This is particularly important for high-frequency scalp-

recorded activity, which may be almost entirely due to EMG contamination (Pope et al, 

2009). Furthermore, if the purpose is to record cranial EMG activity, there are better 

recording and signal processing options than are typically employed in EEG studies.

We intentionally limited the number of EEG features examined in the present study in order 

to avoid overfitting. In addition, the sparse canonical correlation model we used is 

recommended for situations involving many predictors and limited data (Wilms and Croux, 

2015). However the use of the sparse model had only a minor effect. It is likely that the large 

reduction in prediction of the validation data set is due to the fact that this data was collected 

on different days from that used for estimating model parameters. We did this intentionally 

so that the model would be causal. The results suggest that the relationship between emotion 

ratings and the EEG is not reliable in many individuals although there may be a subset that 

does have a more reliable relationship between the two.

Recent interest in identification of EEG correlates of emotion is motivated by diverse 

interests. EEG-based emotion recognition might serve as a form of communication for the 

disabled (Kashihara, 2014). Alternatively it could be used to develop a human-like human-

computer interface (Liu et al, 2014), to control neural stimulation (Widge et al, 2014) or for 

neuromarketing (Kong et al., 2013). Each of these potential applications poses unique 

requirements for research and require a fairly high rate of emotion identification to be 

successful. Emotion recognition could also be used to facilitate emotion regulation (Ruiz et 

al., 2014). Emotion regulation could potentially provide a technology for treating many 

different emotional disorders such as substance abuse or anxiety disorders (Zilverstand et al., 

in press). Emotion regulation applications might not require the same high degree of 

accuracy for success.

For EEG-based emotion regulation, it is necessary to identify EEG features that can be 

detected on single trials, are related to the target emotion, and can be controlled by the 

individual. The present study is concerned with the first two objectives, identifying EEG 

features that can be detected in single trials and are related to the target emotion. Subsequent 

work will evaluate the potential for training individuals to control these EEG features and 

the impact of this training on behavior. The present study is a first effort to identify EEG 

features related to emotion. Further work evaluating alternative emotion generating protocols 

and alternative signal processing methods are likely to improve detection performance 

beyond that reported here.

Conclusion

The relationship between arousal and valence varied across individuals. The prediction of 

subjective ratings on training data was considerably better than was generalization to test 

data. The results suggest that frontal midline theta is a potential candidate for use in BCI-

based modification of emotional reactions.
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Figure 1. 
The canonical correlation model. The boxes on the left represent the observed subjective 

ratings, those on the right represent the observed EEG features. The circles represent latent 

variables: Y1 corresponds to the first canonical variable representing subjective ratings and 

X1 corresponds to the first canonical variable representing EEG features. The value for r 

represents the correlation between these latent variables.
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Figure 2. 
Topographies of average correlations between EEG features and subjective ratings (i.e., 

Pearson’s r averaged over all 20 subjects with Fisher’s z-transform). Theta topographies are 

at 5 Hz, alpha is at 11 Hz, LPP is at 750 msec and the high frequency topography is at 55 

Hz.
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Figure 3. 
Average correlation (Pearson’s r) between the first canonical correlation of EEG features 

and the first canonical correlation of subjective ratings. Means for Train-P (peanalized 

training data) and Test-P are for penalized models and those for Train-NP and Test-NP are 

models without a penalty.
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Table 2

Individual subjects’ correlations (Pearson’s r) between the first canonical correlation for subjective ratings and 

the first canonical correlation for EEG features

Participant Theta Alpha LPP High Freq

A −0.050 0.101 0.103 0.204**

B 0.063 −0.090 0.000 0.030

C −0.046 0.036 0.090 −0.053

D 0.129 0.003 −0.071 0.140

E 0.143* −0.039 −0.079 0.010

F −0.039 0.020 0.063 0.097

G 0.280*** 0.174* 0.023 −0.030

H 0.039 0.010 −0.050 0.016

I 0.060 0.006 0.033 −0.000

J 0.209** 0.146* 0.020 0.091

K 0.111 0.024 0.073 0.057

L 0.276*** 0.070 −0.089 −0.076

M 0.251*** 0.113 −0.056 0.410***

N −0.041 0.001 0.090 0.000

O 0.081 0.019 0.026 0.140

P −0.076 −0.039 0.060 0.073

Q 0.156* 0.009 −0.079 0.054

R 0.070 0.039 0.054 0.031

S −0.090 0.127 −0.050 −0.033

T 0.024 −0.017 0.037 0.047

*
p < 0.05

**
p < 0.01

***
p < 0.001

J Neural Eng. Author manuscript; available in PMC 2018 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

McFarland et al. Page 18

Ta
b

le
 3

In
di

vi
du

al
 s

ub
je

ct
s’

 c
or

re
la

tio
ns

 (
Pe

ar
so

n’
s 

r)
 b

et
w

ee
n 

th
e 

fi
rs

t c
an

on
ic

al
 f

or
 e

ac
h 

ra
tin

g 
sc

al
e 

(v
al

en
ce

 a
nd

 a
ro

us
al

 s
ep

ar
at

el
y)

 a
nd

 th
e 

fi
rs

t c
an

on
ic

al
 

co
rr

el
at

io
n 

fo
r 

E
E

G
 f

ea
tu

re
s

P
ar

ti
ci

pa
nt

T
he

ta
 V

al
en

ce
T

he
ta

 A
ro

us
al

A
lp

ha
 V

al
en

ce
A

lp
ha

 A
ro

us
al

L
P

P
 V

al
en

ce
L

P
P

 A
ro

us
al

A
−

0.
00

6
0.

00
0

−
0.

05
3

0.
11

3
−

0.
15

6*
0.

10
3

B
0.

13
6

0.
01

1
0.

00
9

−
0.

10
7

−
0.

00
3

0.
00

0

C
−

0.
01

1
−

0.
03

3
0.

04
1

0.
13

4
0.

09
0

−
0.

01
3

D
0.

05
4

0.
19

9*
−

0.
01

0
0.

00
1

0.
12

4
−

0.
14

4*

E
0.

01
0

0.
14

1
0.

09
3

−
0.

03
4

−
.0

56
−

0.
07

7

F
−

0.
03

3
0.

03
7

0.
03

0
0.

07
0

0.
05

0
0.

12
0

G
0.

14
0

0.
28

0*
**

0.
17

2*
0.

10
9

0.
08

0
0.

04
0

H
0.

07
3

0.
00

0
0.

05
5

0.
01

0
−

0.
06

0
0.

05
0

I
0.

01
0

0.
07

4
0.

01
0

0.
01

0
0.

12
3

0.
08

7

J
0.

20
0*

*
0.

14
0

0.
14

6*
0.

11
4

0.
12

7
0.

01
9

K
0.

10
7

0.
08

4
0.

01
9

0.
09

7
−

0.
01

3
0.

02
3

L
0.

26
6*

**
0.

20
9*

*
0.

08
0

0.
07

6
−

0.
09

1
0.

07
7

M
0.

00
9

0.
23

0*
*

0.
11

4
−

0.
10

9
0.

04
0

−
0.

03
9

N
0.

00
1

−
0.

04
9

0.
01

5
−

0.
00

7
0.

09
0

−
0.

01
1

O
0.

11
0

0.
00

0
0.

07
1

−
0.

05
0

−
0.

18
0*

0.
01

4

P
−

0.
08

3
0.

06
7

0.
01

8
−

0.
03

4
−

0.
14

4*
0.

06
0

Q
−

0.
00

3
0.

14
0

0.
03

8
0.

07
1

−
0.

07
9

−
0.

02
0

R
−

0.
01

1
0.

07
0

0.
03

5
0.

07
0

0.
02

0
0.

05
0

S
0.

00
9

−
0.

09
0

0.
10

6
0.

09
6

−
0.

03
9

−
0.

04
0

T
0.

02
3

0.
11

7
−

0.
03

0
0.

06
6

−
0.

08
9

0.
04

0

* p 
<

 0
.0

5

**
p 

<
 0

.0
1

**
* p 

<
 0

.0
01

J Neural Eng. Author manuscript; available in PMC 2018 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

McFarland et al. Page 19

Table 4

Individual subjects’ correlations (Pearson’s r) between the first canonical correlation for subjective ratings and 

the first canonical correlation for alpha asymmetry scores

Participant Alpha Combined Alpha Valence Alpha Arousal

A 0.05 0.04 0.05

B −0.01 0.02 −0.01

C 0.09 −0.08 0.09

D 0.11 −0.11 0.10

E −0.24*** −0.06 −0.22**

F −0.06 −0.03 −0.06

G 0.08 0.08 0.08

H 0.04 0.11 0.03

I 0.01 0.07 −0.05

J 0.01 −0.02 −0.08

K −0.02 −0.01 −0.05

L 0.16* 0.19** 0.03

M 0.00 −0.14 −0.03

N −0.09 0.00 0.01

O 0.01 0.05 0.01

P 0.09 −0.02 0.15*

Q 0.01 0.01 −0.03

R 0.09 0.09 0.08

S 0.09 0.08 −0.05

T 0.02 0.04 0.11

*
P < 0.05

**
p < 0.01

***
p < 0.001
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