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Abstract

It is becoming clear that the manner by which the immune response resolves or contains infection 

by a pathogen varies according to the tissue that is affected. Unlike many peripheral cell types, 

CNS neurons are generally non-renewable. Thus, the cytolytic and inflammatory strategies that are 

effective in controlling infections in the periphery could be damaging if deployed in the CNS. 

Perhaps for this reason, the immune response to some CNS viral infections favours maintenance of 

neuronal integrity and non-neurolytic viral control. This modified immune response — when 

combined with the unique anatomy and physiology of the CNS — provides an ideal environment 

for the maintenance of viral genomes, including those of RNA viruses. Therefore, it is possible 

that such viruses can reactivate long after initial viral exposure, contributing to CNS disease.

An oversimplification that is promoted in much of the scientific literature is that 

extracellular, receptor-binding ligands — including viruses, cytokines and interferons 

(IFNs) — transduce invariant signalling pathways, independent of cell type. Such 

generalizations limit our ability to fully appreciate the complexity and diversity of the 

cellular response to pathogens and potent pathogen-fighting proteins. There are also clinical 

ramifications of this myopic view: for example, ignoring the possibility that a particular cell 

population may behave uniquely upon cytokine encounter could limit drug efficacy or hinder 

the development of therapeutics. In this Review, we discuss some recently defined neuron-

specific immune responses that broaden our view of how CNS infections, especially those 

caused by RNA viruses, are controlled.

Intuitively, the notion that neurons differ immunologically from other cell types makes 

sense: we cannot tolerate the loss of these generally non-renewable cells, as we can the lysis 

of more-easily replaceable epithelial cells. For example, herpes simplex virus (HSV) 
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infection of epithelial cells results in massive immune- and virus-mediated cell death1–3; 

however, the lost cells are readily replaced, as observed in the healing that follows a cold 

sore. If lysis of irreplaceable neurons occurred in the same manner, neural circuits could 

become compromised, and, depending on the magnitude of damage, the host could be 

permanently impaired. Thus, the immune response to a viral challenge must be tailored to 

promote survival of infected neurons but to destroy infected epithelial or endothelial cells. 

However, such neuronal sparing might result in long-term consequences that are spatially or 

temporally separated from acute infection.

In this Review, we integrate insights from the fields of virology, neurobiology and 

immunology to provide an overview of the mechanisms by which the restricted environment 

of the CNS is accessed by both RNA viruses and DNA viruses, and to explain how the 

host response contends with such infections. We particularly focus on a developing literature 

that elucidates cell-specific immunity and the consequences of non-lytic viral clearance 

within the brain. We conclude with a forward-looking hypothesis: non-lytic clearance of 

neuronal infections may allow for persistence of RNA viruses that induce pathogenesis long 

after primary exposure.

Viral entry and spread into the CNS

Viral entry

The brain is shielded from external threats at both macro-and microscopic levels: it is 

encased in bone, to prevent physical injury, and separated from peripheral tissues and blood 

via highly specialized barriers. Although such characteristics may limit infections of CNS-

resident cells, these barriers can be breached. Three major routes of viral entry into the brain 

have been identified: direct infection of the cells that comprise the blood–brain barrier 

(BBB) and blood–cerebrospinal fluid (BCSF) barrier (with consequent release of viral 

particles into the parenchyma), infection of cells that are able to cross these barriers, and 

transneuronal migration across synapses from the peripheral nervous system (PNS) into the 

CNS (FIG. 1).

Within the CNS, the BBB and BCSF barrier restrict the migration and diffusion of cells, 

pathogens, antibodies and macromolecules into the brain parenchyma. Neurotropic RNA 

viruses, including poliovirus (PV), measles virus (MV) and some flaviviruses, can 

circumvent these barriers by directly infecting the tightly associated endothelial or epithelial 

cells that comprise them4. Viral particles can then be released from the basolateral 

membrane into the parenchyma. For example, after MV infection of human brain 

microvascular endothelial cells, release of viral particles occurs from both the apical and 

basolateral membranes, without disrupting cell polarity or barrier integrity, allowing MV to 

spread into the parenchyma5. Alternatively, barrier integrity may be compromised when the 

tight junctions between cells loosen as a result of inflammation and cytokine exposure, 

allowing free viral particles to diffuse directly from the blood or CSF into the brain. For 

example, peripheral West Nile virus (WNV) infection acts through the engagement of Toll-

like receptor 3 (TLR3) to induce the synthesis of cytokines — including tumour necrosis 

factor (TNF) — by circulating antigen-presenting cells6. In turn, TNF reduces BBB integrity 

by loosening tight junctions7, allowing for WNV migration through the less-restrictive BBB. 
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In reality, however, modulating the barrier integrity is not as simple as this description 

implies. The balance of different cytokines can determine the extent to which the BBB is 

perturbed or stabilized. For example, IFNs, which are also produced in infected hosts, help 

to keep the barrier intact8; thus, the relative type and ratios of cytokines that are synthesized 

in response to various infections will differentially affect barrier integrity9.

Viruses may also passively access resident CNS cells by infecting lymphocytes or 

monocytes that can be transported across a cellular barrier. This strategy is often referred to 

as the ‘Trojan horse’ approach, because viral particles are released once the blood cell gains 

access to the parenchyma. A classic example of this mode of invasion is provided by the 

human immunodeficiency virus type 1 (HIV-1): CD16+ monocytes, permissive for HIV-1, 

traffic across the BBB and release virions that can then infect CNS microglia10,11.

A third mode of CNS entry is transneuronal migration, a strategy adopted by rabies virus 

(RABV) and many herpesviruses, including pseudorabies virus (PRV). Intracellular 

trafficking in PNS neurons, which is necessary to shuttle cellular components to and from 

the synapse, can be commandeered to facilitate viral travel within and among synaptically 

connected neurons. The best-characterized examples of this type of spread are provided by 

herpesvirus members such as HSV type 1 (HSV-1) and the closely related PRV4,12. After 

infection of epithelial cells in the oral mucosa, HSV-1 spreads to sensory and autonomic 

ganglia, establishing lifelong latency. Reactivation of the virus from latency — in response 

to decreases in immune monitoring, other infections or stress — leads to an active infection 

in PNS neurons, in which viral membrane proteins (including US9, glycoprotein E and 

glycoprotein I) can direct movement of newly replicated viral particles in an anterograde 

manner13. During transport, viral components are shuttled along axons via microtubule 

tracks and in association with their dynein and kinesin motors14,15. Sensory neurons have a 

pseudo-unipolar morphology in which one axon is in contact with epithelial cells and the 

other synapses are in contact with CNS neurons12. Beyond the value of these studies to 

understand how neurotropic viruses are propagated, viruses that spread across synapses 

(including RABV and MV) have provided a valuable method to trace neural circuits in 
vivo16,17; that is, the use of recombinant viruses encoding fluorescent proteins. These unique 

virological tools may also allow the development of strategies to deliver therapeutic 

payloads from the periphery to the CNS.

Viral spread

Once a virus has infected a neuron, there are two primary modes of subsequent spread to 

other cells: the release of infectious viral particles that can infect distant permissive 

cells or the transfer of viral nucleic acid, subviral particles or infectious virions between 

infected and uninfected cells that are in direct contact. The former mechanism requires the 

release of viral particles through the neuronal membrane (chiefly, via budding out of the 

infected cell), whereas the latter mechanism is primarily dependent on viral proteins that 

mimic or co-opt cellular processes to direct the insertion of viral fusion proteins into 

a host cell membrane or to direct the spread of viral capsids, as seen with HSV12,18. Both 

modes of viral spread occur in neurons; however, in most instances, viral transfer to adjacent 

neurons happens in the absence of syncytia formation (BOX 1), and little or no amount of 

Miller et al. Page 3

Nat Rev Neurosci. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



extracellular infectious virus is detected, suggesting that neurons facilitate a distinct mode of 

spread for many viruses4. Interestingly, trans-synaptic spread of MV within primary mouse 

hippocampal neurons occurs independently of known MV receptors, which are crucial for 

syncytia formation in non-neuronal cells19,20. The paucity of viral particles in the 

extracellular space may protect the neuron from plasma membrane damage via budding and 

facilitate evasion of antibody detection. Although many neurotropic infections spread by 

direct contact at the presynaptic–postsynaptic junction, alternative modes of transport may 

also be used. For example, although RABV primarily spreads trans-synaptically in a 

retrograde manner, an electron microscopy study showed the presence of viral particles in 

the extracellular neuronal space, accompanied by direct neuronal budding21.

Defining long-lasting infections

An outcome of viral neuroinvasion is that the viral genome, viral proteins and/or complete 

virus particles may remain in the brain long after initial exposure. To describe the myriad 

ways by which viruses establish enduring interactions with host neurons, numerous 

descriptors have been used, including ‘prolonged’, ‘persistent’, ‘latent’, ‘smouldering’, 

‘quiescent’ and ‘chronic’ (REFS 4,22,23); however, their use is not consistent. Variables — 

including detection threshold, target organs and cell-specific influences on the viral life 

cycle — collectively contribute to the challenge of establishing an agreed-upon 

nomenclature. Moreover, some viruses can reactivate to cause the same disease as the acute 

infection (such as HSV), whereas others manifest differently upon reactivation (such as 

varicella zoster virus (VZV), which causes chicken pox as a primary infection but typically 

causes shingles upon reactivation). Other viruses result in pathogenesis only after protracted 

infection (such as tumour-causing viruses).

For this Review, we use three classifications. Latent infections are defined as those in which 

the virus establishes a non-lytic state during which host-to-host transmission is not possible, 

unless the virus reactivates to produce infectious virions. Chronic transmissible infections 

are characterized by the continuous production of infectious viral progeny and their ability 

to be transferred to new hosts. Chronic non-transmissible infections are those in which 

consistent detection of viral nucleic acid over extended periods of time is observed but in 

which transmission to new hosts does not occur.

Latency is most frequently attributed to herpesvirus infections, such as HSV-1, HSV-2 and 

VZV. After initial infection of epithelial cells, these viruses become non-lytic within PNS 

neurons, and viral nucleic acid is maintained in a heterochromatin episomal state with 

negligible transcription12. A small number of viral transcripts are synthesized during latency 

and are termed latency-associated transcripts. These RNA species do not encode functional 

proteins but are thought to prevent neuronal apoptosis and to disrupt both innate and 

adaptive immune signalling through mechanisms that include inhibition of caspase activity 

and of granzyme B-mediated killing24,25. VZV also produces various proteins, including 

ORF63, that prevent neuronal apoptosis24. The term ‘latent’ accurately conveys the status of 

these viruses: hidden, incapable of transmission, but able to fully reactivate, spread, and be 

transmitted to a new host. Another type of latency, which is not typically seen in neurons, 

occurs after viral nucleic acid is reverse transcribed from RNA to DNA and then integrated 
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into the host genome. This process is unique to retroviruses, such as HIV-1 (REF.26). In this 

type of latency, integrated viral genomic DNA becomes indistinguishable from host DNA, 

and viral genes can be epigenetically silenced or activated throughout the cell lifetime and 

passed on to daughter cells.

In a chronic transmissible infection, the infectious virus can be continuously recovered from 

the host and can be disseminated to new hosts, as in hepatitis B and hepatitis C. Mice 

infected with the lymphocytic choriomeningitis virus (LCMV) offer a well-characterized 

model of a chronic transmissible CNS infection. LCMV infection of newborn mice leads to 

a non-cytopathic chronic infection in almost every tissue. Infectious LCMV particles can be 

recovered from multiple organs throughout life and can be shed in the faeces or transmitted 

vertically to offspring23,27,28. Although most strains of mice survive LCMV infection with 

no overt pathogenic consequences, some studies reported learning and memory deficits in 

these chronically infected animals29, underscoring the potentially subtle effects of long-term 

infection on CNS function.

Chronic non-transmissible infections are also characterized by sustained viral replication or 

consistent detection of viral nucleic acid over extended periods of time, but further host 

dissemination is absent. One example may be the rare cases of MV CNS infection. Acute 

infection can, in some instances, lead to the development of neuropathogenic diseases, 

including subacute sclerosing panencephalitis (SSPE) and measles inclusion-body 

encephalitis. These uncommon neurological diseases often present months or years after 

viral exposure and are characterized either by negligible replication or by persistence of 

replication-competent nucleic acid in the CNS30–32. In both diseases, no viral dissemination 

to uninfected hosts has been reported. Determining whether the state of the virus that causes 

these sequelae is ‘latent’ or ‘chronic non-transmissible’ is difficult, owing to both the small 

number of clinical specimens available and the lack of small animal models that mimic 

SSPE disease31,33,34. In humans, it may be that neurological symptoms appear only once 

viral replication reaches a crucial threshold or when the virus infects a key site within the 

brain, exceeding the host’s capacity to control the infection. Alternatively, non-replicating 

MV genomes may be maintained for prolonged periods and reactivated later. Either way, the 

MV genome remains intact, in some form, long after control of the acute infection is 

achieved, in the absence of further viral dissemination.

A final point of clarification: not all neurotropic viruses are associated with long-lasting 

infections. Some viruses, such as the reovirus, can induce neuronal apoptosis through the 

induction of pro-apoptotic proteins such as BAX35,36. The reason why some infections lead 

to neuronal suicide, whereas others lead to a long (potentially unhappy) ‘marriage’ between 

the host and the virus, is a major focus in the field of neurovirology, and answering this 

question may lead to the discovery of virus-specific therapies to prevent or minimize 

infection-triggered neuropathology.

Immune clearance of neuronal infection

The various permutations of neurotropic viral infections pose unique challenges for the host, 

including detecting antigens within the CNS, enabling T lymphocytes to engage with 
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neurons that express negligible levels of proteins that are typically present on target cells, 

and mitigating the risks of neuroinflammation and widespread loss of generally non-

renewable neurons.

Type I interferon signalling

The early response to an infection typically begins with the engagement of pathogenic 

motifs by pattern recognition receptors, which are expressed on (or in) virtually all cells. The 

binding of these receptors to conserved motifs, such as double-stranded RNA, 

lipopolysaccharides or glycoproteins, propagates signals that culminate in the production of 

type I IFNs, chiefly IFNα and IFNβ. These IFNs are secreted from the infected cell and act 

in both a paracrine and an autocrine manner by binding to IFN α/β receptor (IFNAR), a 

heterotetramer with phosphorylatable cytoplasmic domains. This engagement leads to the 

phosphorylation of tyrosine kinases (including Janus kinases) and the receptor itself, and is 

followed by tyrosine phosphorylation of cytoplasmic signal transducer and activator of 

transcription 1 (STAT1) and STAT2, which are usually abundant but inactive within the 

cytoplasm. Activated STAT1–STAT2 heterodimers couple with IFN regulatory factor 9 

(IRF9) to form the complex termed ISGF3, which translocates into the nucleus and binds to 

IFN-stimulated response elements within the promoters of IFN-stimulated genes (ISGs). 

These genes encode proteins that eliminate infected cells or aid in viral clearance. Type I 

IFNs also bind to adjacent, uninfected cells to shield them from infection. Although this 

pathway is operative in many cells, alternative IFN-triggered pathways that limit viral spread 

but do not depend on induction of the ‘usual suspects’, the ISGs, can be induced in some cell 

types, including neurons37.

Neurons also secrete type I IFNs, which can act in an autocrine or paracrine manner on 

neurons or other parenchymal cell types38. RABV, which infects muscle cells and peripheral 

neurons after a bite from an infected animal, induces copious IFN secretion early after 

infection, in vivo and in vitro39. By contrast, IFN-induced STAT phosphorylation in primary 

hippocampal neurons is delayed, with maximal activation occurring only after ~24 

hours40,41. Delayed STAT activation coincides with delayed expression of traditional 

ISGs41. The protracted interval between receptor binding and STAT activation may be due to 

a greatly reduced basal expression of STATs in these hippocampal neurons, as compared 

with other cell types40–42. Interestingly, lower homeostatic STAT expression is not unique to 

neurons but has also been observed in another non-renewable cell type, cardiac myocytes43. 

Like neurons, cardiac myocytes have high basal IFNβ expression, which may protect them 

from infection41,43. Perhaps, the disparity between expression of IFNs and the signal 

transduction molecules that they induce may skew towards protection from infection rather 

than towards induction of a potentially cytotoxic response. Surprisingly, synthesis of ISGs 

can differ within a single neuron: IFNβ induces a non-canonical, local antiviral response in 

axons that is not observed in the neuronal soma44,45. The startling implication of this finding 

is that neurons, especially those with long processes (as in the PNS), may 

‘compartmentalize’ the response to extracellular immune mediators.

Although much of this Review focuses on neuronal responses to infections and antiviral 

cytokines, it is important to underscore that differential responses to, and production of, type 
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I IFNs have been demonstrated in other parenchymal cell populations and may influence the 

neuronal response. For example, when comparing microglia and oligodendroglia collected 

from mice that were infected with a neurotropic strain of mouse hepatitis virus (MHV), it 

was shown that microglia are the main producers of type I IFN and downstream ISG 

products46. Overall, the fact that different cell types show distinct homeostatic expression of 

key signal transducers and of their downstream gene targets underscores the cellular 

diversity that can follow cytokine engagement.

Perhaps predictably, for many neurotropic RNA viruses, including MV, Theiler’s murine 

encephalomyelitis virus, Murray Valley encephalitis virus, WNV and others, experimentally 

induced loss of type I IFN signalling results in pathogenesis, altered viral tropism (generally 

accompanied by increased neurovirulence) and an inability to control viral spread both in 
vivo and in vitro41,47–54. Although most of these studies were performed using IFNAR-

knockout mice lacking receptor expression on all cells, selective disruption of neuronal IFN 

signalling (using neuron-specific knockouts of IFNAR) also results in death after vesicular 

stomatitis virus infection55. Moreover, infection of olfactory neurons and mucosa with either 

a neurotropic RNA virus (vesicular stomatitis virus) or a neurotropic DNA virus 

(cytomegalovirus) leads to a robust type I IFN response deep within the brain, preventing 

viral spread and attendant disease56. Thus, infection of cells in direct contact with the 

environment (including sensory olfactory neurons) can trigger a long-distance warning 

(production of type I IFNs) that ultimately limits or precludes viral spread to remote regions 

of the brain.

Antigen presentation and CNS immunity

For some time, it was known that the primary cell populations of the adaptive immune 

system, T cells and B cells, contributed to viral control within the brain; however, the 

apparent absence of a CNS lymphatic drainage system made it complicated to understand 

how antigens could exit the parenchyma to promote the activation and proliferation of naive 

antigen-specific T cells7. Recent findings have begun to resolve this mystery: these include 

the identification of lymphatic drainage portals from the CNS into deep cervical lymph 

nodes and the presence of a fluid gradient that flushes the brain of extracellular proteins 

(which are termed ‘glymphatics’ because of the crucial role of glia in this process)57–59. 

CSF moves towards the perivascular space, where it is transported into the dense brain 

parenchyma via aquaporin 4 water channels that are expressed on cortical astrocytes. The 

CSF movement drives the interstitial fluid towards perivenous spaces, where it then drains 

towards the newly identified meningeal or dura mater lymphatic vessels, and ultimately to 

the deep cervical lymph nodes, where T cell activation and proliferation can occur57,59,60. 

These studies indicated how antigens and professional antigen-presenting cells can exit the 

CNS to alert immature T cells in the lymph nodes.

T cell-mediated pathogen clearance

After T cells mature in lymphoid tissues, they enter the bloodstream, where they can interact 

with adhesion molecules that are expressed on the surface of blood vessel endothelia within 

infected tissues. Mature T cells chiefly engage with selectins (and later, integrins) on the 

surface of the BBB or BCSF barrier. The expression of these adhesion molecules is induced 
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by chemokines that are produced within the parenchyma by infected neurons and adjacent 

glia. This results in migration of T cells across the barrier (diapedesis). Although it was 

previously believed that neurons do not express major histocompatibility complex (MHC) 

class I molecules (and thus could not be recognized, at least in the canonical manner, by 

CD8+ T cells), we now know that some neuronal populations constitutively synthesize these 

cell surface proteins and that others can induce their expression after injury or infection61,62. 

Even so, most neurons do not express typical levels of MHC class I antigens under non-

inflammatory conditions63, and thus T cell effector functions, including cytokine production, 

may not be triggered by the infected cell (the neuron) directly but rather by adjacent MHC 

class I-expressing cells (usually glia) that can display antigenic peptides via cross-

presentation64. Although cross-presenting glia may not be directly infected, this strategy 

allows for elaboration of antiviral processes. Resident CNS cells may not only be invisible to 

immune cells as a result of reduced expression of MHC recognition molecules but may also 

express immunomodulatory molecules, such as programmed cell death ligand 1 (PDL1)65, 

that down-modulate T effector functions. Remarkably, the MHC class I expression system 

that is key to T cell recognition is likely to have also other functions in neurons, including 

those involved in neurodevelopment and neuronal plasticity66,67.

One of the major strategies that is used by activated T cells to combat neuronal viral 

infections is the production of IFNγ. Similar to type I IFNs, IFNγ transduces a signal via 

receptor binding, leading to STAT1 activation and homodimerization. Activated STAT1 

homodimers translocate into the nucleus and bind to gamma-activated sequences (GASs) in 

the promoters of approximately 100 genes (which overlap with, but are generally distinct 

from, the ISGs that are induced by type I IFNs), promoting their transcription and translation 

(FIG. 2a). The products of these genes, similar to ISG proteins, combat viral infection or 

induce apoptosis of the infected cell37.

STAT1 can be activated in neurons after IFNγ exposure, but the kinetics of induction are 

markedly slower than those observed in treated mouse embryonic fibroblasts, similar to the 

delayed response that is seen after type I IFN exposure40. In addition, IFNγ induces 

transcription of both traditional genes (that is, those that are typically expressed in response 

to IFNγ in other cellular populations) and non-traditional genes in primary hippocampal 

neurons after exposure68. This diverse profile of genes that are induced may affect the 

cellular outcome: although IFNγ can induce necroptosis, in neurons the virus is controlled 

in a non-cytolytic manner (presumably owing to the paucity of STAT1 and non-traditional 

GAS gene induction)69,70 (FIG. 2b). This feature is not unique to neurons: IFNγ is also 

essential for controlling MHV infection of oligodendrocytes via non-cytolytic pathways71,72. 

How are genes activated when basal levels of available STAT1 are low in resting neurons? 

Interestingly, when challenged with a neuron-restricted MV infection, most STAT1-

knockout mice survive. By contrast, all IFNγ-knockout mice show severe signs of chronic 

disease, with approximately 50% succumbing to infection68,70, suggesting that the 

requirement for IFNγ is decoupled from the main transducer through which it signals. This 

observation led to the identification of an IFNγ-dependent, STAT1-independent activation of 

antiviral and pro-survival genes68,73, which might be facilitated by the access of other 

signalling factors — including extracellular signal-regulated kinases 1 and 2 (ERK1/2) and 

AKT — to the activated IFNγ receptor when STAT1 is absent or not abundant (FIG. 2b,c).
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IFNγ is crucial for the control of multiple neurotropic viral infections in mice and primary 

neuronal cultures. Recently, IFNγ was identified as a key suppressor of HSV and VZV 

reactivation in the trigeminal ganglion of both humans and mice24,74–77. What makes these 

studies particularly intriguing is the type of T cell that is shown to be constitutively secreting 

IFNγ: T resident memory cells (Trm)74–79. Trm (defined by CD103 and CD69 expression) 

are in direct proximity to latently infected PNS neurons and do not re-enter circulation. 

Furthermore, these brain-resident lymphocytes have a unique molecular signature that 

distinguishes them from other types of cytotoxic T cells or from memory T cells80. 

Trm populations expand and contract in their resident tissue, acting as a first line of defence 

against reinfection81. Moreover, as we suggest below, these cells may be crucial sentinels 

that keep chronic neuronal infections at bay; therefore, their loss may contribute to viral 

reactivation.

In addition to cytokine secretion, some T lymphocytes kill infected cells through perforin- 

and/or granzyme-mediated mechanisms. Perforins, which are found in the lytic granules of 

CD8+ cytotoxic T cells, punch holes in the membrane of infected target cells, allowing for 

the delivery of granzymes that lead to lysis of the infected cell. Granzymes are serine 

proteases that induce caspase cleavage and activation of pro-apoptotic cellular proteins, such 

as BH3-interacting domain death agonist (BID). This mode of T cell-mediated killing, 

which efficiently eliminates ‘viral factories’, has been primarily studied in rapidly dividing 

cells. Interestingly, in some neuronal infections, the secretion of granzymes does not lead to 

lysis but rather aids in preventing viral reactivation and replication while sparing the infected 

neuron82. In addition to their ability to kill cells, granzymes can directly cleave eukaryotic 

translation initiation factor 4G3 (eIF4G3) (a cellular protein that is important for host and 

viral translation) and ICP4 (a herpesvirus-specific protein needed for the transcription of 

early and late viral genes)82,83. By cleaving eIF4G3, granzymes block viral translation but 

fail to induce neuronal apoptosis, further preventing viral dissemination within the host and 

sparing the infected neuron. Cleavage of ICP4 by granzymes directly prevents reactivation 

of latent HSV from infected neurons. In these instances, granzymes are acting on proteins 

other than their traditional protein targets to induce an alternative neuronal response.

It has also been speculated that viral RNAs and proteins can contribute to non-lytic 

outcomes. For instance, HSV latency-associated transcripts inhibit the action and expression 

of various caspase proteins, which are key mediators of the cell death process84. 

Nevertheless, in some cases, bystander immune-mediated neuronal death may occur. For 

example, Theiler’s murine encephalomyelitis virus infection of mice results in hippocampal 

neuron death through a mechanism that is dependent on inflammatory monocyte infiltration 

and activation85.

Humoral responses within the CNS

The notable absence of B cells in the brain of virus-infected mice led to the misperception 

that B cells and the antibodies that they secrete play a minor part in viral control. In fact, 

numerous human CNS infections, including those caused by MV, PV, VZV, HSV and flavi-

viruses, are characterized by the presence of intrathecal antibodies in the CSF86–88. Humoral 

responses seem to be associated with protective rather than pathogenic functions, as 
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observed for Japanese Encephalitis virus and some neurotropic retroviruses86. Antibodies 

may be particularly beneficial for those infections that result in extracellular infectious virus 

production.

Neuronal subtypes and infection

A central theme of this Review has been the notion that infected cells, such as neurons, 

respond to immune effectors in cell-specific ways. However, the existence of many 

subpopulations of neurons, which are segregated by location and function, raises the issue of 

whether responses may differ within these neuronal subsets. Recent studies showed that 

cerebellar granule neurons and cortical neurons pretreated with type I IFNs vary in their 

ability to control a WNV infection89. Type I IFN treatment had a much greater impact on the 

spread of infection in cerebellar granule neurons than it did in cortical neurons (100-fold 

versus 15-fold reduction), and this difference correlated with discrete patterns of ISG 

induction89. Animal model studies have also shown differences in the propensity for a virus 

to infect individual neuronal subpopulations and regions of the brain (FIG. 3); for example, 

the hippocampus is heavily infected by RABV, whereas MV is more often found in the 

midbrain90–95. Whether these distinctions can be attributed to differences in viral tropism or 

intrinsic variations in the neuronal response to soluble immune effector proteins (or, perhaps, 

to the way a virus gains access to the brain) is not known. Answering this question will 

require further studies that must necessarily integrate virology, immunology and 

neurobiology.

Emerging principles in neurovirology

Preservation of virus-challenged neurons from immune-mediated lysis seems to be 

advantageous to the host, but this leaves open the possibility of long-term viral maintenance 

in surviving neurons (TABLE 1). Previously, many researchers believed that neurotropic 

RNA viruses were sterilely cleared from the CNS. Indeed, unlike DNA viruses or 

retroviruses that can establish latent infections through episome formation or integration, 

RNA viruses do not have known means to ‘survive’ within a host cell. This is especially 

relevant given the lability of RNA within the cytoplasm, which arises owing to the inherently 

unstable ribose subunit and the susceptibility of the 2′ hydroxyl group to deprotonation. On 

the other hand, RNA viral genomes are unlikely to persist in the cytoplasm as naked RNA. 

Ribonucleoprotein complexes would provide some protection, and viral RNAs (like other 

cellular RNAs) may also be sequestered in stress granules. Thus, mechanisms must 

exist to protect RNA viral genomes, allowing for their long-term stability in the cytoplasm.

Do these long-term infections have pathogenic potential? A set of studies from the late 

1980s showed that MV RNA can persist in human brains for decades after resolution of the 

peripheral infection without causing neurological symptoms96–100; in these studies, organs 

from individuals who had died of non-viral, non-CNS-related causes were screened, and a 

high proportion of brain tissues were found to be MV RNA positive. In addition, some 

scientists have argued that MV entry into the human CNS may occur at a higher rate than 

previously thought101, although only a small fraction of acutely infected people will 

manifest neurological consequences. Accordingly, viral RNAs were generally considered 
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‘fossils’ that were unlikely to contribute to human disease. Surprisingly, autopsy studies 

performed on the brain of patients that succumbed to SSPE have shown regions of the brain 

with no detectable MV proteins, despite the presence of MV RNA, suggesting that RNA, 

even with its inherent instability, can be maintained in a translationally silent state102.

The long-term persistence of viral RNA in the CNS is not unique to MV. For example, 

infection of mice with the MHV strain A59, which is used to model the demyelinating 

disease multiple sclerosis, leads to encephalitis and hepatitis. The infectious virus is cleared 

from the liver and CNS in 20 days; however, the mice develop a progressive, immune-

mediated demyelinating disease103, and viral nucleic acid persists104. The potential 

importance of viral nucleic acid persistence in demyelination has been subordinated by the 

prevailing view that long-term disease is caused by an overactivation of the host response 

towards myelin proteins. Other neurotropic RNA viruses that are known to persist within the 

mouse brain (sometimes for periods longer than 1 year post exposure) in the absence of 

detectable antigen or infectious viral progeny include Sindbis virus, Sendai virus and 

RABV95,105,106. However, the lack of recoverable infectious virus does not preclude the 

possibility that these viruses are actively suppressed in the CNS, similar to the control of 

neuronal herpesvirus infections by Trm. Could decreases in the magnitude or quality of the 

host response (for example, with ageing or after immunosuppressive therapy) lead to loss of 

resident memory cells and reactivation of viral replication that are temporally separated from 

the initial infection?

The short answer is that we do not yet know. However, it was recently shown that an 

endogenous retrovirus, which was integrated into the host genome millions of years ago, 

could contribute to human neurological disease. Amyotrophic lateral sclerosis is a 

progressive neurological disease of poorly understood aetiology that is characterized by 

consistent inflammatory response and immune-mediated pathogenesis. The expression of 

this human endogenous retrovirus, specifically the expression of the envelope protein, was 

proposed as a possible cause for the neuropathology that is seen in amyotrophic lateral 

sclerosis107.

Perspectives

Limits of detection, reproducibility, consistency in the brain regions that are analysed and 

patient-to-patient variability all contribute to the challenges and dangers of ascribing 

neurotropic infections to be the aetiologic causes of poorly understood CNS diseases. 

Moreover, the association of ‘new’ viruses with CNS disease (including Zika virus, which is 

linked to microcephaly108,109) or the emergence of more neurovirulent influenza strains110 

are reminders that our understanding of the pathogenic consequences of CNS infections 

remain quite primitive. Translational studies have provided insights into the links between 

infections and disease but are not without controversy. For example, the prevalence of 

human cytomegalovirus in patients with glioblastoma has been hotly debated111, although 

anti-cytomegalovirus treatments lead to reduction in tumour burden in some patients111. 

Furthermore, losses in host immune status due to age or chemotherapy are well known to 

provoke disease, as observed with JC (John Cunningham) virus infection and progressive 

multifocal leukoencephalopathy112.
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Whether CNS virus infections have a larger role in human diseases of unknown aetiology 

remains controversial. In support of this notion, CNS neurons may be an ideal harbour for 

long-term infections: non-lytic immune mechanisms spare neuronal loss while providing an 

avenue for a non-cytopathic virus to persist. Moreover, trans-synaptic spread is likely to 

enable viral escape from antibody recognition or phagocytosis by antigen-presenting cells. 

From an evolutionary perspective, neuronal survival is paramount; thus, sparing infected 

neurons a lytic fate may promote survival early on but could potentially open the door for 

viral reactivation later in life. We do not know if there are viruses that are typically found in 

CNS tissues of overtly healthy individuals; with the advent of the RNA sequencing 

technology, new RNA sequencing studies might shed light on the potential ‘virome’ within 

the brain of both asymptomatic individuals and people with neurological conditions.

One final point that is worth noting concerns the utility of mouse models (on which many of 

the studies cited in this Review were based) to study human CNS diseases. Scientists often 

make the mistake of assuming that mouse survival is equivalent to an absence of disease. 

This may mean that the long-term ramifications of acute virus infections, especially those of 

RNA viruses that are not generally considered to be lifelong, may be overlooked. However, 

we are increasingly becoming aware that the presence of viral fragments or latent viruses 

that can reactivate might evoke non-lethal pathogenic consequences resulting from either 

viral replication and cell damage or immune responses directed against viral antigens. Such 

pathogenic consequences, as seen with the learning defects in LCMV-infected mice, may be 

subtle. Consequently, the parallel development of more-precise approaches to assess CNS 

disease in mice, including tools to evaluate the impacts on learning, behaviour and memory, 

should refine how we describe neuropathogenesis in the many valuable mouse models that 

are currently in use. Finally, determining whether or not persistent viral nucleic acids 

detected within the brain are replication competent and how these viruses evade complete 

clearance could promote the development of novel antiviral therapies to treat or prevent 

devastating and prevalent human neurological and neurodegenerative diseases95,113.

Acknowledgments

The authors acknowledge L. Enquist, O. Koyuncu and C. Matullo for their input and contributions to this 
manuscript. They also gratefully acknowledge support from the F. M. Kirby Foundation.

Glossary

Cytokines
Small proteins released by cells that affect cell signalling and act to regulate cell growth, 

maturation and effector functions

Interferons
(IFNs). Signalling proteins that are released by cells in response to infection to promote an 

antiviral state

RNA viruses
Viruses with genomic material that is composed of RNA rather than DNA. Genomic viral 

RNA can be double stranded, single stranded, positive sense or negative sense
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DNA viruses
Viruses with genomic material that is composed of DNA

Virions
Complete forms of an infectious viral particle

Permissive cells
Cells that actively express viral receptor proteins, thereby facilitating viral entry and 

infection

Budding
The final step of viral release during which a virion gains its outer membrane by bursting 

through the host cell membrane

Viral fusion proteins
Viral glycoproteins that are essential in mediating the virus–host interaction in which the 

viral membrane fuses with the host membrane releasing a virion into the host cell

Syncytia
The result of infected cells fusing with adjacent uninfected cells, producing large, 

multinucleated clusters

Cytotoxic T cells
A subset of T cells that are primed to kill target cells

Memory T cells
A subset of T cells that have previously interacted with their cognate antigen

Perforin
A protein that is stored by cytotoxic T cells and that creates holes in target cell membranes, 

allowing for the delivery of cytotoxic granzymes

Stress granules
Dense aggregates of protein and RNA that are present in the cytoplasm and are typically 

associated with the endoplasmic reticulum
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Box 1

Syncytia formation and trans-synaptic spread

Viruses gain entry into permissive cells through an interaction between virally encoded 

glycoproteins, which are expressed on the outer surface of the virus particle, and cellular 

receptors. Entry can be achieved through endocytosis into vesicles or via membrane 

fusion114. For fusogenic viruses, exit from the cell occurs either via budding of virus 

particles through the plasma membrane or via fusion of an infected cell with an adjacent, 

uninfected cell114. The latter process results in the formation of multinucleated cells, or 

syncytia. The formation of syncytia may support further viral production but irrevocably 

leads to the death of the fused cells. Similarly, release of infectious particles by budding 

often leads to the death of the infected cell115.

However, viruses that are considered cytopathic in renewable cell types — including 

measles virus (MV), rabies virus and pseudorabies virus — can switch to a non-

productive, non-syncytia-forming mode of spread when infecting neurons, promoting 

neuronal survival12,19,20,116,117. Often, this is correlated with absence of detectable 

extracellular viral particles. The spread of these viruses within neurons is primarily trans-

synaptic, although the neuronal processes that enable a switch from viral budding and 

syncytia formation to non-cytolytic, trans-synaptic spread are not yet defined.

At least two possibilities might explain the viral movement across the synapse. In the first 

scenario, the spread of viral particles between neurons requires ligand–receptor 

interactions, similar to infection in non-neuronal cells. Directed transport to the synapse 

and focal fusion at the synaptic cleft might be required for a virus to migrate across the 

synapse: thus, the process that occurs in non-neuronal cells might also be operative in 

neurons. Trans-synaptic spread might require the same cellular and viral proteins that 

allow for fusion of non-neuronal cells or may be unique to the presynaptic–postsynaptic 

interface. For example, in MV neuronal infection, expression of the primary receptors 

that are used in non-neuronal cell infection is not required; however, a fusion event is still 

necessary for the spread to occur, perhaps, by forming a ‘pore’ through which the viral 

ribonucleic acid is transported118.

In the second scenario, the close approximation between the presynaptic and postsynaptic 

membrane, coupled with the unique attributes of the synaptic junction, may allow for the 

passive transport of viruses that have trafficked or assembled there. The release of 

neurotransmitters and uptake of their receptors make the synaptic interface particularly 

fluid, which might make it uniquely able to support receptor-independent trafficking.

Miller et al. Page 20

Nat Rev Neurosci. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Viral entry into the CNS
Three modes of viral entry into the brain are shown. a | Viruses may directly infect the cells 

comprising the blood–brain barrier (BBB), followed by release into the parenchymal space 

(left panel). Alternatively, viruses may diffuse across permeable regions of the BBB (middle 

panel). Of note, BBB permeability can be influenced by cytokines, such as tumour necrosis 

factor (TNF) and various interferons (IFNβ, IFNγ and IFNλ), which can loosen or reinforce 

the barrier integrity. In the ‘Trojan horse’ approach (right panel), infected lymphocytes or 

monocytes (including macrophages) traffic across the BBB or blood–cerebrospinal fluid 
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barrier, releasing the virus once in the brain parenchyma. b | Trans-synaptic spread of viral 

particles involves the transport of viral genomes and associated proteins via microtubules 

and molecular motors. The left panel shows the movement of rabies virus (RABV) from the 

muscle, across the neuromuscular junction, and the dynein-mediated retrograde transport of 

this virus into the CNS. In the right panel, the transport of viruses (including herpes simplex 

virus (HSV), varicella zoster virus (VZV) and pseudorabies virus (PRV)) occurs across the 

epithelial or endothelial–neuron junction. In these neurons, retrograde transport brings the 

virus to the neuronal soma, and anterograde transport delivers the virus to the peripheral 

nervous system (PNS)–CNS synaptic junction. IFNAR, IFN α/β receptor; IFNGR, IFNγ 
receptor; HIV-1, human immunodeficiency virus type 1; MV, measles virus; PV, poliovirus; 

TNFR, TNF receptor; WNV, West Nile virus. Part a is adapted with permission from REF.9, 

PLoS. Part b is adapted with permission from REF.4, Elsevier.
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Figure 2. The receptor-occupancy hypothesis
In cells with abundant levels of signal transducer and activator of transcription 1 (STAT1) 

signalling proteins, engagement of the interferon-γ (IFNγ) receptor (IFNGR) by its ligand 

transduces a primarily STAT1-driven cellular response, leading to activation of gene 

products that are chiefly antiviral (part a). By contrast, when a particular cell population 

(such as hippocampal neurons) expresses reduced homeostatic levels of STAT1 (part b) or 

when STAT1 is removed by genetic deletion (part c), alternative signalling molecules with 

an affinity to the IFNGR may bind to this receptor, transducing unique cellular responses. In 

the case of neurons, this includes activation of extracellular signal-regulated kinases 1 and 2 

(ERK1/2), which then can result in the induction of genes encoding pro-survival proteins. 

JAK1, Janus kinase 1; KO, knockout; MEF, mouse embryonic fibroblast.
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Figure 3. Tropism of neurotropic RNA viruses for distinct brain regions and neuronal 
subpopulations
The schematics show a simplified sagittal view of the mouse brain with the regions that are 

known to be infected by various viruses indicated in red. The symbol ‘>‘ indicates higher 

propensity for a virus to infect a certain cell type or region of the brain than another cell type 

or region. MHV, mouse hepatitis virus; MV, measles virus; RABV, rabies virus; WNV, West 

Nile virus.
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