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Age-dependent obesity and mitochondrial dysfunction

Qilong Oscar Yang Lia,y, Ines Soro-Arnaiza,b,y, and Juli�an Aragon�esa,c

aResearch Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain; bCurrent address,
Health Sciences and Technology Department, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland; cCIBERCV, Carlos III Health Institute, Madrid, Spain

ARTICLE HISTORY
Received 23 November 2016
Revised 12 February 2017
Accepted 15 February 2017

ABSTRACT
Aging is associated with progressive visceral white adipose tissue (WAT) expansion both in human
and mouse. Importantly, WAT enlargement is initiated early in life, suggesting that molecular
mechanisms underlying age-dependent obesity are activated at early stages of lifetime. Our recent
study found that age-dependent obesity was associated with a specific decline in mitochondrial
complex IV activity, which leads to reduced fatty acid oxidation and subsequent adipocyte
hypertrophy. At the molecular level, global mitochondrial complex IV inhibition was driven by
hypoxia-inducible factor-1a (HIF1a)-mediated repression of some of its key subunits, including
cytochrome c oxidase 5b (Cox5b). In this commentary, we compare age-dependent WAT responses
with those observed in the high fat diet model of extreme obesity. Furthermore, we discuss the
potential scenarios that could initiate age-dependent WAT expansion as well as the mechanisms by
which HIF1a could be activated in WAT.
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General considerations about age-dependent
obesity

Obesity is associated with the development of several met-
abolic diseases as well as with an increased risk for adverse
long-term outcomes, even in the absence of metabolic
abnormalities.1,2 Indeed, the American Medical Associa-
tion (AMA) decided in June 2013 to officially classify obe-
sity as a “disease” (“AMA Adopts New Policies on Second
Day of Voting at Annual Meeting.” June 18, 2013; Pollack
A. AMA recognizes obesity as a disease. New York Times.
June 18, 2013). Moreover, the clinical relevance of obesity
has increased considerably because first, obesity is already
manifested in middle and early-old aged population and
second, WAT mass can decline in advanced old popula-
tion accompanied by fat redistribution outside WAT
depots leading to lipotoxicity.3-5 Obesity is therefore con-
sidered a public health priority and a serious and chronic
health issue requiring both prevention and treatment.

Several studies in humans have shown that aging is
not only associated with adipose tissue expansion but
also with a redistribution in the pattern of adiposity.3

Indeed these studies have evidenced a redistribution of
fat from subcutaneous to visceral depots that occurs
from middle age until old ages, which leads to a preferen-
tial visceral WAT expansion during lifetime.3,5,6 As a

consequence, a relative increase in visceral fat with aging
has been associated to metabolic dysfunction and related
maladies.7 However it is important to note again that
WAT expansion manifests already in middle age both in
human and mouse, occurring much earlier than the
onset of metabolic disease.3-5,8,9 Indeed, body weight
increase as well as WAT expansion in mice already man-
ifests at 8–12 months of age.8 Therefore, exploring the
initiating events of age-dependent obesity in early mid-
dle-aged mice - rather than in older mice - could be criti-
cal to design targeted interventions to prevent obesity
and the metabolic syndrome in the future.

In our recent study, we found that repression of adipo-
cyte mitochondrial complex IV (CIV) activity occurs in
‘aging’ white adipocytes of middle-aged mice, providing a
potential molecular basis for age-dependent obesity.10

Here, we use the term ‘aging’, rather than ‘aged’ or ‘old’,
since aging refers to mice that are in the process of progres-
sively ‘getting older’. This is in clear contrast to other age-
associated molecular and physiologic alterations in aged
mice, which usually manifest at later periods of lifetime, for
example 22 to 30 months in mice (see also below).11,12

Finally, it is important to note that the majority of
studies addressing WAT expansion in animal models

CONTACT Juli�an Aragon�es julian.aragones@uam.es, Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University
of Madrid, Madrid, 28009, Spain
yBoth authors contributed equally to this work.
© 2017 Taylor & Francis

ADIPOCYTE
2017, VOL. 6, NO. 2, 161–166
https://doi.org/10.1080/21623945.2017.1297346

https://crossmark.crossref.org/dialog/?doi=10.1080/21623945.2017.1297346&domain=pdf&date_stamp=2017-06-09
https://doi.org/10.1080/21623945.2017.1297346


commonly use high fat diet (HFD) to provoke obesity.
We believe that WAT responses to HFD feeding are likely
different to age-dependent WAT alterations for the fol-
lowing reasons: (i) obese/over-weight patients gain weight
progressively over time in contrast to the rapid WAT
expansion induced in HFD murine models,13,14 (ii) a sce-
nario in which humans are under extreme nutritional
overload mimicking that of HFD-fed mice seems unlikely,
and (iii) some WAT responses to HFD in mice are not
necessarily observed in obese humans. Therefore, we con-
sider that future studies in mice focused on age-depen-
dent WAT expansion are necessary to comprehend
metabolic responses (such as mitochondrial CIV repres-
sion) that naturally occur in WAT during human aging.

Mitochondrial complex IV vulnerability in aging
white adipocytes

Mitochondrial dysfunction is a hallmark of aging.15 We
have recently found that mitochondrial oxygen con-
sumption is already repressed in white adipocytes of
aging mice as a consequence of an early mitochondrial
dysfunction in WAT.10 Remarkably, this is associated
with a specific decrease in mitochondrial CIV activity,
while the activity of the other complexes as well as

mitochondrial content remains unaltered (Fig. 1). Fur-
thermore, this reduction in activity is sufficient to reduce
fatty acid oxidation and lead to adipocyte hypertrophy
and obesity during aging.10 Restoration of CIV compo-
nents such as cytochrome c oxidase 5b (Cox5b; see
below) using local WAT injection of lentiviruses express-
ing COX5B counteracts age-dependent WAT expan-
sion10 (Fig. 1). These findings seem to contrast with the
general mitochondrial dysfunction described previously
in the WAT of HFD-fed mice, or in mice with altered
leptin signaling, such as ob/ob and db/db obese mice.16-18

However, it could be considered that a global decline in
mitochondrial content would require not only WAT
expansion, but also the development of an obesity-driven
inflammatory milieu provoked by HFD/ nutrient over-
load. Indeed, inflammatory mediators are associated
with a decline in mitochondrial content17,19-21 and pre-
sumably this inflammatory process does not occur—or
occurs to a lesser extent—in aging WAT. Significantly,
our data are in line with previous data in humans sug-
gesting that decline of white adipocyte mitochondrial
content as well as a global mitochondrial dysfunction is
not necessarily taking place—or to a mild extent—in
obese patients,22-25 but more associated with concomi-
tant diabetes.22 Moreover, our data in humans also show
that the expression of mitochondrial CIV components
such as COX5B, is specifically reduced during aging.10

However, this cannot be attributed to a general decline
in the expression of mitochondrial genes because the
mitochondrial marker VDAC1 was not decreased with
age.10 Thus, global mitochondrial dysfunction might be a
consequence of extreme scenarios such as HFD models
or obese patients with concomitant metabolic dysfunc-
tion (e.g., diabetes), whereas age-dependent obesity could
be considered a milder scenario whereby mitochondria
are more gradually affected, with CIV being particularly
vulnerable.

Age-dependent white adipocyte HIF1a
expression

Several studies have shown that WAT expansion in
HFD-fed mice is associated with poor oxygenation and
consequent white adipocyte activation of HIF1a.8,26-28

Moreover, adipocyte-restricted Hif1a gene inactivation
counteracts pathological WAT expansion in HFD-fed
mice.8,26-28 In our recent study, we demonstrated that
HIF1a expression also increases during age-dependent
WAT expansion.10 WAT hypoxia has been detected
under normal dietary conditions using the exogenous
marker pimonidazole28-30; therefore, HIF1a activation in
aging WAT can be a ‘consequence’ of an initial WAT
expansion during aging. Nonetheless, HIF1a is also a

Figure 1. Role of HIF1a-CIV pathway in age-dependent WAT
expansion. White adipocyte enlargement is initiated in early
phases during aging. During age-dependent WAT expansion
HIF1a is stabilized and promotes CIV dysfunction (CIV) (decreased
activity and stability). Adipocytes with a dysfunctional CIV are less
oxidative and, therefore, accumulate more lipids allowing further
WAT expansion. Age-dependent CIV dysfunction can be allevi-
ated by the ectopic overexpression of the nuclear encoded CIV
subunit COX5B in aging mice. Conversely, silencing this CIV sub-
unit in young adipocytes promotes adipocyte enlargement.
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‘cause’ of age-dependent WAT hypertrophy because age-
dependent WAT expansion requires adipocyte HIF1a
activity.10 Indeed, HIF1a promotes white adipocyte fat
accumulation by repressing CIV activity, leading to a
reduction in adipocyte fatty acid oxidation.10 It therefore
seems likely that HIF1a is both a ‘cause’ and a ‘conse-
quence’ of age-dependent WAT expansion, in which ini-
tial WAT expansion is accompanied by a degree of
hypoxia (perhaps milder than in HFD models) leading
to subsequent HIF1a activation, which further exacer-
bates age-dependent WAT expansion. Regarding the ini-
tiating factors of age-dependent WAT enlargement that
could provoke HIF1a activation, some studies have
shown that aging leads to hypothalamic molecular altera-
tions that, by possibly increasing food intake, result in
increased body weight. Indeed, the expression of the
NADC-dependent deacetylase Sirtuin 1 (SIRT1) is pro-
gressively reduced in agouti-related peptide (AgRP) neu-
rons in the hypothalamus during aging. This repression
has been linked to food intake alterations during aging
since restoration of SIRT1 expression in AgRP neurons
suppresses food intake.31,32 Moreover, age-dependent
over-activation of mammalian target of rapamycin
(mTOR) signaling in pro-opiomelanocortin (POMC)
neurons in the arcuate nucleus of the hypothalamus con-
tributes to obesity during aging.14 Notably, it has been
also described that the dysregulated/altered activities of
SIRT1 and mTOR appear in early middle-aged mice and
therefore at similar lifetime stages when age-dependent
obesity is manifested. Collectively, these studies support
the possible involvement of hypothalamic SIRT1 and
mTOR signaling in age-dependent obesity. Based on this
evidence, age-dependent WAT expansion might be con-
sidered a secondary consequence of age-dependent
increased food intake, which promotes initial WAT
expansion leading to HIF1a activation, which ultimately
compromises CIV activity and accelerates WAT expan-
sion in aging mice.

Nevertheless, increased food consumption during
aging is a controversial issue,33,34 and this may not be
involved in age-dependent body weight gain. Therefore,
WAT expansion and obesity during aging could be an
autonomous response without the participation of altera-
tions in the extent of food intake, or of other peripheral
tissues. Along this line, we failed to detect HIF1a accu-
mulation in liver, skeletal muscle or brown adipose tis-
sue.10 It is conceivable that HIF1a stabilization is
inherent to the local WAT depot during aging because
lipid accumulation could be inherently associated with a
certain degree of adipocyte hypoxia (Fig. 2). However, it
is also possible that age-dependent HIF1a activation is
triggered by progressive oxidative stress or simply by
lipid accumulation, both of which have been reported to

activate HIF1a independently of oxygen availability35-37

(Fig. 2). Indeed, reactive oxygen species (ROS) are
detected in WAT even at baseline conditions, and their
levels progressively increase during aging.38,39 Further-
more, a recent study has shown that cholesterol can lead
to HIF1a activation via ROS generation.37 Finally, fat
accumulation in HFD-fed mice can also promote HIF1a
accumulation through free fatty acid-induced mitochon-
drial uncoupling and increased oxygen consumption.8 It
is however unlikely that this latter mechanism is pre-
dominant in age-dependent WAT expansion since mito-
chondrial oxygen consumption is reduced10 and it is
anticipated that the supply of free fatty acids to white
adipocytes is much lower than that in HFD models.
Independently of the mechanism of basal HIF1a activity
in aging WAT, as discussed above, it is probable that ini-
tial HIF1a activation during aging triggers a feed-for-
ward mechanism, which further promotes WAT
expansion and a more robust HIF1a activity during
lifetime.

Interestingly, HIF1a activation has been found in
aged tissues, such as skeletal muscle, in old mice (22–
30 months)11,40 but not in middle-aged mice.10 Sebastian
et al. demonstrated that gain of HIF1a activity in old or
very old skeletal muscle leads to global mitochondrial
dysfunction or mitochondrial autophagy, providing a
molecular basis of skeletal muscle mitochondrial decline
during aging.40 In skeletal muscle, Gomes et al. also
showed that gain of HIF1a expression has been

Figure 2. Activation of HIF1a in aging white adipocytes. The
figure shows that WAT expansion leads to poor white adipocyte
oxygenation (low pO2), which subsequently promotes HIF1a
accumulation. In turn HIF1a accumulation also exacerbates WAT
expansion involving mitochondrial complex IV repression (see
also Fig. 1). This feed-forward mechanism is indicated with the
orange arrow. Moreover, white adipocyte HIF1a accumulation
could be promoted - not only by hypoxia in itself - but potentially
also by intracellular ROS as well as lipid accumulation (e.g., cho-
lesterol) or other metabolic pathways such as SIRT1 involved in
HIF1a activation in other tissues during aging.
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associated with a decline of nuclear NADC and SIRT1
activity and subsequent decline in the levels of the von
Hippel-Lindau ubiquitin ligase, which is the principal
repressor of HIF1a.11,41 The described SIRT1-dependent
mechanism could also be added to the list of potential
mechanisms discussed above that trigger HIF1a activity
in aging adipocytes (Fig. 2). Independently of the mecha-
nisms involved, it would be interesting to explore
whether gain of HIF1a activity is a common signature in
aged tissues, although this activation would take place at
different lifetime stages in each cell type or tissue.

Age-dependent mitochondrial dysfunction
through HIF1a

Numerous studies both in tumor and non-malignant
cells have shown that a central response executed by
HIF1a is an anaerobic metabolic switch that favors
glycolysis and impedes glucose-driven mitochondrial
activity.42 Indeed, HIF1a directly induces gene expres-
sion of glucose transporter-1 and also glycolytic
enzymes including lactate dehydrogenase.43 Moreover,
HIF1a induces the expression of pyruvate dehydroge-
nase kinase-1, ¡3 and ¡4 that phosphorylate and
inhibit the pyruvate dehydrogenase complex, thereby
attenuating the conversion of pyruvate to acetyl-CoA
and glucose/pyruvate oxidation.44,45 At the level of
mitochondria HIF1a can induce a suite of changes,
including the reduction of CI activity through upregu-
lation of Ndufa4l2,46 the reduction of CII activity via
a decrease in Sdha expression,47 the rewiring of CIV
activity by inducing a subunit switch from Cox4–1 to
Cox4–248 and, in some cellular scenarios, can also
compromise mitochondrial biogenesis by repressing
c-myc activity.49 All the genes mentioned above are
simultaneously regulated by HIF1a in hypoxic cells to
reduce oxygen consumption and promote the genera-
tion of ATP in an oxygen-independent manner. Our
gene expression analysis in aging adipocytes found
that HIF1a repressed specifically Cox5b and Cox8a, 2
essential components of CIV. However, although
Cox5b and Cox8a expression is primarily repressed by
HIF1a, it does not necessarily mean that they are the
only CIV subunits affected in aging adipocytes. It has
been shown that COX5B is essential for assembly of
CIV as well as for protein stability of the other CIV
subunits.50 In line with this study, we found that
silencing Cox5b or Cox8a led to a profound decline
in CIV assembly and reduced the protein content
(but not gene expression) of other representative CIV
subunits, such as NDUFA4 (nuclear-encoded repre-
sentative) or mt-CO1 (mitochondria-encoded repre-
sentative), which are also reduced in aging

adipocytes.10 This specific repression of Cox5b and
Cox8a by HIF1a without affecting other HIF1a-
dependent genes might indicate that HIF1a expres-
sion/activation in aging adipocytes is not maximal,
and the expression of Cox5b and Cox8a subunits is
more sensitive to the presumed mild HIF1a activation
in aging adipocytes, than other HIF1a-target genes.
Therefore, it is conceivable that a more profound
activation of HIF1a is required to trigger the full
gene expression program mentioned above in white
adipocytes. Alternatively, it is possible that some of
the HIF1a-dependent metabolic genes identified in
other cellular scenarios could be not regulated in
white adipocytes. Irrespective of these considerations,
it seems clear that future studies should identify the
HIF1a-dependent gene expression program that is
sufficiently sensitive to the levels of HIF1a present in
aging adipocytes as this will undoubtedly help to gen-
erate novel insights in age-dependent obesity.
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