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Species Distribution Models (SDMs) combine information on the geographic occurrence of species with
environmental layers to estimate distributional ranges and have been extensively implemented to answer a
wide array of applied ecological questions. Unfortunately, most global datasets available to parameterize
SDMs consist of spatially interpolated climate surfaces obtained from ground weather station data and
have omitted the Antarctic continent, a landmass covering c. 20% of the Southern Hemisphere and
increasingly showing biological effects of global change. Here we introduce MERRAclim, a global set of
satellite-based bioclimatic variables including Antarctica for the first time. MERRAclim consists of three
datasets of 19 bioclimatic variables that have been built for each of the last three decades (1980s, 1990s
and 2000s) using hourly data of 2m temperature and specific humidity. We provide MERRAclim at three
spatial resolutions (10 arc-minutes, 5 arc-minutes and 2.5 arc-minutes). These reanalysed data are
comparable to widely used datasets based on ground station interpolations, but allow extending their
geographical reach and SDM building in previously uncovered regions of the globe.

Design Type(s) observation design • time series design

Measurement Type(s) temperature of air • atmospheric water vapour

Technology Type(s) computational modeling technique

Factor Type(s) temporal_interval • spatial resolution • climatic variable

Sample Characteristic(s) Earth
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Background & Summary
The application of species distribution modelling (SDM) has boomed during the past ten years in the
fields of biogeography, macro-ecology and conservation biology1. SDMs combine information on species
occurrence with environmental characteristics to estimate the suitable distributional area2. The theory
behind this relationship has been developed since the beginning of the 20th century3. From a macro-
ecological perspective, climate-richness models based on water-energy dynamics4 have also displayed
solid predictive ability to forecast responses to climate change (e.g., woody plants5). These models are
built with environmental variables such as temperature and specific humidity, which are also
physiologically meaningful6–12 in different parts of the globe13–15. The advent of GIS and the increased
availability of global environmental data in recent years have favoured the proliferation of diverse kinds
of SDMs intended to answer a wide range of applied ecological questions2 (e.g., discovering biodiversity,
conservation planning, health security, invasion ecology).

In the current macro-ecological research scene, WorldClim16 has become a most valuable and widely
used source to retrieve high-resolution GIS climatic layers to build SDMs. These layers consist of spatially
interpolated climate surfaces for global land areas obtained from weather station data using splines.
WorldClim provides among other datasets 19 bioclimatic variables derived from precipitation and
temperature records for the period 1950 to 2000. This set of bioclimatic variables describes temperature
and water related annual tendencies, seasonality and extreme climatic conditions, including a
combination of both environmental factors.

Despite the extensive application of WorldClim data in SDM approaches, some limitations have been
recently identified as inherent to the usage of climatic datasets based on ground station interpolations17.
While a high number of weather stations are spatially scattered to intensively survey the climatic conditions
of highly urbanised countries, some large areas of the globe are not covered by a dense number of weather
stations. For instance, some geographical areas at high latitudes and altitudes (such as Greenland), which are
forecasted to undergo a dramatic temperature increase under current climate change scenarios18,19, lack
direct climatic information from weather stations. Furthermore, a complete continental landmass as the
Antarctic is omitted in WorldClim. Investigating the climate-driven redistribution of biodiversity in a
warming planet would benefit from a detailed climatic description of these zones.

In parallel to the development and wide circulation of WorldClim, global-level satellite data collections have
also become increasingly available and reanalyses of this information have served to deliver a set of physical and
chemical variables to characterize the climatic conditions of the Earth’s surface1. These reanalyses combine a
background forecast model and data assimilation routines. Then, the data assimilation fuses the available
observations with the forecasts to produce uniform gridded data. Therefore, those areas accumulating more
observation tools (grounded and remote) have higher accuracy levels, while those with low sampling effort are
estimated using the forecast model. Remotely sensed information has improved the performance of SDMs17,
including models aimed to assess the establishment of non-indigenous species in Antarctica20,21. In this context,
the Modern Era Retrospective-analysis for Research and Applications (MERRA) is a NASA atmospheric data
reanalysis of satellite information containing 28 data products with several variables each22.

Here, we have reproduced the computation and interpolation methods of WorldClim23 to generate
MERRAclim, a global set of satellite-based bioclimatic variables. MERRAclim consists of three datasets of

Figure 1. Structure of the MERRAclim dataset. (a) the temperature-only bioclimatic variables (BIO1-BIO7

& BIO10–11) are provided at 3 resolutions (coloured maps; 2.5 arc-minutes, 5 arc-minutes, 10 arc-minutes).

For each resolution, a single dataset is available per decade (white boxes with red label; 1980s, 1990s, 2000s);

(b) The humidity-related bioclimatic variables (BIO8–9 & BIO12–19) are provided at 3 resolutions (coloured

maps). For each resolution three alternative versions are available (Vmax, Vmean, Vmin) per decade (white boxes

with red label).
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19 bioclimatic variables that have been built for each of the last three decades using hourly data from the
1st of January 1981 to the 31st of December 2010. MERRAclim bioclimatic variables are computed from
geographically homogeneous temperature and specific humidity gridded data and, hence, benefit from
the same assimilation technique across the globe, including Antarctica. MERRAclim (Data Citation 1)
datasets are derived from MERRA data, which has been extensively validated in the literature. We also
provide a quantitative comparison of MERRA data and Antarctic Meteorological stations. The resolution
of the gridded data has been done using a spline method to provide MERRAclim bioclimatic variables at
three different resolutions (Fig. 1). We provide a comparison with WorldClim16 to facilitate the
interpretation of future MERRAclim-based results with past research based on WorldClim.

Figure 2. MERRAclim processing step by step. Computational steps followed to create the bioclimatic

variables for each decade.
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Methods
Step 1: We used 2 m air temperature (Kelvin degrees) and 2 m specific humidity (kg of water/kg of air)
hourly data from the Modern Era Retrospective Analysis for Research and Applications Reanalysis22

(MERRA) 2D Incremental Analysis Update atmospheric single-level diagnostics product (short name:
MAT1NXSLV) provided by the NASA Global Modelling and Assimilation Office from the 1st of January
1981 to the 31st of December 2010 (Fig. 2). Specific humidity is an absolute measure of humidity which
indicates the real amount of water present in the atmosphere that, contrarily to relative humidity, is not
affected by changes in pressure or temperature24.

Step 2: After opening the downloaded NetCDF files using the R package RNetCDF25, for each month
of the 30 year series, minimum and maximum temperature and specific humidity were extracted.

Step 3: For each year, three sets of bioclimatic variables were generated using the ‘biovars’ function of
the R package dismo26. This function uses monthly minimum and maximum temperature and
precipitation (mm) of the 12 months of a year following WorldClim protocols. Bioclimatic variables in
WorldClim are: BIO1: Annual Mean Temperature, BIO2: Mean Diurnal Range, BIO3: Isothermality,
BIO4: Temperature Seasonality, BIO5: Max Temperature of Warmest Month, BIO6: Min Temperature of
Coldest Month, BIO7: Temperature Annual Range, BIO8: Mean Temperature of Wettest Quarter, BIO9:
Mean Temperature of Driest Quarter, BIO10: Mean Temperature of Warmest Quarter, BIO11: Mean
Temperature of Coldest Quarter, BIO12: Annual Precipitation, BIO13: Precipitation of Wettest Month,
BIO14: Precipitation of Driest Month, BIO15: Precipitation Seasonality, BIO16: Precipitation of Wettest
Quarter, BIO17: Precipitation of Driest Quarter, BIO18: Precipitation of Warmest Quarter and BIO19:
Precipitation of Coldest Quarter.

For MERRAclim we used specific humidity (kg of water/kg of air) instead of precipitation (mm)
values. To allow users’ choice of the most appropriate data for their ecological work we produced three
versions of bioclimatic variables which depend on the specific humidity value used to produce them:
a first one using monthly maximum specific humidity (Vmax), a second one using monthly mean specific
humidity (Vmean) and a third one using monthly minimum specific humidity (Vmin).

Step 4: Once the 30 datasets of bioclimatic variables (one for each year) and their respective three
versions (Vmax, Vmean, Vmin) were created, we merged them by calculating the mean for each decade
(1980s, 1990s, 2000s) thus obtaining the following datasets: 80s(Vmax), 80s(Vmean), 80s(Vmin); 90s(Vmax),
90s(Vmean), 90s(Vmin); 00s(Vmax), 00s(Vmean), 00s(Vmin). Spatial resolution of these datasets corresponds
to the one of original MERRA raw data: 40 min of latitude and 30 min of longitude.

Step 5 (Fig. 1): Each dataset has been interpolated using the Spline geoprocess of type regularised,
which yields a smooth surface and smooth first derivatives in ArcMap27, to obtain the datasets
at the same three coarsest resolutions available in WorldClim (10 arc-minutes, 5 arc-minutes and
2.5 arc-minutes). Since its initial release to the public in 2005, WorldClim has been cited by 6,060
scientific papers, of which almost one fifth had a focus on SDMs (ISI Web of Science literature survey
based on the search-string: TOPIC= ’SDM’ OR ‘Species Distribution Model*’ OR ‘ENM’ OR
‘Environmental Niche Model*’; 19th of December 2016).

Spline is a deterministic interpolation method that has been shown to deliver similar results and
sometimes slightly underperform when compared to Kriging28–31 (a stochastic method). Nevertheless, it
has been commonly considered as appropriate for interpolation of densely sampled environmental
variables32, for instance to produce WorldClim16, as it does not assume the process is normal nor
stationary. Instead, the spline approach is based on the assumptions that the interpolation function passes
through the data points and at the same time is as smooth as possible. This assumption is important as it
implies that the data between two points that might be very different because of their physical
characteristics will differ more depending on the interpolation technique used. Indeed, the absolute
difference between the values obtained via Kriging and Spline of MERRAclim show that the littoral and
high elevation areas have the larger bias that might reach 10 °C for BIO1 and 0.004 kg/kg for BIO12
(Supplementary Fig. 1).

Step 6: The final values have been multiplied by 10 for the temperature related variables (BIO1-BIO11)
and by 100,000 the humidity related variables (BIO12-BIO19) to store the information as integers and
therefore using rasters with a smaller depth of pixel allowing a faster download and easier manipulation
in GIS software.

Step 7: As the biovars function was designed to be used with precipitation, not specific humidity, some
of the resulting bioclimatic variables needed to be divided to have ecological meaning. Accordingly, the
resulting BIO12 has been divided by 12 to obtain the final MERRAclim BIO12, which describes the
annual mean of specific humidity instead of cumulative annual rainfall. The resulting BIO16, BIO17,
BIO18 and BIO19 have all been divided by 3 so that the corresponding final MERRAclim variables
inform on quarterly means instead of cumulative quarterly precipitation.

Code availability
Code is available in Supplementary File 1.

Data Records
The MERRAclim dataset (Data Citation 1,Fig. 1) is provided for three decades (1980s, 1990s and 2000s)
in three versions (Vmin, Vmean and Vmax) and at three spatial resolutions (10 arc-minutes, 5 arc-minutes
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and 2.5 arc-minutes). We provide users with the three versions so they can choose the one that best meets
their research needs. Example layers for BIO1 and BIO12 from the 2000s decade Vmin at 10 arc-minutes
resolution are depicted in Fig. 3. The datasets are zipped folders and are named following the convention:
resolution_version_decade. Each folder contains the 19 bioclimatic variables (Table 1) as georeferenced
GEOtiff files and are titled with the standard combination: resolution_version_decade_bioclimatic.tif.
BIO1- BIO11 represent temperature (in degree Celsius multiplied by 10) and BIO12-BIO19 are specific
humidity (kg of water/kg of air multiplied by 100,000). Each of these zip folders can be downloaded
individually.

Temperature-related bioclimatic variables (BIO1-BIO7 and BIO10-BIO11) are identical in the three
versions of the dataset because they do not rely on specific humidity data which is the variable that is
inputted in three different versions (see Methods). The remaining bioclimatic variables show very little
variation among the three different versions (see Usage Notes).

MERRAclim is derived from MERRA, a global reanalysis that assimilates available ground and satellite
observations with a background model forecast. Thus, its uncertainty, as a reanalysis, is related to the
location of in situ and remote observations. Consequently, developed nations in the Northern
Hemisphere have smaller uncertainty than isolated areas33. MERRA has been evaluated and compared to
other reanalyses since its release, we refer to the literature in the Technical Validation to justify its
suitability to derive bioclimatic variables. In addition to this, we have performed a quantitative
comparison between MERRA and Antarctic ground stations which shows a strong correlation although
the values from MERRA are colder.

We provide a comparison between MERRAclim and WorldClim (see Usage Notes) to assist with
the choice of version. Water-related variables (BIO12-BIO17) and the combined bioclimatic variables
(BIO8, BIO18 and BIO19) from version Vmin are the ones that correlate the most with their
corresponding bioclimatic variables from WorldClim, whereas BIO9 correlates more strongly with its
WorldClim counterpart from Vmax or Vmean. Overall, MERRAclim varies the most compared to
WorldClim for those bioclimatic variables sensitive to extremes.

Technical Validation
The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was made public
in 2011 aiming to improve upon the hydrologic cycle described in earlier reanalyses22. We chose MERRA
to produce global bioclimatic variables as, in several evaluations englobing several decades, it showed
high reliability for water34 and energy variables35 at different scales and in different regions. To reinforce
these validations, we have carried on a quantitative comparison between MERRA and Antarctic
ground stations.

Figure 3. BIO1 (top; Annual mean temperature) and BIO2 (bottom; Annual mean humidity) from the

2000s decade Vmin at 10 arc-minutes resolution.
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Variable
shortname

Variable
description

Units Variable
type

Resolution Version Decade Naming convention Example

BIO1 Annual Mean
Temperature

*10 °C temperature-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO1.
tif

10m_min_00s_BIO1.tif (BIO1
from 00 s decade at 10 m

resolution from version Vmin)

BIO2 Mean Diurnal
Range

Temperature

*10 °C temperature-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO2.
tif

2_5m_mean_90s_BIO2.tif
(BIO2 from 90 s decade at 2.5
m resolution from version

Vmean)

BIO3 Isothermality
(BIO2/BIO7)

(* 100)

*10 °C temperature-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO3.
tif

10m_max_80s_BIO3.tif (BIO3
from 80 s decade at 10 m
resolution from version

Vmax)

BIO4 Temperature
Seasonality
(standard

deviation *100)

*10 °C temperature-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO4.
tif

5m_min_00s_BIO4.tif (BIO4
from 00 s decade at 5 m

resolution from version Vmin)

BIO5 Max Temperature
of Warmest

Month

*10 °C temperature-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO5.
tif

2_5_mean_90s_BIO5.tif
(BIO5 from 90 s decade at 2.5
m resolution from version

Vmean)

BIO6 Min Temperature
of Coldest Month

*10 °C temperature-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO6.
tif

10m_min_80s_BIO6.tif (BIO6
from 80 s decade at 10 m

resolution from version Vmin)

BIO7 Temperature
Annual Range
(BIO5-BIO6)

*10 °C temperature-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO7.
tif

5m_max_00s_BIO7.tif (BIO7
from 00 s decade at 5 m
resolution from version

Vmax)

BIO8 Mean
temperature of
most humid

quarter

*10 °C combined 10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO8.
tif

10m_mean_90s_BIO8.tif
(BIO8 from 90 s decade at 10
m resolution from version

Vmean)

BIO9 Mean
temperature of
least humid
quarter

*10 °C combined 10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO9.
tif

2_5m_min_80s_BIO9.tif
(BIO9 from 80 s decade at 2.5
m resolution from version

Vmin)

BIO10 Mean
Temperature of
Warmest Quarter

*10 °C temperature-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO10.
tif

5m_max_00s_BIO10.tif
(BIO10 from 00 s decade at 5
m resolution from version

Vmax)

BIO11 Mean
Temperature of
Coldest Quarter

*10 °C temperature-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO11.
tif

2_5m_mean_80s_BIO11.tif
(BIO11 from 80 s decade at
2.5 m resolution from version

Vmean)

BIO12 Annual Mean
Specific Humidity

100000 *
kg of

water/kg
of air

water-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO12.
tif

10m_min_90s_BIO12.tif
(BIO12 from 90 s decade at 10
m resolution from version

Vmin)

BIO13 Specific Humidity
of most humid

Month

100000 *
kg of

water/kg
of air

water-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO13.
tif

5m_max_80s_BIO13.tif
(BIO13 from 80 s decade at 5
m resolution from version

Vmax)

BIO14 Specific Humidity
of least humid

Month

100000 *
kg of

water/kg
of air

water-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO14.
tif

5m_mean_90s_BIO14.tif
(BIO14 from 90 s decade at 5
m resolution from version

Vmean)

BIO15 Specific Humidity
seasonality

(Coefficient of
variation)

100000 *
kg of

water/kg
of air

water-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO15.
tif

2_5m_min_00s_BIO15.tif
(BIO15 from 00 s decade at
2.5 m resolution from version

Vmin)

BIO16 Specific Humidity
Mean of most
humid quarter

100000 *
kg of

water/kg
of air

water-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO16.
tif

5m_mean_90s_BIO16.tif
(BIO16 from 90 s decade at 5
m resolution from version

Vmean)

BIO17 Specific Humidity
Mean of least
humid quarter

100000 *
kg of

water/kg
of air

water-
related

10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO17.
tif

10m_max_80s_BIO17.tif
(BIO17 from 80 s decade at 10
m resolution from version

Vmax)

BIO18 Specific Humidity
Mean of warmest

quarter

100000 *
kg of

water/kg
of air

combined 10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO18.
tif

5m_mean_00s_BIO18.tif
(BIO18 from 00 s decade at
5m resolution from version

Vmean)

BIO19 Specific Humidity
Mean of coldest

quarter

100000 *
kg of

water/kg
of air

combined 10 m, 5 m,
2.5 m

min,
mean,
max

80 s,
90 s,
00 s

resolution_version_decade_BIO19.
tif

2_5m_max_00s_BIO19.tif
(BIO19 from 00 s decade at
2.5 m resolution from version

Vmax)

Table 1. Summary of MERRAclim’s bioclimatic variables. There are 11 temperature-related variables of
which two are combined and 7 water-related variables of which two are combined.
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At large scales, the comparisons with other reanalyses showed that MERRA performed similarly36,37 or
outperformed some38,39 (Table 2). Although it presents some weaknesses these have also been found in
past reanalyses40. Regionally, MERRA has been compared for Polar Regions where it has shown to be one
of the most consistent for both water41,42 and energy variables43,44. Although it has been demonstrated
that it contains some errors for the energy budgets, these are not directly related with temperature45.

At more regional scales, the comparisons between reanalyses show that each modern reanalyses
perform better from one area to another, for instance, in Alaska, MERRA is the best reanalysis for interior
areas, while other reanalyses are more suitable in North and the South-eastern Alaska46.

We have compiled hourly data from the University of Wisconsin-Madison Automatic Weather
Station Program (http://amrc.ssec.wisc.edu) to estimate the regional variability, the correlation and the
bias of MERRA data in Antarctica. We used temperature time series for three United States Antarctic
Program (USAP) bases each located in a different Antarctic region: Palmer (West Antarctica, 2007–2010,
data not available from June to November 2010), McMurdo (East Antarctica, 1990s decade) and
Amundsen-Scott South Pole (Interior Antarctica, 1990s decade) (Table 3). For Palmer and Amundsen
time series the data is available hourly, whereas for McMurdo the time series step is every 6 h. Pearson’s
correlation coefficients for the three regions show a high correlation (over 0.8) between MERRA and
USAP ground stations, being stronger for higher latitudes (Table 3). The same relationship trend is
shown by the linear regressions (with a slope between 0.69 and 0.86) that explained over 68% of the
variance and showed that MERRA records were colder, with the largest difference in Amundsen (11 °C)
(Fig. 4). However, the residuals of the linear regressions show that bias over 5 °C are rare (Fig. 5). Indeed,
Inter Quartile Range of the residuals are between 2.4 and 5.4 °C (Table 3) and are larger for the coldest
months when the low temperature does not allow ecological activity (Fig. 5). Furthermore, we have
compared the resulting bioclimatic variables using both datasets (Table 4), this comparison leads to the
same conclusion as the hourly comparison: MERRA records are colder than USAP records but, as they
are summarised values, the difference is smaller than when comparing hourly.

Everything considered, MERRA data is one of the best reanalyses available with a global extent as the
evaluations at different scales in different regions have shown. In the Antarctic region in particular, the
temperatures recorded by MERRA are colder than the ground stations, but this bias is small during the
summer months, when the biological activity takes place and it is more visible in extremely high latitudes,
i.e., the South Pole, where ecologically viable temperatures are never reached.

Reference Covered Dates Variables Location

Ashouri et al.33 1979–2010 Water USA

Bracegirdle & Marshall43 1979–2008 Energy Antarctica

Essou et al.34 1979–2003 Water and Energy USA

Lader et al.45 1979–2009 Water and Energy Alaska (USA)

Bosilovich et al.37 1979–2012 Water Central USA

Roberts et al.35 2000–2010 Water West Africa

Lindsay et al.42 1981–2010 Water and Energy Arctic

Lorenz et al.36 1989–2010 Water Global

Bosilovich et al.39 1979–2009 Water and Energy Global

Trenberth et al.38 1979–2005 Water Global

Cullather & Bosilovich40 1979–2005 Water Polar Regions

Cullather & Bosilovich44 1979–2005 Energy Polar Regions

Serreze et al.41 1979–2010 Water and Energy Arctic

Table 2. Summary of the references evaluating and comparing the water and energy variables of the
MERRA dataset.

Location Region Time
span

Number of
records

Time
step

Pearson’s
correlation

Slope Intercept Explained
variance

Bias

Palmer East Antarctica 2007–10 31066 1 h 0.82 0.86 − 1.57 °C 0.68 ± 2.4 °C

McMurdo West Antarctica 1990s 10865 6 h 0.87 0.73 − 8.9 °C 0.76 ± 5.4 °C

Amundsen South Pole Interior Antarctica 1990s 87618 1 h 0.92 0.69 − 11 °C 0.86 ± 4.5 °C

Table 3. Description of the time series from the United States Antarctic Program meteorological
stations used to fit linear regressions and to calculate Pearson’s correlation.
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Usage Notes
Comparison between MERRAclim (80s and 90s decades) and WorldClim
MERRAclim datasets were created using temperature and specific humidity and following the methods
described for WorldClim23, to derive 19 bioclimatic variables that can be used in ecology. This section
provides a comparison of MERRAclim and WorldClim to find possible patterns of spatial congruence or
discordance. We calculated Pearson’s correlation coefficients and fitted linear regressions to assess the
relationship between both datasets47.

The comparison is geographically limited to those areas where WorldClim data are not interpolated,
i.e., around weather stations that were used to compile information. As WorldClim is temporally limited

Figure 4. Density scatterplot of temperature time series for MERRA and United States Antarctic Program

meteorological stations in (a) Palmer (2007–10), (b) McMurdo and (c) Amundsen-Scott South Pole. Darker

grey represents a higher density of points. The dashed polygons represent the distribution of the points for the

warmest months: January (red), February (green), March (dark blue), November (light blue) and December

(pink). The estimated parameters of the fitted linear relationship are at the top.

Figure 5. Distribution of the residuals of the linear models for MERRA and United States Antarctic

Program meteorological stations in (a) Palmer (2007–10), (b) McMurdo and (c) Amundsen-Scott South

Pole by month.
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to climatic records ranging from 1950 to 2000, the MERRAclim datasets could only be compared for the
80s and 90s decades.

Framing the geographical extent for the comparison WorldClim vs. MERRAclim
MERRA raw data is composed of a grid made of 540 columns and 360 rows. Each grid cell covers 2/3
degrees of latitude and < degrees of longitude, i.e., each cell covers an area of 1/3 square degrees. To make
both datasets comparable we geographically limited the WorldClim dataset by creating an area of
influence around each weather station as a buffer zone that covers 1/3 square degrees (equivalent to an
area of ≈ 4,000 km2 near the Equator and ≈250,000 km2 for the farthest north weather station included in
WorldClim at a latitude of 82°). Two comparisons were conducted: a first one for weather stations with
available temperature observations (25,576 stations covering 73,109,913 km2, roughly 22% of the
WorldClim coverage) and a second one for weather stations with available precipitation observations
(47,675 stations covering 67,893,375 km2, roughly 20% of the WorldClim coverage).

Validation methodologies
We tested the relationship between MERRAclim and WorldClim bioclimatic variables calculating
Pearson’s correlation coefficients and fitting linear regressions. For all versions of the 19 bioclimatic
variables we found linear correlations between both datasets that explained most of the variance. Linear
regressions for the 1980s and the 1990s revealed that both decades have a similar relationship with
WorldClim (Supplementary File 2). The absence of WorldClim data for the 2000s prevented a
comparison for this decade.

Temperature-related bioclimatic variables (BIO1-BIO7, BIO10-BIO11)
Pearson coefficients testing the correlation between temperature-related bioclimatic variables
(BIO1-BIO7, BIO10-BIO11) from WorldClim and MERRAclim were very high (>0.8) in all cases,
except for BIO2 (r= 0.6). BIO2, a variable representing diurnal range and thus highly sensitive to
temperature extremes, showed the highest discrepancy between datasets. Overall, MERRAclim yielded
higher temperature values than WorldClim with a positive and close to unity slope (Supplementary
File 1). Mean temperatures of the most extreme months (BIO5 and BIO6) show the largest differences
between datasets: the warmest month in MERRAclim is ~10 °C higher than in WorldClim, whereas the
coldest month is around 7 °C lower. Due to this important difference between datasets we fitted linear
regressions using subsets depending on the absolute difference whose geographical distribution is
depicted in Supplementary Fig. 2. Firstly, we used the points that showed an absolute difference smaller
than 10 °C and we obtained for BIO5 the same trend but only 7 °C higher, for BIO6 the difference was of
3 °C. Secondly, we used a subset of those points with an absolute difference smaller than 5 °C, this time
the intercept for BIO5 was 5 °C and for BIO6 there were no differences with the previous subset.

Water-related bioclimatic variables (BIO12-BIO17)
Comparisons of water-related MERRAclim bioclimatic variables for each decade with WorldClim
are consistent, but important differences between versions were detected (Supplementary File 1).
Bioclimatic variables from the Vmin version show the strongest correlation with the bioclimatic variables
in WorldClim and also the highest proportion of explained variance. In general, water-related bioclimatic
variables were less strongly correlated with WorldClim than temperature-related ones. Bioclimatic
variables describing the extreme lack of environmental water availability, both monthly (BIO14)
and quarterly (BIO17), had the lowest congruence with WorldClim (Pearson correlation coefficient
~0.37 and ~0.4, respectively). Water seasonality (as described by BIO15) greatly varies in its
correlation with WorldClim depending on the version, being the correlation with Vmin four times
stronger than with Vmax.

Location Dataset bio1 bio2 bio3 bio4 bio5 bio6 bio7 bio10 bio11

Palmer MERRA − 4.3 11.3 47.7 346.0 3.2 − 20.6 23.8 0.0 − 8.5

USAP − 1.3 12.1 48.3 345.4 8.8 − 16.1 25.0 2.9 − 5.6

McMurdo MERRA − 21.3 18.9 47.7 721.4 − 1.7 − 41.2 39.6 − 11.4 − 28.2

USAP − 16.0 20.9 48.1 808.8 4.8 − 38.7 43.5 − 4.9 − 23.5

Amundsen South Pole MERRA − 45.3 19.3 45.4 907.8 − 23.1 − 65.9 42.8 − 32.1 − 53.2

USAP − 48.5 27.7 49.9 1130.2 − 21.0 − 76.6 55.6 − 32.2 − 58.0

Table 4. Temperature-only bioclimatic variables computed with MERRA data and United States
Antarctic Program (USAP) meteorological stations. The unit for all the values is °C. NOTE: For Palmer
station only records from 2007 to 2009 have been used.
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Combined bioclimatic variables (BIO8-BIO9, BIO18-BIO19)
Combined bioclimatic variables depend on temperature and humidity information (Table 1) to describe
the most extreme quarters. Although linear associations remained similar between MERRAclim versions
(Vmin, Vmean and Vmax) and WorldClim, the strongest correlation coefficient was found for Vmin.
Among temperature-dependent combined variables, BIO8 showed the greatest difference between
datasets (~15 °C higher in MERRAclim). BIO9 is ~2 °C warmer in WorldClim. Water-dependent
combined variables (BIO18 and BIO19) followed the same trends as other water-related variables and,
again, the Vmin version showed the highest variance explained (Supplementary File 1).

Geographic location of the differences between WorldClim and MERRAclim
We located those geographical areas where MERRAclim (Vmin version) and WorldClim vary the most using
the outliers of residuals from linear regressions for each bioclimatic variable (Supplementary Figs 3 and 4). We
defined outliers using the IQR (InterQuartile Range) of the residuals, for which we calculated the first and
third quartiles (Q1 and Q3) and estimated the values outside the range Q1—(1.5*IQR) and Q3+(1.5*IQR) as
outliers. Both datasets showed an outstanding spatial congruence and the average area of outliers for each
bioclimatic variable covers less than 5% of the compared geographical space (only BIO9 has a larger extent of
outliers, summing up to 7%, Supplementary File 1). To get a more detailed information of these variations we
have also drawn the bias from the fitted linear regressions (Supplementary Fig. 5).

The differences between the datasets, as identified by the outliers and the bias, are geographically
clustered (Supplementary Figs 3 and 4); which can probably be explained by the fact that WorldClim was
built from heterogeneous regional networks of weather stations some of which are also compiled from
several datasets48 (e.g., Latin America, The Caribbean, the Altiplano in Peru and Bolivia, European
Nordic Countries, the United States of America, Australia, New Zealand and Madagascar) that depend on
different sources of information and techniques16.
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