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Apple-type undulators are globally recognized as the most flexible devices for

the production of variable polarized light in the soft X-ray regime, both at

synchrotron and free-electron laser facilities. Recently, the implementation of

transverse gradient undulators has been proposed to enhance the performance

of new generation light sources. In this paper it is demonstrated that Apple

undulators do not only generate linear and elliptical polarized light but also

variable transverse gradient under certain conditions. A general theoretical

framework is introduced to evaluate the K-value and its transverse gradient for

an Apple undulator, and formulas for all regular operational modes and

different Apple types (including the most recent Delta type and Apple X) are

calculated and critically discussed.

1. Introduction

Since the late 1970s several insertion devices have been

proposed to generate circular polarized light in the soft X-ray

or UV regimes, both in synchrotron and free-electron laser

(FEL) facilities. Although a comprehensive review of these

devices is beyond the scope of this paper (Clarke, 2004), it is

relevant to discuss in more detail the historical development

of Apple (advanced planar polarization light emitter) undu-

lators.

The idea of the first Apple undulator (Sasaki et al., 1993)

was developed two decades later. Four magnetic arrays were

implemented for the first time in a configuration which

generates both linear and circular polarized light. As seen in

Fig. 1, each array consists of a row of pure permanent magnets

arranged in a Halbach magnetic configuration (Halbach, 1983)

which generates a sinusoidal-like profile in both the x- and y-

axes. Only two magnetic arrays standing opposite to each

other are movable along the beam axis to switch from linear to

circular polarization (parallel mode), and a gap drive system

changes the distance between the upper and lower arrays to

set the K-value.

There are currently two other variants of this design called

Apple II (Sasaki, 1994) and Apple III (Bahrdt et al., 2004),

having designs which differ in the magnet cross section (see

Fig. 2). After the implementation of the first Apple II units,

a new operational mode, now called antiparallel mode, was

proposed in order to generate linearly polarized light with

different angles, from linear horizontal to linear vertical

polarization. This operational mode required a change in the

design of the undulator support frame to be able to withstand

the longitudinal forces that are present in this new operational

mode but were negligible in the previous modes. The user

community asked to further extend this mode to cover all

angles (from 0� to 180�), leading finally to the introduction of

four independent movable arrays along the beam axis.
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Since an Apple undulator with four independent arrays no

longer requires a gap drive system to set a different K-value

(Carr, 1991), the implementation of novel devices was trig-

gered. The first of these undulators was developed at the Swiss

Light Source (Schmidt et al., 2007): the device had an Apple II

cross section, no gap drive system (fixed gap) and four inde-

pendent arrays. Recently a new type of device, called Delta

LEPP-CHESS due to the specific shape of its magnets

(Temnykh, 2008), was proposed. Its cross section not only

satisfies the usual axis (x and y) symmetry but also the 90�

rotational symmetry which simplifies the operation. This

device is based on the same operational principles as the

previous fixed-gap undulator type but with a cross section

rotated by 45�, as seen in Fig. 2. This device has now been

adopted as an afterburner at the Linac Coherent Light Source

(LCLS) facility but with the cross section rotated back to the

original symmetry. It is now referred to as Delta (Nuhn et al.,

2015). In 2016 the Apple X was proposed at the Paul Scherrer

Institute for the soft X-ray line of the SwissFEL. It consists of

a Delta cross section where the four arrays can be indepen-

dently displaced both longitudinally and radially. If the four

arrays are displaced radially by the same amount, the 90�

symmetry is preserved for all gaps. At the same time, it is also

possible to displace them to break the symmetry, thus even-

tually introducing a gradient on-axis. The same development is

ongoing at the LCLS and the device is referred as a Delta II

(H.-D. Nuhn, private comunication).

1.1. Advantages and disadvantages of fix-gap operation

The new operational mode, now called energy mode, is

based on the parallel movement of two neighbouring arrays:

the two top arrays (1 and 2) against the two bottom arrays

(3 and 4) or the two left arrays (2 and 3) against the two right

arrays (1 and 4), as illustrated in Fig. 1. The lack of a gap drive

system to change the K-value increases cost effectiveness,

while decreasing design complexity and the weight of the

device. However, this comes with some drawbacks. The

experimental evidence of these limitations was measured at

the Swiss Light Source (Schmidt et al., 2013) and was

explained by the presence of a transversal K gradient. The

resonance condition, expressed in equation (1) below,

� ¼
�U

2�2
1þ

K 2

2

� �
; ð1Þ

where �U is the undulator period length and � is the Lorenz

factor, gives the relation between K and the radiation wave-

length �. In standard operation it is not desired that the

radiation wavelength depends on the transverse position of

the beam because it reduces the intensity of the interference

peaks of the undulator spectrum. However, Schmidt’s work

highlighted for the first time the possibility to operate an

Apple undulator as a variable transverse gradient undulator

(TGU).

Recently, many authors have demonstrated that TGUs may

be useful for certain applications. They can be used to produce

FEL radiation with large energy spread beams generated in

laser-plasma accelerators (Huang et al., 2012). If the electron

energy is correlated to a transverse offset via dispersion and

a TGU is set such that the resonance condition expressed in

equation (1) is preserved for all the electrons, the performance

of the FEL radiation will significantly improve.

A TGU can also be employed to generate ultra-large

bandwidth radiation above the 10% level, which is needed for

selected applications such as crystallography and spectroscopy

(Prat et al., 2016). This will occur when the beam is presented

with a transverse tilt (correlation between the transverse and
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Figure 1
The four magnetic arrays of an Apple undulator are schematically
represented to highlight the basic topology involved in this undulator
concept: array pairs 1–2, 2–3, 3–4 and 4–1 are called neighbouring arrays,
while pairs 1–3 and 2–4 are called opposite arrays.

Figure 2
The different cross sections of Apple-type undulators in chronological
order. In the first row one can find the standard Apple cross sections,
starting with Apple I and II, which are designed for synchrotrons
operated with elliptical vacuum chambers, followed by Apple III for
linac-driven FELs. All three types are regularly equipped with a gap drive
system which is changing the distance between the upper and lower
arrays. In the second row there are the new cross sections called Delta
LEPP-CHESS and Delta, which are designed for linac-driven FELs
without a gap drive system. The last type is called Apple X (at the
SwissFEL project) or Delta II (at the LCLS project), where a new gap
drive system is moving an Apple III cross section in a way that both axis
symmetries and 90� symmetry are guaranteed.



longitudinal positions of the electrons). Standard facilities use

a stepwise tapering of the undulator field (Kroll et al., 1981)

(i.e. the undulator K is constant within an undulator module)

to maximize the extracted FEL pulse energy. A TGU with

variable gap can be used to generate a continuous taper within

the undulator by transversely tilting the module. A continuous

taper allows the extraction of more FEL pulse energy than a

stepwise taper, which can only approximate the optimum

taper along the undulator beamline. The continuous taper

achievable with a TGU can be used to passively lock the FEL

signal to an external laser signal (Saldin et al., 2006). For the

Athos beamline at SwissFEL, a continuous taper over an

undulator modulator via a TGU is mandatory to achieve good

performances since no significant contrast ratios can be

achieved for a stepwise taper (Prat & Reiche, 2015).

In x2 and x3, a general and new theoretical framework

is introduced to demonstrate the presence of a transverse

gradient in an Apple undulator under certain operation

conditions and to provide practical formulas for the actual

operation of these devices. It is interesting to show that this

analytical model also yields the same results published before

(Schmidt & Zimoch, 2007). In addition, new conclusions can

be derived, e.g. a simple relation between the energy shift and

the transverse gradient in elliptical polarization, useful to tune

the device for the new set of operations previously described.

2. Magnetic field model of an Apple undulator

The purpose of this section is to estimate the magnetic field

and its Jacobian in an Apple undulator knowing the field and

the Jacobian of one magnetic array. There are several

computer codes available to calculate the magnetic field

produced by permanent magnets. In this paper, all magnetic

computations are made with the RADIA code (Chubar et al.,

1998).

In an Apple undulator, the magnetic field can be approxi-

mated, with good accuracy, by the sum of the contributions of

the four magnetic arrays, assuming that the permeability of the

magnet material �r = 1. This is a reasonable assumption that

can be made for NdFeB and SmCo magnets. Specifically,

SmCo5 magnets have the lowest permeability (�r < 1.02)

among these families of rare-earth materials and thus they are

the first choice for these applications where the low field

integral over the full operational range is specified and high

remanence (above 1 T) is not required. Thus, the following

mathematical description is traditionally the starting point for

modelling the transverse magnetic field (B = Bxx̂xþ Byŷy) of all

these devices,

BðX; zÞ ¼
P4

n¼ 1

Bn X; z� znð Þ; ð2Þ

where Bn is the transversal magnetic field of the nth array, X is

the vector representing the cross-section plane (xy-plane), z is

the coordinate along the beam axis and zn is the position of the

nth magnetic array along the z-axis. The four arrays are

identical (the field error contributions are not relevant for the

purpose of this study and they are not discussed in this paper)

and their relative positions follow a given symmetry. The

magnetic field generated by each of the four arrays can be

expressed using a linear transformation starting from one of

the arrays. In equation (3) below, the first array is used for this

purpose,

BnðX; zÞ ¼ Rn � B1ðR
�1
n � X; zÞ: ð3Þ

For standard Apple devices, the following matrices can be

used to describe the relative position and symmetries among

the arrays (the Delta LEPP-CHESS type does not directly

follow this role but can easily be included in this theoretical

framework as will be clarified later in x4.3),

R1 ¼
þ1 0

0 þ1

� �
; R2 ¼

�1 0

0 þ1

� �
;

R3 ¼
�1 0

0 �1

� �
; R4 ¼

þ1 0

0 �1

� �
:

ð4Þ

The next step in this analysis is the description of the z-axis in

the Fourier domain. The field generated by the nth array

transforms as follows,

B̂BnðX; !Þ ¼
Rþ1
�1

BnðX; zÞ exp �i!zð Þ dz; ð5Þ

where the circumflex (^) indicates that the function is defined

in the Fourier domain. There are two main advantages of

adopting this formal description. The first advantage is related

to the periodicity of the magnetic field along the z-axis of an

undulator and its natural description of the Fourier domain.

Moreover, it is usually enough to use the first harmonic to give

an estimation of the field profile, thus reducing it to a single

complex number (i.e. a phasor). The second advantage is

related to the substitution of a translation into a product with

a complex number.

Assuming a pure sinusoidal profile of the field along the

z-axis with the periodicity of the undulator (the theoretical

framework of this analysis can be extended to the full Fourier

spectrum but it is beyond the purpose of the present publi-

cation), the n-array field profile can be simplified,

B̂BnðX; !Þ ¼ B̂BnðXÞ � ð�=2Þ1=2
�
�ð!� !0Þ þ �ð!þ !0Þ

�
; ð6Þ

where the xy-plane dependence is factorized with the Fourier

space part. Here, the same symbol is used for two different

functions to simplify the notation since the ! dependence will

not play an active role any longer. For the same reason, the

� functions will no longer be considered in the following

equations,

B̂BðXÞ ¼
P4

n¼ 1

exp i�nð ÞRn � B̂B1 R�1
n � X

� 	
; ð7Þ

where the shifts in the z-axis are now substituted by four

complex numbers with phase �n = 2�zn=�U. As a result of this

approach, it is now simpler to express the Jacobian

ĴJðXÞ ¼
P4

n¼ 1

exp i�nð ÞRn � ĴJ1ðR
�1
n � XÞ � R

�1
n ð8Þ
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as a function of the Jacobian of the first-term array,

ĴJ1 ¼
@xB̂B1x @yB̂B1x

@xB̂B1y @yB̂B1y

" #
: ð9Þ

For the purpose of this publication, the main interest is

focused on the field properties on the undulator axis, i.e. for

X = ð0; 0Þ. To further simplify the notation, all functions

without explicit xy-plane dependence must be assumed to be

evaluated on the axis from this point onwards. Following this

rule, equations (7) and (8), respectively, become

B̂B ¼
P4

n¼ 1

exp i�nð ÞRn

� �
� B̂B1 ð10Þ

and

ĴJ ¼
P4

n¼ 1

exp i�nð ÞRn � ĴJ1 � R
�1
n : ð11Þ

The components of B̂B1 and ĴJ1 are assumed to be real numbers

for the remainder of the paper. Since the average row phase is

arbitrary, it will not affect the final results. Hence, it can be

equated to zero for the sake of convenience.

Using the following change of variables,

’1 ¼ �1; ’2 ¼ �2; ’3 ¼ �3 þ �; ’4 ¼ �4 þ �; ð12Þ

the linear horizontal polarization (pure vertical field) is

recovered when ’1 = ’2 = ’3 = ’4 = 0, which is the config-

uration where all arrays are traditionally considered at zero

mechanical position, i.e. zero shift position. Defining the

following auxiliary Z�ð’1; ’2; ’3; ’4Þ functions,

Zx ¼ exp i’1ð Þ � exp i’2ð Þ þ exp i’3ð Þ � exp i’4ð Þ;

Zy ¼ exp i’1ð Þ þ exp i’2ð Þ þ exp i’3ð Þ þ exp i’4ð Þ;

Zxx ¼ exp i’1ð Þ þ exp i’2ð Þ � exp i’3ð Þ � exp i’4ð Þ;

Zxy ¼ exp i’1ð Þ � exp i’2ð Þ � exp i’3ð Þ þ exp i’4ð Þ;

ð13Þ

it is possible to write equations (10) and (11) in the following

explicit forms,

B̂B ¼
Zx 0

0 Zy

� �
B̂B1 ¼ Z � B̂B1; ð14Þ

ĴJ ¼ Zxx

@xB̂B1x 0

0 @yB̂B1y

� �
þ Zxy@xB̂B1y

0 1

1 0

� �
; ð15Þ

and for the highly symmetric case (relevant for later discus-

sion), where @xB̂B1x = @yB̂B1y, the Jacobian is simplified to the

following expression,

ĴJ ¼ Zxx@xB̂B1xIþ Zxy@xB̂B1yE; ð16Þ

where I and E are, respectively, the identity and exchange

matrix of rank 2. To summarize, there are four complex

numbers which fully describe the status of the magnetic system

in the neighbourhood of the undulator axis, and depend on the

relative phase of the four arrays. Each Z� is the sum of four

complex numbers  �n (note that j j = 1) representing the

status of the array,

Z� ¼
P4

n¼ 1

 �
n : ð17Þ

As a bookkeeping device, it is convenient to define the

following matrix,

W ¼ ff �
n


 �
; ð18Þ

where the phase of each complex number is explicitly saved.

To be more specific, an application for equation (18) for linear

horizontal polarization is shown in equation (19) below,

n¼ 1 2 3 4

# # # #
�¼ x ! 0 � 0 � ! Bx

y ! 0 0 0 0 ! By
xx ! 0 0 � � ! @xBx; @yBy
xy ! 0 � � 0 ! @xBy

ð19Þ

where each column represents one magnetic array and each

row shows a specific property of the magnetic field. For

instance, the first line represents the phases of the four

complex numbers defining the x component of the magnetic

field. In this matrix representation, a shift of a magnetic array

is equivalent to the addition of the same phase to the column

corresponding to the magnetic array. Following this pattern,

the elliptical polarization (parallel operational mode, p) and

the linear inclined polarization (antiparallel operational mode,

�pp) are, respectively, summarized by the following matrices,

�p �p

# #

0 � 0 �
0 0 0 0

0 0 � �
0 � � 0

;

� �pp

#

0 � 0 �
0 0 0 0

0 0 � �
0 � � 0

"
�� �pp

; ð20Þ

while the energy shift modes (mandatory modes for fixed-gap

devices to set the K-value and change the photon energy) are

represented by the following matrices, for the top–bottom

mode (arrays 1 and 2) and for the left–right mode (arrays 2

and 3), respectively (as seen in Fig. 1),

�e �e

# #

0 � 0 �
0 0 0 0

0 0 � �
0 � � 0

;

�e �e

# #

0 � 0 �
0 0 0 0

0 0 � �
0 � � 0

: ð21Þ

Knowing the magnetic field and its gradient is the first step

towards a correct understanding of the electron dynamic along

the undulator axis. A detailed study of the actual orbit is

beyond the scope of this paper. During this investigation, the

electrons are assumed to wiggle in a parallel and closed

fashion (i.e. in the neighbourhood) to the undulator axis. In

the following section, the undulator K and its gradient are

estimated by starting with the results and assumptions

presented in x2.
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3. Estimation of the K-value and its gradient

Defining 	 as the coefficient to convert the magnetic field

domain into the K domain,

	 ¼
e�U

2�mc
¼ 0:9336 ½1=ðT cmÞ� �U; ð22Þ

where �U is the undulator period length, e and m represent the

charge and the mass of the electron, respectively, and c defines

the speed of light, it is practical to describe the vector

K ¼ 	B̂B; ð23Þ

which simplifies the definition of K directly in the Fourier

space (there is no need to transform back to the z-axis

domain),

K 2 � K � K	 ¼ Kx

�� ��2þ Ky

�� ��2: ð24Þ

From equation (24) it is possible to estimate K for all oper-

ating modes as it is presented in x4. Continuing with the

estimation of the K gradient, the first step is the differentiation

of equation (24) both in x and y (for this intermediate step it is

simpler to go back to x and y components separately),

2K@xK ¼ @x Kx

�� ��2þ @x Ky

�� ��2;
2K@yK ¼ @y Kx

�� ��2þ @y Ky

�� ��2: ð25Þ

Re-using the definition of the complex conjugate (zz	 = jzj2),

expression (25) above can be further simplified, giving

@xK ¼ <ð@xKx�
	
x þ @xKy�

	
yÞ;

@yK ¼ <ð@yKx�
	
x þ @yKy�

	
yÞ;

ð26Þ

where C = K=K. To further summarize this important result, it

is possible to express it in matrix form in terms of the eval-

uated magnetic field. Noting that the Jacobian of K is

proportional to the Jacobian of B, as is inferred from (11), the

gradient of K can be finally expressed in the following

compact form,

rrrK ¼ 	 � < ĴJ � C 	
� 	

; ð27Þ

or explicitly as a function of the magnetic field,

KrK ¼ 	2
� < ĴJ � B̂B

	

 �

: ð28Þ

The right-hand side of equation (28) can be written as a

function of the Z� numbers,

ĴJ � B̂B
	

¼ Zxx

@xB1x 0

0 @yB1y

� �
Z	B̂B

	

1 þ Zxy@xB1yEZ	B̂B
	

1; ð29Þ

as well as K,

K ¼ 	 ZB̂B1 � Z
	B̂B
	

1


 �1=2

: ð30Þ

In the symmetric case where @xB1x = @yB1y, equation (29)

simplifies to the following final expression,

ĴJ � B̂B
	

¼ Zxx@xB1xIþ Zxy@xB1yE
� 	

Z	 � B	1 : ð31Þ

4. Analysis of the operational modes

In this section, equations (24) and (27) are solved for the two

operational modes: parallel (�p) and antiparallel (� �pp). In both

cases, the equations are directly derived by also assuming an

energy shift (�e). The domain of �e 2 ½��; �� is restricted to

simplify the formulas and to guarantee that all functions are

analytical, especially the gradient. From equations (24) and

(27) it is effortless to demonstrate that K and its gradient are

invariant with respect to an arbitrary phase, as it should be for

this calculation to become consistent with the evidence that

the properties of the undulator do not depend on its long-

itudinal location. Subsequently, this result will also be used

to simplify the phase shift definition, even when the shift

produces a net displacement of the undulator structure. On

the contrary, in a device which is installed on a beamline, it is

important to keep its longitudinal position fixed, in order to

prevent the actual source point from moving.

4.1. Apple I, II and III

In standard Apple undulators (I, II, III), only the symmetry

expressed in equation (4) is satisfied and usually B1y=B1x =

r > 1. Solving for equation (24) for the parallel operational

mode (elliptical light) using the following phase values for ’n,

’1 ¼ þ�e þ �p; ’2 ¼ þ�e;

’3 ¼ þ�p; ’4 ¼ 0;
ð32Þ

the K-value is equal to

K ¼ 2
ffiffiffi
2
p
	B̂B1 cos 1

2�e; ð33Þ

where

B̂B1 ¼ B̂B2
1x 1� cos �p

� 	
þ B̂B2

1y 1þ cos�p

� 	� �1=2
: ð34Þ

The K gradient can be obtained by solving equation (27).

Equation (35) shows the results for top–bottom shift,

@xK ¼ G0 sin 1
2�e sin�p;

@yK ¼ 0;
ð35Þ

where G0 = 2
ffiffiffi
2
p
	ðB̂B1x@xB̂B1x � B̂B1y@xB̂B1yÞ=B̂B1, while equation

(36) shows the results for the left–right shift,

@xK ¼ 0;

@yK ¼ G0 sin 1
2�e sin�p:

ð36Þ

The relative variation of K with respect to K is the actual

relevant parameter for some applications,

@xK

K
¼

G0

K0

tan 1
2�e sin�p; ð37Þ

where K0 = 2
ffiffiffi
2
p
	B̂B1. The condition to move from elliptical

polarization to circular polarization is jKxj = jKyj, which

corresponds to a phase

�p ¼ 
�c ¼ 
2 arctan r; ð38Þ

where the positive sign (+) indicates the anticlockwise circular

polarization and the negative sign (�) shows its clockwise
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counterpart, looking in the direction of the electron. For the

linear inclined mode, the phase is defined by

’1 ¼ þ�e þ � �pp; ’2 ¼ þ�e;

’3 ¼ �� �pp; ’4 ¼ 0:
ð39Þ

Using equation (24), the K-value is given by

K ¼ 4	 B̂B2
1xS2 þ B̂B2

1yC2
� 	1=2

;

S ¼ sin 1
2� �pp

� 	
sin 1

2 ð� �pp þ �eÞ
� �

;

C ¼ cos 1
2� �pp

� 	
cos 1

2 ð� �pp þ �eÞ
� �

;

ð40Þ

and the angle of the magnetic field, defined as tan 
 =

jKyj=jKxj, is calculated in equation (41) below,

tan 
 ¼ r cot 1
2� �pp � cot 1

2 � �pp þ �e

� 	
: ð41Þ

When �e = 0, equation (40) simplifies to the more familiar

result

K ¼ 4	 B̂B2
1x sin4 1

2� �pp þ B̂B2
1y cos4 1

2� �pp

� 	1=2
; ð42Þ

tan
 ¼ r cot2 1
2� �pp: ð43Þ

As a corollary of this general description, it is possible to

recover the results (Schmidt & Zimoch, 2007) referred to as

symmetry phase. In equation (44) below, the condition of K is

independent of � �pp,

@K

@� �pp

¼ 0; ð44Þ

leading to the following interesting result,

� �pp ¼ 
�c; ð45Þ

K ¼ 4	B1x sin 1
2�c; ð46Þ


 �eð Þ ¼
1
2 �
 �c � �eð Þ; ð47Þ

where the angle of polarization can be linearly varied with the

former energy shift as a function of �e while keeping K

constant. This special mode naturally requires a gap drive

system to change the photon energy (K).

4.2. Apple X (Delta II) and Delta

In an Apple X undulator, B̂Bx1 = B̂By1 and @xB̂Bx1 = @yB̂By1 for all

gaps. This is due to the radial displacement of the magnetic

array, as seen in Fig. 2. This undulator cross section not only

respects the symmetries to the main axis as all standard Apple

undulators do, but also the symmetry with respect to a 90�

rotation. This geometry simplifies all the results obtained in x3.

It can be proven that the phase of the circular polarization �c

is gap independent and equal to �=2, thus there is no need to

correct the parallel shift position to recover the condition:

jKxj = jKyj. This simplifies the operation of the device, both in

terms of modelling and manipulation, which should also help

to reduce the ageing of the mechanical parts. The K-value

now depends only on the gap and energy shifts and can be

expressed as shown in equation (48) below,

K ¼ 4	B̂Bx1 cos 1
2�e; ð48Þ

where B̂B1 simplifies to
ffiffiffi
2
p

B̂Bx1 which depends only on the gap.

Equation (48) does not depend on the parallel shift �p any

longer. Therefore, the K-value for a given gap is the same for

all elliptical configurations (including the special case of

circular polarization) and thus substantially simplifies the

operation of the device. The K gradient maintains the same

formal expression as in equations (35), (36) and (37) while G0

and K0 simplify as shown in the equations below,

G0 ¼ 2	 @xB̂B1x � @xB̂B1y

� 	
; ð49Þ

K0 ¼ 4	B̂Bx1: ð50Þ

These parameters are no longer dependent on �p, but are now

only dependent on the gap. It is therefore possible to further

simplify the previous expressions of the K gradient for circular

polarization (specifically for �p = �/2) and to explicitly write

them as a function of K,

@xK ¼ G0 1� �2
� 	1=2

ð51Þ

and

@xK

K
¼

G0

K0

1� �2ð Þ
1=2

�
; ð52Þ

where � = K=K0. When K = 0 the gradient is maximized to the

value G0.

For the inclined mode, equation (40) simplifies to the

following expression,

K ¼ 2	B̂B1x 2þ cos�e þ cos �e 
 2� �pp

� 	� �1=2
; ð53Þ

where the positive sign (+) corresponds to the top–bottom

energy shift and the negative sign (�) corresponds to the left–

right energy shift. As found in the general case, there are no K

gradients for linear polarization of Apple X. All the results

presented in this section also hold for the Delta undulator

type, with the unique distinction that in this design no system

is available to set the gap.

4.3. Delta LEPP-CHESS

To analyse the Delta LEPP-CHESS type undulator, the

symmetry seen in equation (4) is no longer valid. On the

contrary, this cross section follows a symmetry with respect to

the 45� axes. To study this cross section, it is possible to use a

rotational symmetry in steps of 90� in place of equation (4),

Rn ¼
0 �1

1 0

� �n�1

: ð54Þ

Following the analysis defined in x2 and x3, it is then possible

to estimate the field and the gradient. Instead of applying this

methodology, the previously calculated Z� functions can be

used directly after applying a simple axis rotation of 45�,

Q ¼
1ffiffiffi
2
p

1 �1

1 1

� �
; ð55Þ
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to equation (10) and to equation (11), respectively, QB̂B and

QĴJQ�1. This approach also allows the use of the previously

calculated magnetic field and Jacobian in the original refer-

ence frame and their properties: B̂Bx1 = B̂By1 and @xB̂B1x = @yB̂B1y.

Therefore, the main results of this calculation are expressed as

follows,

B̂Bx

B̂yBy

" #
¼

1ffiffiffi
2
p

Zx �Zy

Zx Zy

� �
�

1

1

� �
B̂B1x; ð56Þ

@xB̂Bx

@yB̂By

" #
¼

Zxx �Zxy

Zxx Zxy

� �
�
@xB̂B1x

@yB̂B1x

" #
; ð57Þ

@yB̂Bx ¼ @xB̂By ¼ 0: ð58Þ

The K-value for the parallel mode is identical to the one

evaluated for the Apple X case and is repeated for comple-

teness’ sake in equation (59) below,

K ¼ 4	B̂Bx1 cos 1
2�e: ð59Þ

The K gradient, on the contrary, is present simultaneously in

both planes as calculated in equation (60) below,

@xK ¼ 
 1ffiffi
2
p G0 sin 1

2�e sin�p;

@yK ¼ þ 1ffiffi
2
p G0 sin 1

2�e sin�p;
ð60Þ

where the positive sign (+) represents the top–bottom energy

shift and the negative sign (�) stands for the left–right energy

shift. This is the major difference between this device and all

other devices that are analysed in this paper. Its imple-

mentation in a facility has to be carefully evaluated by also

taking into account the result of equation (60).

For the antiparallel mode, the results follow the general

rule: no K gradient is present. The expression of K is very

similar to that observed for Apple X [equation (53)], except

for a change in sign. No change in signs is seen for the top–

bottom and the left–right shifts, as shown in equation (61)

below,

K ¼ 2	B̂B1x 2þ cos�e þ cos �e þ 2� �pp

� 	� �1=2
: ð61Þ

5. Model versus simulation for the Apple X

The transversal gradient of an Apple X undulator has been

evaluated with the help of the computer code RADIA to

verify the quality of the analytical approach presented in this

article and to highlight its limitations. The formulas derived for

K have already been proven by other authors and are widely

supported by experimental results. Thus, only the results

concerning the transverse gradient are reported in this section.

The geometry and the material properties of the magnetic

structure are presented in Fig. 3 and in Table 1, respectively.

To evaluate equation (51), the first step is to numerically

calculate K0 and G0 as formulated in equations (50) and (49),

respectively (see Fig. 4). The results of both calculations are

fitted with the following function (used for the K versus gap of

a hybrid magnetic structure),

A exp �b
g

�U

þ c
g2

�2
U

� �
; ð62Þ

where the independent variable g is the gap. In Table 2 the

coefficients are listed for both K0ðgÞ and G0ðgÞ. In Fig. 5,

equation (51) is estimated both analytically (solid line) and

numerically (markers). For completeness’ sake, equation (52)

is presented in Fig. 6. There is a very good agreement between

the analytical model and the numerical calculation, and the
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Figure 3
Magnetic model of the Apple X undulator used for the example. The
actual model consists of eight periods while in this picture only four have
been drawn.

Table 1
Simulation parameters for the Apple X example.

Parameter Unit

�U 40.0 mm
Magnet material Sm2Co17 –
Remanence 1.08 T
Number of periods 8 –
Magnet edge 30.0 mm
Magnet chamfer 5.0 mm

Figure 4
The values of K0 and G0 have been calculated as a function of the
undulator (Apple X) gap. The numerical calculation (red markers) are
presented together with the fitting functions (solid black line) introduced
in equation (62).



small deviations (the analytical approximation underestimates

the gradient) are due mainly to the nonlinearity of the

magnetic material which has been neglected and not to the

single harmonic approximation.

It is also important to study the behaviour of the function in

the neighbourhood of K = 0. From the definition of K in

equation (24), it is already clear that the gradient must be zero

when K is zero and a smooth transition is expected while

approaching this value but this is not present in the analytical

approximation.

In Fig. 7, a simulation is presented for a gap of 3.0 mm with

a finer mesh of K. Depending on the definition of the

numerical derivative (in the specific example the calculations

are made with �x equal to 0.1 mm and 2.0 mm), it is possible

to estimate the transition to zero. For the applications it is

important to estimate the extension of the linear region where

the gradient is correctly approximating the field profile. From

the example there is a clear difference between the region of

0.1 mm, where the analytical approximation very accurately

describes the value of gradient almost down to K = 0, and the

region of 2 mm, where the analytical approximation already

fails below K = 1.

6. Conclusions

In Apple undulators it is mandatory to implement a gap drive

system to decouple K from its gradient. The possibility to

independently introduce a K gradient both in the x- and in the

y-plane gives rise to the possibility of developing novel oper-

ating modes in synchrotron and FEL facilities. The imple-

mentation of fixed-gap devices has to be evaluated to fit the

facility requirements. While the reduced costs and simplified

logistics (due to the reduced weight) are attractive options, the

coupling between K and @x;yK might be a serious issue. Apple

X (Delta II) undulators improve the operation of the insertion

device due to the higher degree of symmetry for any K. These

undulators feature the unique property of controlled asym-

metries (as far as each array has to be independently displaced

in the radial direction) which can be used to introduce

gradients in any polarization, which, for standard Apple

devices, is limited to elliptical polarization. The details of this

operation and the calculation of the scaling laws nevertheless

require further studies and can be the subject of a new article.
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Figure 5
Horizontal component of the K gradient versus K for different gaps. The
analytical model (solid line) is presented together with the computer
simulation made with RADIA (red square markers).

Figure 6
Horizontal component of the K gradient relative to K versus K for
different gaps. The analytical model (solid line) is presented together with
the computer simulation made with RADIA (red square markers).

Figure 7
The horizontal component of the K gradient versus K is presented for a
gap of 3.0 mm for both the analytical model (solid black line) and the
RADIA simulations. Two numerical results are presented, one (solid red
line) calculates the derivative using �x = 0.1 mm, the other (dashed blue
line) using �x = 2.0 mm.

Table 2
Fitting parameters for the analytical gradient estimation.

A b c

K0 5.1295 5.6845 0.7821
G0 285.42 m�1 7.8497 1.9248
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