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Abstract The relative equilibria for the spherical, finite density three-body problem
are identified. Specifically, there are 28distinct relative equilibria in this problemwhich
include the classical five relative equilibria for the point-mass three-body problem.
None of the identified relative equilibria exist or are stable over all values of angular
momentum. The stability and bifurcation pathways of these relative equilibria are
mapped out as the angular momentum of the system is increased. This is done under
the assumption that they have equal and constant densities and that the entire system
rotates about its maximum moment of inertia. The transition to finite density greatly
increases the number of relative equilibria in the three-body problem and ensures that
minimum energy configurations exist for all values of angular momentum.
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Mathematics Subject Classification 70F07 · 70F15

1 Introduction

The three-body problem is one of the most fundamental and well-studied problems
in celestial mechanics. A key result for this problem is that there exist only five rel-
ative equilibria and that these exist for all levels of angular momentum (Euler 1767;
Lagrange 1772). The properties of these special solutions have been deeply studied
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and have motivated significant research in mechanics and dynamics. A hallmark of the
classical problem is that the bodies are considered to be point masses, with no restric-
tions on how close they can come to each other. A recent variation of this problem has
been posed that removes this one restriction (Scheeres 2012) and supposes that these
bodies can be rigid bodies with finite density, and hence have limits on their proximity.
Such “full-body” systems inherit the fundamental symmetries of the N -body problem
(Scheeres 2002); however, they also demand that the rotational angular momentum,
energy and dynamics of these rigid bodies be incorporated in the theory as well.

This paper studies the spherical three-body problem under the assumption that the
bodies are rigid and have finite density, and thus the separation between the bodies
is constrained to be positive. This one change completely alters the character of the
problem, and while the traditional Euler and Lagrange solutions still exist for large
enough angular momentum values, a full 23 additional relative equilibria emerge from
the analysis at all values of angular momentum, with a complex and rich bifurcation
scheme.

The celestial mechanics of bodies with finite density and fixed shape can have
dynamical evolution and relative equilibria that are quite distinct from that found in the
classical Newtonian point-mass N -body problem. These differences were previously
explored in Scheeres (2012) where several results were proven for the so-called full-
body problem, in which the individual bodies are treated as rigid bodies with finite
densities. Specifically, it was shown that, in opposition to the point-mass N -body
problem, the full-body problem will always have a minimum energy configuration.
Further, the number and variety of relative equilibria for that problem are greatly
enhanced and now include configurations where the bodies can rest on each other
and configurations where different collections of resting bodies orbit each other, as
well as the classical central configurations. One important aspect of this problem is
that the existence and stability of configurations become a function of the total angular
momentum of the system, a dependance that does not exist for the classical point-mass
N -body problem.

This paper studies the relative equilibria of one particular problem in the full-
body problem (FBP) to completeness. Specifically, all relative equilibria of the planar
spherical full three-body problem, which consists of three spheres of equal density but
arbitrary size, located in the planeperpendicular to the angularmomentum.The explicit
methodology used was developed in Scheeres (2012, in press), and is fundamentally
based on analysis of the amended potential as developed by Smale (1970a, b) and
motivated by observations from Arnold et al. (1988). The main theorem is stated and
described at first, the problem is technically defined, then several results used to make
the proof are listed, and finally all the detailed computations for the proof are given.
Following the proof, a summary of the proof is provided, indicating how it establishes
the theorem.

Amain application of this result is to identify the stable states that can be physically
achieved by a collection of self-gravitating bodies that can sustain contact. This situa-
tion happens in solar system dynamics when considering the physical nature of rubble
pile asteroids (Fujiwara et al. 2006), although there the number of individual grains
can be quite large. Recent observations of comets, however, also show that they can be
comprised of a few larger components that rest on each other and, given their changing
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spin rates due to outgassing, also mimic a system with changing angular momentum
(Massironi et al. 2015). A specific motivation from this current analysis would seek
out natural situations that mimic the stable members of these configurations. As the
existence of some of these stable configurations are somewhat unexpected, finding
such configurations in nature would be especially interesting.

Additional avenues for exploration would be to expand the current analyses to
study the dynamics of finite bodies as they interact with each other gravitationally
and through impact. This sort of approach has been followed in the planetary sciences
community in the study of rubble pile asteroids (Richardson et al. 2005; Sánchez and
Scheeres 2012). The current results can motivate the formation of stable shapes as a
function of body morphology and total angular momentum. In addition, the presence
of finite densities and minimum energy configurations also enables the rigorous com-
putation of energy limits for the Hill stability in the full N -body problem (Scheeres
2014, 2015), an avenue of further investigation for the current problem.

2 Main Result

Theorem 1 In the spherical full three-body problem, there exist a total of 28 distinct
relative equilibrium configurations. No single class of relative equilibria exists or is
energetically stable for all angular momentum; however, at every value of angular
momentum, there exists at least 1 energetically stable relative equilibria. The pattern
of relative equilibria can be fully represented in a bifurcation chart as the total angular
momentum of the system varies from 0 to ∞.

The28different relative equilibria canbedelineated in a fewdifferentways. Figure1
shows these relative equilibria separated into seven different classes, each with one-
to-six distinct configurations. The figure shows 20 distinct configurations, with eight
of them having an alternate ordering not shown in the figure.

Figures 2, 3, 4 and 5 show the detailed sequences of bifurcations that occur as the
total angular momentum of the system is increased. These diagrams are qualitative,
but the sequence of bifurcations in the specific connected pathways are accurate and
will be derived in the course of the proof. Note that the sequence of bifurcations keeps
some of the configurations separated from each other. In other cases the sequence of
bifurcations will change as the relativemasses of the bodies are changed, in these cases
multiple types of sequences are shown. Note in Fig. 3 that this particular sequence has
at least one stable configuration for all values of angular momentum, while none of the
others has a stable configuration in the vicinity of H = 0. Also note that the sequences
shown in Figs. 2, 3 and 4 all have two stable configurations for large H .

3 Problem Statement

3.1 The Full-Body Problem

A full-body problem is defined as a set of N rigid bodies that gravitationally attract
each other and which have a finite density mass distribution, meaning that there are
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Fig. 1 Examples of the 20 different equilibrium configurations are shown within different classes. Colors
indicate whether or not the configuration can be stable for a range of angular momentum (green), for some
special combinations of mass ratio and angular momentum (yellow), or if they are unstable for all angular
momentum values and mass ratios (red). Stars indicate when a reordering of the masses provides another
relative equilibrium. The detailed naming convention for the configurations is also introduced (Color figure
online)

specific limits on how close they can come to each other (Scheeres 2002, 2012, in
press). The description of such a system can be directly incorporated into a Lagrangian
framework where the coordinates Q = {Qi ; i = 1, 2, . . . , 6N } denote the absolute
Cartesian coordinates of the bodies and the Euler angles that orient the bodies in space.
The rigid body constraints place restrictions of the form |Qi − Q j | ≥ Di j (Q) on the
system. The dynamics of the system can be described by a total Kinetic Energy and
Gravitational Potential Energy, and as it is an isolated system will conserve its total
angular momentum, denoted as H , and can conserve its total energy, denoted as E , if
internal dissipative forces are excluded.

The linear momentum can be removed to reduce the system to 6(N−1) coordinates
that are purely relative to each other and an additional three degrees of freedom that
orient the entire system with respect to inertial space. Denote the relative coordinates
as q = {qi ; i = 1, 2, . . . 6(N − 1)}, noting that these can always be transformed to
locally reformulate the constraints as qi ≥ Di (q).

Thus, for the full three-body problem we have 12 relative degrees of freedom
between the three bodies. Of these only three are required to specify the relative posi-
tions of the bodies. The additional nine correspond to each of the bodies having three
degrees of freedom to orient themselves relative to the position configuration of the
bodies. As we take the three bodies to be spheres, their relative orientation is not
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Fig. 2 Bifurcation diagram showing the possible branches relating to the ER123 configuration. Depending
on the relative mass values two different bifurcation pathways exist. Within each pathway, the manner in
which the EO configuration appears can shift between the two pathways shown

tracked, although we must still account for their rotational angular momentum and
kinetic energy. Thus, for our purposes, our problem can be specified with only three
degrees of freedom, plus the overall orientation of the system with respect to inertial
space.

Before continuing we define the amended potential, which plays a fundamental role
in the following.

Definition 1 Amended Potential The Amended Potential is defined as the function
E = H2

2IH
+ U where H is the total angular momentum of the system, IH is the

moment of inertia of the total system taken about a principal axis of the system, in
general about the rotation axis Ĥ which points in the direction of the total angular
momentum vector, and U is the gravitational potential energy of the system. The terms
IH and U are functions only of the relative positions and attitudes of the bodies, and
for IH their orientation relative to Ĥ . The gradients of the Amended Potential with
respect to the degrees of freedom equal the force exerted on that degree of freedom
when at an equilibrium or resting configuration (Arnold et al. 1988, pp. 66–67).

3.2 Spherical Full Three-Body Problem Statement

Consider three bodies, Bi , i = 1, 2, 3, each of which is a sphere of radius Ri and, for
convenience, assumed to have a common density ρ.
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Fig. 3 Bifurcation diagram showing the possible branches relating to the ER132 configuration. ER132
links to the LR configuration and always fissions into the same EA13-2 configuration. Depending on the
relative mass values there can be a range of stable TR132 configurations and stable fission transitions to the
EA13-2 relative equilibrium. Within each pathway, the manner in which the EO configuration appears can
also shift between the two pathways shown. The two different sequence need not have the same pattern of
TR and EO bifurcations

The positions of these bodies can be denoted in R
3 by Cartesian position vectors

r i . The relative positions of these bodies are denoted as r i j = r j − r i and have the
fundamental rigid body constraint |r i j | ≥ (Ri + R j ) for i �= j . This lower bound, due
to the bodies having finite density, is what enables resting equilibria to occur. Each
of the spheres can carry angular momentum in their spin rate, although due to their
symmetry the specific orientation of these spheres are arbitrary in any frame. Thus,
the internal relative configuration space of the system, q, is completely specified by
only three quantities

q = {
r12, r23, r31 | ri j ≥ (Ri + R j ) & |ri j − r jk | ≤ rki ≤ |ri j + r jk |

}
(1)

While the configuration of the system is uniquely defined by these distances, not all
distances are allowable. This means that there are geometric constraints between some
of the distances independent of the finite density assumption. Thus it is sometimes
easier to define a unique configuration where the restriction is clearly obvious. One
such is to specify the distances between two of the bodies and the angle between these
two bodies centered on the third body (see Fig. 6). Thus, denoting the bodies with the
unique indexing i, j, k, the configuration can be specified as
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Fig. 4 Bifurcation diagram showing the possible branches relating to the ER213 configuration. Depending
on the relative mass values two different bifurcation pathways exist. Within each pathway, the manner in
which the EO configuration appears can also shift between the two pathways shown

q = {
ri j , r jk, θki | rlm ≥ (Rl + Rm)

}
(2)

where the final distance rki can be explicitly computed from the cosine rule:

r2ki = r2i j + r2jk − 2ri j r jk cos θki (3)

Note that the angle θki will also have constraints placed upon it, as the associated length
must satisfy rki ≥ Ri + Rk . These two expressions of the third degree of freedom, θki
or rki , will be used equivalently.

There are additional degrees of freedom of the triad of bodies with respect to inertial
space, which can be tracked by the unit vector of the angular momentum, Ĥ , which
are briefly discussed later.

The gravitational potential is equivalent to the three-body point-mass potential due
to the symmetry of spherical mass distributions.

U = −G
[
M1M2

r12
+ M2M3

r23
+ M3M1

r31

]
(4)

The moment of rotational inertia of each sphere is equal to 2Mi R2
i /5. For a given

placement of the three masses, the total inertia dyad of the system can be constructed
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Fig. 5 Bifurcation diagram showing the pathways to the LO configuration

Fig. 6 Configuration of the
system

as

I = 1

M1 + M2 + M3

2∑

i=1

3∑

j=2

MiMj

[
r2i jU − r i j r i j

]
+

3∑

i=1

2Mi R2
i

5
U (5)

where U is the identity dyad. Note that this form uses the Lagrange identity and
assumes that the center of mass is nominally at a zero point. The inertia matrix is
orientable, but for the amended potential only its orientation relative to the constant
angular momentum vector direction, Ĥ , is needed. Dotting the dyad on both sides by
this unit vector yields

IH = 1

M1 + M2 + M3

2∑

i=1

3∑

j=2

MiMj

[
r2i j − (Ĥ · r i j )2

]
+

3∑

i=1

2Mi R2
i

5
(6)
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The principal moments of inertia for a three point-mass system have the following
relation: Imax = Iint + Imin. Furthermore the maximum moment of inertia of the
point masses will always be perpendicular to the plane that the three bodies form
(Greenwood 1988). Thus, with our assumption that the body spins about its maximum
moment of inertia, the quantities (Ĥ · r i j ) = 0 and the moment of inertia simplifies
to

IH = M1M2r
2
12 + M2M3r

2
23 + M3M1r

2
31 + IS (7)

IS = 2

5
M1R

2
1 + 2

5
M2R

2
2 + 2

5
M3R

2
3 (8)

For rotation about the intermediate and minimum moments of inertia, we note that
IH will be strictly less than or equal to this above value, with equality between the
intermediate and maximum only occurring when the minimum moment of inertia of
the three particles (without the rigid sphere contributions) is 0. The maximummoment
of inertia of the point masses can never be zero, due to the finite size of the particles.

3.3 Normalization

To simplify the discussion, normalize the system with a length and a mass scale. The
length scale used is RT = R1+R2+R3, while themass scale isMT = M1+M2+M3.
Denote mi = Mi/MT , ri = Ri/RT , and di j = ri j/RT . In normalized coordinates the
fundamental quantities take on the values

U = −
[
m1m2

d12
+ m2m3

d23
+ m3m1

d31

]
(9)

IH = m1m2d
2
12 + m2m3d

2
23 + m3m1d

2
31 + IS (10)

IS = 2

5
m1r

2
1 + 2

5
m2r

2
2 + 2

5
m3r

2
3 (11)

with the angular momentum being normalized by the dividing factor
√
GM3

T RT and

the energy normalized by the dividing factor GM2
T /RT . For both H and E the same

notational designation is kept for the normalized values.
The normalizations provide two identities:

r1 + r2 + r3 = 1 (12)

m1 + m2 + m3 = 1 (13)

There are also fundamental relationship between the ri and themi , assuming constant
density.

mi = r3i
r31 + r32 + r33

(14)
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ri = m1/3
i

m1/3
1 + m1/3

2 + m1/3
3

(15)

3.4 Parameterization of the Problem

Any given variant of the F3BP can be identified with a point in a compact, two-
dimensional triangle, using either the masses or the radii. Plotting the radii r1, r3
or masses m1,m3 along two perpendicular axes each of them can only take values
between 0 and 1, and that furthermore they will be bounded by a diagonal defined by
r1 + r3 ≤ 1 or m1 + m3 ≤ 1. On the boundary of this equality r2 = m2 = 0. If,
instead, a diagonal defined by r1 + r3 = r13 < 1 or m1 + m3 = m13 < 1 is drawn,
then the value of the second radius or mass will equal r2 = 1− r13 or m2 = 1−m13.
This also lends itself to a graphical description, shown in Fig. 7 for the masses. Every
point within this triangle defines a unique F3BP in terms of its relative masses. This
paper studies the bifurcation structure across the entire region, however, due to the
symmetry of the problem the study can be restricted to a specific region only. To that
end, consider the restrictions

0 ≤ m3 ≤ m2 ≤ m1 ≤ 1 (16)

0 ≤ r3 ≤ r2 ≤ r1 ≤ 1 (17)

This region is shaded in Fig. 7. There are five other equivalent triangles defined by
reordering the different inequalities given above. The approach takenwill be to exhaus-

Fig. 7 Triangle defined for the bodies with the region of study shaded
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tively study all possible relative equilibria in the denoted region, the results of which
can then be easily applied to all other regions.

With this convention, there are additional constraints for the masses and radii.

1

3
≤ (r1,m1) ≤ 1 (18)

0 ≤ (r3,m3) ≤ 1

3
(19)

0 ≤ (r3,m3) ≤ (r2,m2) ≤ 1

2
(20)

Previous research has exhaustively explored the bifurcation structure and properties
for two general cases along the boundary of this triangle. One is at the point (1/3, 1/3,
1/3), when all masses and sizes are equal (Scheeres 2012). In this case a more limited
number of relative equilibria were found with a less complex bifurcation structure.
The other case is for m3 = 0, in essence just considering the two mass case with
0 ≤ m2 ≤ 1/2 ≤ m1 ≤ 1, along the base of the triangle (Scheeres 2012). In
this region the number of relative equilibria are also much fewer and the bifurcation
structure less complex.

For the problem we study, the spherical three-body problem, we can easily just
consider the planar motion of the system, with rotation occurring about a principal
moment of inertia of the system. We note that the spheres contribute to the system’s
total angularmomentumbut have the samemoment of inertia about any axis. In general
we will assume that the system rotates about the maximummoment of inertia, but will
justify this later.

4 Background and Supporting Results

A few definitions and supporting Lemmas are stated for use in this paper. Some of
these are classical results while others have been considered more recently Scheeres
(2012, in press), and thus the proofs are only briefly reviewed to point out their salient
features. Specific results for our current analysis are worked out in detail.

Lemma 1 The Total Energy of the system is conserved in the absence internal dissi-
pation and equals E = Tr + E , where E is the total energy and Tr is kinetic energy
of the system components relative to each other, evaluated in the rotating frame with
inertial angular velocity H/IH .

Proof For rotation about a principal axis of the system, E equals the amended potential
as introduced by Smale (1970a, b), and specifically considered by Arnold for the
three-body problem in Arnold et al. (1988), pp. 66–67. For a system rotating about
its principal axis the proofs in Scheeres (in press) apply, showing that the amended
potential arises from a Routh reduction of the system. The Routhian is shown to have
a Jacobi integral, which is identical to the total energy of the system. ��
Lemma 2 The total energy of the system is strictly bounded from below by the
amended potential: E ≤ E. If E = E , then Tr = 0. If the system is momentarily
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stationary (Tr = 0) and spins about a principal axis of inertia of the system, then
E = E. Thus the inequality is sharp and the lower bound can be achieved.

Proof Lemma 2 is proven in Scheeres (in press). The proof establishes the inequality
using the Cauchy Inequality applied to the angular momentum, and shows that it is
sharp through direct construction. ��

Another important feature of the system involves the existence of minimum energy
configurations for full-body systems. The following lemma establishes the existence of
minimum energy states for all values of angular momentum. This result also provides
the fundamental motivation for the current study.

Lemma 3 For a finite density distribution, the amended potential E has a global
minimum for all values of angular momentum H.

Proof The proof is given in Scheeres (2012) and involves showing that E is compact
and bounded over all possible values of the configuration space. This requires the finite
density assumption, as this blocks individual point masses from coming arbitrarily
close to each other. If body i escapes to∞ relative to bodies j and k, then the amended
potential takes on the valueE = U jk and remains bounded in the interval [−m jmk/(1−
ri ), 0]. If all three bodies escape to ∞ relative to each other, then E = 0. ��

Given the definition of the amended potential and its properties relative to the total
energy of the system, the relative equilibrium and energetic stability can be defined.
Following this conditions under which these are satisfied are stated.

Definition 2 Relative EquilibriumA given configuration q∗ is said to be a “Relative
Equilibrium” if its internal kinetic energy is null (Tr = 0), meaning that E = E at an
instant, and if it remains in this state over at least a finite interval of time.

Definition 3 Energetic Stability A given relative equilibrium q∗ is said to be “Ener-
getically Stable” if any equi-energy deviation from that relative equilibrium requires
a negative internal kinetic energy, Tr < 0, meaning that this motion is not allowed.

Lemma 4 Consider a system with an amended potential E as defined above with n
degrees of freedom, m of which are activated in such a way that only the variations
δq j ≥ 0, j = 1, 2, . . . ,m are allowed. The degrees of freedom qi for m < i ≤ n are
free.

The necessary and sufficient conditions for a system in a configuration q∗ to be in
a relative equilibrium are that at this configuration:

1. Tr = 0
2. Eq j ≥ 0 ∀ 1 ≤ j ≤ m
3. Eqi = 0 ∀ m < i ≤ n

The necessary and sufficient conditions for a system in a relative equilibrium to be
energetically stable are that:

1. Eq j > 0 ∀ 1 ≤ j ≤ m

2.
[

∂2E
∂qi ∂qk

]
> 0 ∀ m < i, k ≤ n
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Fig. 8 Examples of bifurcations of interest in this problem, and their stability properties

Proof The proof of Lemma 4 is found in Scheeres (in press). It relies on taking
variations of the amended potential, asserting the principle of conservation of energy
and using the general form of the Lagrange equations of motion for the full-body
system. ��

Next a few results of relevance for the system are stated regarding bifurcation of
relative equilibria and their stability. Specific example bifurcations and their properties
are shown in Fig. 8

Definition 4 Symmetric Bifurcation A bifurcation of two relative equilibria which
follow a symmetric path relative to each other about a reflection line at changing values
of angular momentum.

Definition 5 H-BifurcationAnH-Bifurcation occurswhen, under increasing angular
momentum, a pair of relative equilibria appear in a degree of freedom q that is not at
a constraint. At its first appearance there must be a degeneracy of the form Eqq = 0
that will generically disappear under increasing angular momentum.

Definition 6 Fission A collection of bodies in a relative equilibria with at least one
active constraint is said to “fission” if, under an increase in angular momentum, the
active constraint is released, meaning that a free relative equilibria intersects with it.
Followingfission the body eithermay transition into a new relative equilibriumwithout
that active constraint or may no longer lie in any relative equilibrium associated with
that configuration.

Definition 7 Termination Fission A fission bifurcation where the relative equilibria
disappear at higher values of angular momentum.

Definition 8 Transition Fission A fission bifurcation where the relative equilibria
continues with its constraint inactive at higher values of angular momentum.

Now a particularly useful lemma is proven, which enables us to relate the stability of
equilibrium points to how their coordinate changes as a function of angularmomentum
H .
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Lemma 5 Assume a relative equilibria exists with a 1–1 relationship between a single
degree of freedom q and the angular momentum H, meaning that along the local
family of relative equilibria as the angular momentum is changed only the degree of
freedom q changes. Then sign(Eqq) = sign(∂H/∂q) at the relative equilibria. Thus,
if ∂H/∂q < 0 the equilibrium point will be energetically unstable and if ∂H/∂q > 0
it could be stable, depending on the other degrees of freedom.

Proof From the lemma statement it can be assumed that all other degrees of free-
dom lie in a relative equilibrium condition independent of the local value of H .
Given this, assume that there exists a value q∗ such that the scalar equation Eq

∣
∣∗ =

−H2/(2I 2H )IHq+Uq = 0. This can be solved for H∗ = (
IH

√
2IHq/Uq

)∣∣∗, where the
righthand side is a function of q∗ and by assumption is non-singular. Now consider a
neighboring relative equilibrium at a different value of H and hence q, with the values
defined locally by the expansion

Eq(H∗ + �H, q∗ + �q) = 0 + EqH
∣
∣∗

∂H

∂q

∣
∣
∣
∣∗

�q + Eqq
∣
∣∗ �q + · · ·

Setting this to zero and solving for an arbitrary �q yields

Eqq
∣
∣∗ = − EqH

∣
∣∗

∂H

∂q

∣
∣
∣
∣∗

However, from the defining equation for Eq given above, it is seen that EqH =
−H/I 2H IHq , where IHq > 0 by inspection of Eq. (10). Thus, the sign of Eqq

∣
∣∗ equals

the sign of ∂H
∂q

∣
∣
∣∗. ��

Corollary 1 For an increasing angular momentum H, a free relative equilibria that
ends in aTerminationFission is always unstable in the degree of freedomq.Conversely,
a free relative equilibria that emanates from a Transition Fission is always stable in
the degree of freedom q.

Proof Assume the active constraint is defined to beq = 0.By definition, a Termination
Fission occurs when a relative equilibrium at q∗ > 0 moves toward the general
constraint q = 0 under increasing angular momentum. Thus ∂H/∂q < 0 and from
Lemma 5 the relative equilibrium is unstable. Conversely, a Transition Fission occurs
when a relative equilibrium at q∗ ≥ 0 moves away from the general constraint q = 0
under increasing angularmomentum.Thus ∂H/∂q > 0 and fromLemma5 the relative
equilibrium is energetically stable in the degree of freedom q, although it may be
unstable in other degrees of freedom. ��

Finally, we end with a Lemma on the rotation axis that a stable configuration must
have.

Lemma 6 Any relative equilibrium configuration not rotating about the maximum
moment of inertia of the body will be energetically unstable.

123



J Nonlinear Sci (2016) 26:1445–1482 1459

Proof If a body is in a relative equilibria it must rotate about a principal moment of
inertia. It can then be treated as a rigid body, at least up to first-order variations in its
internal configuration and inertial orientation. If it is not rotating about its maximum
moment of inertia, it must be rotating about its intermediate or minimum moment of
inertia. The relevant total energy of the function system then equals H2/(2Ii )where Ii
is a principal moment of inertia (here ignoring internal variations). From the classical
Poinsot construction the bodywill be at a saddle point of the energy function if rotating
about the intermediate axis and will be at a local maximum of the energy function for
rotating about the minimum axis. In either case, the rigid body rotation is not stable
in the energetic sense as it can depart from this rotation axis while conserving energy
with an increase in kinetic energy. ��

Due to this result, we only consider rotation about the maximum moment of inertia,
which will always lie in the plane containing the three bodies. In the degenerate case
where the bodies are in a line, the system will rotate perpendicular to its line of
symmetry.

With these Definitions, Lemmas and Corollaries stated, the relative equilibria and
stability of the full three-body problem can be established.

5 Existence, Stability and Bifurcation of Relative Equilibria

In this section, having stated the theorem and developed the necessary background,
the detailed proof of Theorem 1 is now given.

Proof To systematically explore the existence, stability and bifurcation of the relative
equilibria the systems with different numbers of degree of freedom constraints acti-
vated and conditions for these to be released are considered separately. The discussion
starts with all three DOF constraints activated and progressing to fewer and fewer
until all degrees of freedom are not constrained. The “Appendix” contains the detailed
partial derivatives and variation conditions of the amended potential needed for the
following discussions. ��

5.1 Three Active Constraints: Lagrange Resting Configurations

Existence For the three constraints to be active requires that di j = ri + r j = 1 − rk
for all of the indices. This configuration can only occur when the three bodies are
mutually resting on each other. The relative angle between adjacent grains are then
defined by

cos θki = (1 − rk)2 + (1 − ri )2 − (1 − r j )2

2(1 − rk)(1 − ri )
(21)
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sin θki =
√

(1 − rk)2(rk − rir j ) + (1 − ri )2(ri − r j rk) + (1 − r j )2(r j − rkri )√
2(1 − rk)(1 − ri )

(22)

where k, i take on all possible values. The corresponding values of IH and U in this
configuration are

IH = mim j (1 − rk)
2 + m jmk(1 − ri )

2 + mkmi (1 − r j )
2 + IS (23)

U = −
[
mim j

1 − rk
+ m jmk

1 − ri
+ mkmi

1 − r j

]
(24)

There are two unique orderings of the resting configuration, mirroring the orbital
Lagrange configuration, which results in two distinct relative equilibria. Due to this
these configurations are called the Lagrange Resting (LR) configurations.

Stability As this is the minimum distance for each of these bodies to achieve, this also
implies that the potential energy will be minimized at this configuration. From this it
can immediately be concluded that for H = 0 this particular resting configuration is
the minimum energy configuration of the system and hence is stable.

Bifurcation As H increases fromzero this system should exist as a relative equilibrium
for some range of H , but to discover the precise range when this holds requires that
the transition from three to two active constraints be investigated. Thus, as angular
momentum is increased, conditions for when one of these constraints is no longer
enforced is sought, meaning that one of the degrees of freedom will have an allowable
variation that decreases the energy. For this configuration each of the three distances
can be tested in turn to see which will lose positivity first. For the condition tested,
consider the angle variation δθki ≥ 0, keeping the other two constraints δdi j =
δd jk = 0.The condition for existence (and stability) of this configuration thenbecomes
δθki E ≥ 0. Evaluating this explicitly and substituting for the equal resting conditions
yields

δθki E = mkmi

[

−H2

I 2H
+ 1

(1 − r j )3

]

(1 − rk)(1 − ri ) sin θkiδθki (25)

and substituting in for sin θki yields

δθki E = mkmi√
2

[

−H2

I 2H
+ 1

(1 − r j )3

]

×
√

(1 − rk)2(rk − rir j ) + (1 − ri )2(ri − r j rk) + (1 − r j )2(r j − rkri )δθki

(26)
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Changing k, i for i, j and j, k only changes the items on the first line, and thus the con-
trolling condition for the existence and stability of the LagrangeResting configurations
is

1

(1 − r j )3
>

H2

I 2H
(27)

which must hold for j = 1, 2, 3. Thus the minimum value of r j gives the minimum
value of H for the inequality to be violated. For the specified definitions thismeans that
j = 3 and the loss of stability occurs about the angle θ12, meaning that the Lagrange
Resting configuration will undergo a Termination Fission by losing contact between
its two largest bodies, pivoting about the smallest grain (see Fig. 3).

5.2 Two Active Constraints

In this case two bodies rest on each other, but do not have the third contact active. A
convenient way to express this is to have the two distances at their minimum value
and leave the angle free, or di j = 1−rk , d jk = 1−ri with θki only constrained by the
resting limit, dki ≥ 1 − r j . For the moment assume that Edi j > 0 and Ed jk > 0 (this
will be checked later), and thus there is only one degree of freedom to be concerned
with. Taking the first variation and substituting for the distances yields

δθki E = mkmi

[

−H2

I 2H
+ 1

d3ki

]

(1 − rk)(1 − ri ) sin θkiδθki (28)

which must now be identically equal to zero for the system to be in equilibrium.
There are two possibilities, sin θki = 0 or − H2

I 2H
+ 1

d3ki
= 0. Both can occur and are

discussed separately, the former is called the Euler Resting configuration and the latter
the Transitional Resting configuration. No assumptions are made about the ordering
of the bodies in terms of mass, unless specified.

Each case must be tested for when the configurations cease to exist, which will
occur once one of the energy variations in the active distance constraints equals zero.
These will be explicitly tested for each case to determine conditions at which these
equilibria no longer exist.

5.2.1 Euler Resting Configurations

Existence First consider the case when θki = π , noting that the angle cannot equal
zero due to the finite radius constraints. Then the first variation is identically equal
to zero and the bodies rest on a straight line with the ordering i, j, k, the system
forming a relative equilibrium. These are notationally denoted as ERi jk, noting that
configuration ERk ji is considered to be equivalent. Now the moment of inertia and
potential energy take on the values
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IH = mim j (1 − rk)
2 + m jmk(1 − ri )

2 + mkmi (1 + r j )
2 + IS (29)

U = −
[
mim j

1 − rk
+ m jmk

1 − ri
+ mkmi

1 + r j

]
(30)

with the main difference from the Lagrange Resting (LR) configurations being that
the distance dki = 1 + r j due to the elongate geometry.

Stability Under the assumption that the two distance variations are both positive
(which is true for a low enough value of H ), the stability of this relative equilib-
rium can be analyzed by computing the second-order variation evaluated at the resting
configuration.

δθki θki E = −mkmi

[

−H2

I 2H
+ 1

(1 + r j )3

]

(1 − rk)(1 − ri )δθ
2
ki (31)

Stability of this configuration occurs when δθki θki E > 0 which places a lower limit
on the angular momentum for stability

I 2H
(1 + r j )3

< H2 (32)

Note that the value of angularmomentum is lower than the angularmomentumatwhich
the LR configurations cease to exist. Also, the stability transition occurs when the
Transitional Resting configuration conditions are satisfied for the same configuration,
indicating that a bifurcation occurs.

Bifurcation For lower values of angular momentum the Euler Resting configuration
exists, but is unstable and mimics an inverted pendulum. When the stability condition
is satisfied, the system mimics a hanging pendulum and will remain stable until one
of the energy distance variations becomes zero, indicating a transition from two active
constraints to a single active constraint. To probe when this occurs, substitute the
equilibrium condition into Eq. (86) to find

δdi j E = mi

{

m j

[

−H2

I 2H
+ 1

(1 − rk)3

]

(1 − rk)

+mk

[

−H2

I 2H
+ 1

(1 + r j )3

]

(1 + r j )

}

δdi j (33)

Setting this to be greater than or equal to zero defines when the ER relative equilibrium
configuration exists, and can be solved for as a condition on angular momentum

[
m j (1 − rk) + mk(1 + r j )

] H2

I 2H
≤ m j

1

(1 − rk)2
+ mk

1

(1 + r j )2
(34)
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The precise value of H when this is first violated is discussed in a later section. For
the current analysis it suffices to note that this inequality is always satisfied when
the ER configurations first become stable. Substituting (H/IH )2 = 1/(1 + r j )3 and
simplifying yields

0 ≤ r j + rk (35)

which is trivially satisfied for any j or k. It is also clear that a large enough H will
always be able to violate the existence condition. Generically, one of the two bodies
i or k will separate from j , leaving the other body in contact and transitioning the
configuration into the Euler Aligned configuration.

5.2.2 Transitional Resting Configurations

Existence When the Euler Resting (ER) configurations becomes stable, a pair of solu-
tions that satisfy the second equilibrium condition bifurcate from or into the resting
configuration. The condition in general is H2 = I 2H/d3ki , but now the moment of iner-
tia IH becomes a function of θki and must change with H to maintain this condition.
There are two branches, θki > π and θki < π , and these give two different orderings
of the configuration—ultimately corresponding to the two different orientations of
several of the equilibrium configurations. The moment of inertia and potential energy
now take on the more generalized form

IH = mim j (1 − rk)
2 + m jmk(1 − ri )

2 + mkmid
2
ki + IS (36)

U = −
[
mim j

1 − rk
+ m jmk

1 − ri
+ mkmi

dki

]
(37)

d2ki = (1 − rk)
2 + (1 − ri )

2 − 2(1 − rk)(1 − ri ) cos θki (38)

Stability Evaluating the second variation of the energy with respect to θki yields

δ2θki E = mkmi

[
4mimkd

2
ki − 3IH

] (di j d jk sin θki )
2

IHd5ki
(δθki )

2 (39)

Stability, when the configuration exists, then hinges on the sign of 4mimkd2ki − 3IH .
Making the substitution from Eq. (14) the stability condition can be reduced to

d2ki >
3

r3i r
3
k

[
2

5

(
r3i + r3j + r3k

) (
r5i + r5j + r5k

)
+ r3i r

3
j (1 − rk)

2 + r3j r
3
k (1 − ri )

2
]

(40)

where 1 − r j ≤ dki ≤ 1 + r j .
Note that the equilibrium configuration does not necessarily exist across this entire

range of mutual distances. Specifically, the distance variation conditions must be ver-
ified for the configuration to exist. Substituting the equilibrium condition into Eq. (86)
then yields the existence condition (after simplification)
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H2

I 2H
≤ 1

(1 − rk)3
(41)

where k is the radius of either of the outer resting bodies. Note that the transitional
resting configurations will always exist over some interval of angular momentum,
as substituting the initial bifurcation conditions of (H/IH )2 = 1/(1 + r j )3 can be
trivially shown to satisfy the above existence condition. Again, note that H can also
always be chosen large enough for the existence condition to be violated. There are
three different possible situations to cover, investigated in detail below.

i = 1, j = 2, k = 3 For this sequence the Transitional Resting equilibrium are
unstable and migrate from the ER123 configuration (which they stabilize upon bifur-
cation from it) to the distance d31 = 1− r3, at which point body 1 separates from the
system. To determine instability evaluate Eq. (40) over the entire range of radius values
and verify that it is never satisfied. To see this consider the contact conditions from
Eqs. (86) and (87). For these conditions to hold both must be greater than or equal
to zero for a positive variation in the mutual distance di j and d jk . Substituting the
equilibrium condition (H/IH )2 = 1/d331 and simplifying, the condition for existence
of the TR123 configuration is that both

d31 ≥ d12 (42)

d31 ≥ d23 (43)

For the current configuration, d12 = 1 − r3 > d23 = 1 − r1. Thus the controlling
condition is d31 ≥ 1−r3. Now note that d31 ≥ 1−r2 and that 1−r3 > 1−r2, thus this
inequality is violated prior to the TR123 configuration reaching the LR configuration,
and as noted occurs once d31 = 1 − r3. See Fig. 2 for the evolutionary path for this
situation.

i = 3, j = 1, k = 2 For this sequence the Transitional Resting equilibrium are
unstable (determined as before) and migrate from the ER312 configuration (which
they stabilize upon bifurcation from it) to the distance d23 = 1 − r3 when body 2
separates from the system. Similar to above, the condition for existence of the TR312
configuration is that

d23 ≥ d31 (44)

d23 ≥ d12 (45)

For the current configuration, d12 = 1 − r3 > d31 = 1 − r2. Thus the controlling
condition is d23 ≥ 1−r3. Now note that d23 ≥ 1−r1 and that 1−r3 > 1−r1, thus this
inequality is violated prior to the TR312 configuration reaching the LR configuration,
and as noted occurs once d23 = 1 − r3 again. See Fig. 4 for the evolutionary path for
this situation.

i = 1, j = 3, k = 2 For this sequence the Transitional Resting equilibria exist
across the range of radius limits, going from ER132 to Lagrange Resting configura-
tions. For this configuration there are ranges of parameters for which there are stable
relative equilibria. To identify these regions compare the upper inequality limit to

123



J Nonlinear Sci (2016) 26:1445–1482 1465

Fig. 9 Region where stable TR132 configurations can lie. The horizontal axis is the radius r1 and the
vertical axis is the radius r3. The same axes are used for all subsequent figures

when the distance for stability is less than the maximum distance 1+ r j . Plotting out
this region delineates the small oval region in Fig. 9. For parameter values within this
region the evolution of the TR132 configuration becomes more complex. Specifically,
the angular momentum profile in this region is such that there are two relative equi-
libria defined at a given level of angular momentum, one toward the LR configuration
(which is always at a local maximum of the energy and thus is unstable) and one
toward the ER132 configuration (which becomes a local minimum of the energy and
thus is stable). Figure3 shows the two different pathways that can occur.

Bifurcation For the TR configurations which are always unstable, as the angular
momentum is increased they first bifurcate into existence by stabilizing the ER con-
figurations. Then as H is increased they migrate toward more compact configurations.
The TR123 and TR312 configurations then end with one of the bodies separating from
the other two. The TR132 configuration migrates all the way to the LR configuration
and destabilizes it, thus terminating both the LR and TR132 configurations.

For TR configurations that can be stable, indicated in Fig. 9, the sequence is differ-
ent. Here as H is increased an H -Bifurcation occurs at an angle between the minimum
(or maximum) constrained value of θ12 and π . To show this consider the angular
momentum as a function of distance d12, H = IH (d12)/d

3/2
12 . Taking the partial of

this with respect to d12 shows that there is a zero in the interval 1− r3 ≤ d12 ≤ 1+ r3
(meaning that H takes on an extreme value)whenever the stability condition inEq. (40)
is satisfied. Further, taking the second partial of H and substituting the equilibrium
condition shows that this is always positive, meaning that H takes on aminimum value
in the interval. Thus, as H is increased the two equilibria exist on either side of the
minimum, with no other equilibria emerging due to the definiteness of H as a function
of d12. From Lemma 5 the equilibria that moves down to the LR configuration must
be unstable, and thus the equilibria that moves toward the ER configuration is stable
(this also agrees with the condition as formulated in Eq. (40)).
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Thus the unstable TR132 configuration continues down to the LR configuration and
terminates it. The stable TR132 configuration moves toward the ER132 configuration
and terminates there, stabilizing the ER132 configuration. The existence of these stable
TR132 configurations is unexpected and breaks the symmetry otherwise seen in these
configurations. The region where these occur correspond to grains with a nearly equal
r1 and r2, with r3 neither close to zero or to the size of the other grains.

5.3 One Active Constraint

Now consider relative equilibria when there is a single active constraint. In this config-
uration two of the bodies rest on each other, say i and j and thus di j = 1− rk , and the
third body is located by the distance d jk and by either dki or the angle θki . There are
two classes of relative equilibrium solutions in this class, with the two bodies in contact
either being aligned with the third body, or with their line of contact being orthogo-
nal to the third body. The former are called the Euler Aligned configurations and the
latter the transverse, or Isoceles, configurations—the terminology arising due to the
structure that these make. For these structures there are two limiting cases, one where
the final active constraint separates and the other where one of the free constraints
becomes activated. The former occurs when the single active constraint configura-
tions intersect with the orbital configurations. The latter occurs when it intersects with
a double-active configuration. These two classes of configurations are discussed in
turn.

First it can be established that these are the only relative equilibrium configurations.
Consider Eqs. (87) and (88) in the “Appendix,” which both must equal zero. There are
two possibilities for Eq. (88) to equal zero, either sin θki = 0 or H = IH/d3/2ki .
Consider θki = π , as setting the angle to 0 is equivalent to a reordering of the bodies.

Then for Eq. (87) to equal zero the condition becomes m j

(
H2/I 2H − 1/d3jk

)
d jk +

mi
(
H2/I 2H − 1/d3ki

)
dki = 0. In this configuration dki > d jk and thus along this

configuration it can never occur that H2/I 2H = 1/d3ki , meaning that this condition will

not intersect with the θki = π configuration. If H is chosen such that IH/d3/2ki < H <

IH/d3/2jk , it is possible for the second condition to be satisfied, which is explored in
more detail below.

The alternate condition to consider is H2/I 2H = 1/d3ki ,with no immediate constraint
on θki . Then, by substitution into Eq. (87) yields the condition H2/I 2H = 1/d3jk , or
dki = d jk = d. From Eq. (3) and with di j = 1 − rk the condition on θki becomes

cos θki = 1

2

1 − rk
d

(46)

Note that d can always be chosen large enough for θki to be well defined.
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5.3.1 Isosceles Configurations

Existence The isosceles configurations are described by having two grains in contact,
nominally i and j , the third grain k in non-contact with these grains, and with the line
connecting the grains i and j being perpendicular to the line from grain k to the center
of mass of grains i and j . These are referred to as ISi j-k, with the first two indices
indicating the grains in contact and the separated third index the separated grain. In
terms of Eqs. (86, 87) and (88), set di j = 1 − rk and d jk = dki = d, forming an
Isosceles triangle. The equilibrium condition is then simply stated as

H2

I 2H
= 1

d3
(47)

IH = mim j (1 − rk)
2 + (m jmk + mkmi )d

2 + IS (48)

Making this substitution, see that δd jkE = δθki E = 0. So long as d jk ≥ 1 − ri and
dki ≥ 1− r j , the remaining condition for this equilibrium to be satisfied is δdi j E ≥ 0,
which can be simplified to the condition

d = dki = dkj ≥ 1 − rk (49)

Now consider the existence of each of the possible combinations, in turn.

IS12-3 Here the grains in contact are separated by a distance 1−r3 and the controlling
distance of the equal legs of the triangle will be d31 = 1−r2. Note that 1−r3 > 1−r2,
and thus the above existence condition will be violated when d31 = d23 = 1− r3, and
in fact the three grains will lie at the vertices of an equilateral triangle. This condition
corresponds to the intersection of IS12-3 with the orbital Lagrange configuration, LO,
and terminates the IS12-3 configuration, without having grain 3 contacting the other
two grains. This sequence is isolated from the previous configurations as the three
grains never come into contact and is shown in Fig. 5.

IS23-1 Now the grains in contact are separated by a distance 1−r1 and the controlling
distance of the equal legs of the triangle will be d12 = 1− r3. Now as 1− r3 > 1− r1,
grains 1 and2will touchprior to the grains 2 and3 separating.Once grains 1 and2 touch
the configurationmatches the end-state configuration of theTR123 configuration. Thus
the TR123 and IS23-1 configurations terminates, as shown in Fig. 2.

IS31-2 Now the grains in contact are separated by a distance 1−r2 and the controlling
distance of the equal legs of the triangle will be d12 = 1− r3 again. Similar to before,
1 − r3 > 1 − r2, so grains 1 and 2 will touch prior to the grains 1 and 3 separating.
Once grains 1 and 2 touch the configuration matches the end-state configuration of the
TR312 configuration. Thus the TR312 and IS31-2 configurations terminate, as shown
in Fig. 4.
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Stability Now consider the stability of the IS configurations. The condition δdi j E ≥ 0
is uniformly satisfied, except for the termination of the IS12-3 configuration noted
above. Thus it is just needed to test whether the joint variations of δd jk and δθki are
positive definite or not. For this situation onemust take the second partial of the energy
with respect to both of these variations, evaluated at the relative equilibrium, and test
the 2 × 2 resulting matrix for whether it is positive definite.

δ2E = [
δd jk δθki

]
⎡

⎣
∂2E

∂d jk∂d jk

∂2E
∂d jk∂θki

∂2E
∂θki ∂d jk

∂2E
∂θ jk∂θ jk

⎤

⎦
[

δd jk

δθki

]
(50)

Amatrix is positive definite by Sylvester’s criterion if all of its leading principalminors
are positive. A simpler, necessary condition, is that the diagonals of the matrix are all
positive.

To that end, consider the term ∂2E
∂θ jk∂θ jk

evaluated at the equilibrium condition, which
can be found to equal

∂2E
∂θ jk∂θ jk

= mkmi

[
mk

(
mi − 3m j

)
d2ki − 3IS − 3mim j (1 − rk)

2
] (

di j sin θki
)2

d3ki IH
(51)

Note that the ordering of i and j does not matter, although the individual terms of
the matrices may change. Thus, one can always choose to assign i and j such that
m j > mi to ensure that mi − 3m j < 0, making the diagonal negative definite. Thus,
any of the configurations will violate the necessary condition for the system to be
positive definite, meaning that the Isosceles configurations are always unstable. Note
that this instability mode is related to the angle θki and not related to instability in the
distance variation. Due to this, the IS family is always unstable even if it is formed
from a Transition Fission.

Bifurcation To end, note that in Figs. 2, 4 and 5 a similar specific sequence for the
evolution of all of the Isosceles configurations is shown, with them appearing as an
H -Bifurcation with one branch continuing to ∞ and the other terminating at a TR
configuration or ending at an LO configuration. The persistence of this structure can
be proven, using a similar approach as used in discussing the bifurcation of the TR132.
The relation between angular momentum and distance d in these configurations is the
simple expression H = IH (d)/d3/2. It can be shown that this function has a unique
minimum positive value, and thus the isosceles configurations bifurcate into existence
when the angular momentum rises above this value. Further, it can be shown that the
distance at which this bifurcation occurs is always greater than the associated contact
distances for this configuration. This is shown by developing a specific inequality that
must be satisfied, and then checking it by computing level sets across the domain of
possible radii. Doing so reveals that the bifurcation at a nonzero value of H always
occurs away from any of the contact termination conditions. Thus the pattern of having
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one branch progress toward the TR configurations and the other branch extend to large
distances can be inferred.

5.3.2 Euler Aligned Relative Equilibria

Existence The Euler Aligned relative equilibria are defined by having two grains in
contact and the third at a distance along the centers of mass of the two grains in
contact. Again, the grains in contact are i and j and grain k is separated. The notation
for these equilibria is EAi j-k, where the order is important. Specifically, note that
EAi j-k and EA j i-k are different, with the grain k rotated 180◦ relative to the other
configuration. Thus, EAi j-k can be organized from left to right and fits with the earlier
notation. There are six different configurations that can be considered, EA12-3, EA21-
3, EA13-2, EA31-2, EA23-1, EA32-1. In all these definitions the angle θki = π and
δθki E = 0. The two remaining conditions are then δdi j E ≥ 0 and δd jkE = 0.

For existence, solve each of these conditions for the ratio (H/IH )2 to find

(
H

IH

)2

≤ 1

m j (1 − rk) + mkdki

[
m j

(1 − rk)2
+ mk

d2ki

]

(52)

(
H

IH

)2

= 1

midki + m jd jk

[
mi

d2ki
+ m j

d2jk

]

(53)

Note that dki ≥ 1 + r j and d jk = dki − (1 − rk). These conditions can be combined
and rewritten into a standard form

1

d3ki
F(m j/mi , d jk/dki ) ≤ 1

(1 − rk)3
F(mk/m j , dki/(1 − rk)) (54)

where F(μ, x)=(
1 + μ/x2

)
/ (1 + μx). Note the identity x3F(μ, x)=F(1/μ, 1/x).

When this inequality is violated grains i and j will separate and the configuration will
cease to exist.

As a final step, define r = dki/(1− rk) > 1, μi j = mi/m j and d jk/dki = 1−1/r .
Then the inequalities are written as

F(μ j i , 1 − 1/r) ≤ F(μ jk, 1/r) (55)

It can be shown (see “Appendix”) that F(μ, r) is monotonically decreasing in r and is
convex. From this it can be shown that F(μ, 1− 1/r) is monotonically decreasing in
r and that F(μ, 1/r) is monotonically increasing. Thus the inequality can be crossed
either 0 or 1 times, and it is not needed to consider the possibility ofmultiple transitions
in the existence of solutions. Given the well defined interval over which the parameter
r is defined, r ∈ [(1 + r j )/(1 − rk),∞), an explicit method for determining when
these conditions exist can be developed.

First note that limr→∞ F(μ, 1 − 1/r) = 1 and that limr→∞ F(μ, 1/r) ∼ r2/
μ + · · · . Thus the inequality is always satisfied when the distance between the grains
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in contact, i and j , and the separated grain k, is large. This holds independent of the
ordering of the indices, and means that all of the EA configurations exist when the
kth grain is sufficiently distant from the two in contact. Thus, to ascertain whether
the configuration exists across all possible values of r it is only needed to check the
condition at the minimum radius condition. Due to the topological properties of the
two functions in the inequality, if the inequality is satisfied at the minimum value of r ,
then the given configuration exists across all distances in the interval. If it is violated at
the minimum value of r , then there exists a distance at which the configuration ceases
to exist.

Evaluating the inequality at the minimum distance r = (1 + r j )/(1 − rk) yields

F(μ j i , (1 − ri )/(1 + r j )) ≤ F(μ jk, (1 − rk)/(1 + r j )) (56)

If this inequality is confirmed, then the configuration EAi j-k exists across the whole
domain and, by swapping indices i and k, that then the configuration EAk j-i does
not exist by definition. Conversely, if the inequality for EAi j-k is not confirmed at
the lower limit, then the configuration EAk j-i is trivially confirmed. The following
discussions will assume that the configuration EAi j-k exists all the way to contact,
and thus that the configuration EAk j-i does not and terminates at a finite distance
from contact.

This means that whenever one EA configuration exists down to the Euler Resting
configuration, that the alternate EA configuration does not, and terminates at a finite
separation. The termination of the conjugate configuration occurs when that config-
uration intersects with the conditions for the orbital Euler configuration EOi jk, as
by definition at termination δd jiE = 0 by default and δdk j E = 0 due to the contact
constraint vanishing.

With these results in hand, the realms where the different Euler Aligned configu-
rations exist can be evaluated. To do this, plot the level sets of the function

F(μ jk, (1 − rk)/(1 + r j )) − F(μ j i , (1 − ri )/(1 + r j )) = 0 (57)

As these functions are analytical and have no singularities, there are no computational
issues with evaluating these level sets. The zero line delineates where a transition
in the existence of these configurations occurs. In the region where the difference is
positive, the EAi j-k configuration exists down to contact, while in the region where
the difference is negative, the EAk j-i configuration exists down to contact. These
distinctions are important as they control which grain will separate from an Euler
resting configuration when angular momentum is increased. In the following the plots
of these zero lines are displayed for the different possible configurations.

EA12-3 and EA32-1 Figure10 shows a plot of the level set of the inequality for the
ordering 123, showing that there exists a region where the EA12-3 configuration exists
down to the ER123 configuration, and where the EA32-1 configuration exists down
to the ER123 configuration. The former exists in the region where the grains 2 and
3 are more similar sized, and the latter where the grains 1 and 2 are more similar
sized. Which side of the line that configuration lies determines how the configuration
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Fig. 10 Fission chart for the ER123 configuration. For masses to the right of the line ER123 configuration
fissions by having the smallest mass separate and transitioning into the EA12-3 configuration. For masses
to the left of the line the ER123 configuration fissions by having the largest mass separate and transitioning
into the EA32-1 configuration

Fig. 11 Fission chart for the ER132 configuration. For this configuration the intermediate mass always
separates, transitioning into the EA13-2 configuration. The stability of the EA13-2 relative equilibrium at
fission is shown, noting that there is a small region where the ER132 configuration fissions into a stable
EA13-2 configuration

will fission when it terminates. Figure2 shows the different bifurcation pathways that
occur.

EA13-2 and EA23-1 Figure11 shows a plot of the level set of the inequality for
the ordering 132. Here, only the EA13-2 configuration exists down to the ER132
configuration, and thus the EA23-1 configuration always terminates at a finite distance.
Not shown here explicitly is that at the left border, where r1 = r2, the two conditions
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Fig. 12 Fission chart for the ER312 configuration. For masses to the right of the line the ER312 configu-
ration fissions by having the intermediate mass separate and transitioning into the EA31-2 configuration.
For masses to the left of the line the ER312 configuration fissions by having the smallest mass separate and
transitioning into the EA21-3 configuration

are equivalent due to symmetry and both EA configurations extend down to the ER132
configuration. Figure3 shows the different bifurcation pathways that occur.

EA31-2 and EA21-3 Figure12 shows a plot of the level set of the inequality for the
ordering 312. There are two regimes again. When the grains are relatively equal in
size the configuration EA21-3 continues down to ER312. Away from this geometric
region, however, configuration EA31-2 continues down to ER312. Figure4 shows the
different bifurcation pathways that occur.

Stability For an EAi j-k configuration to be stable requires δdi j E > 0 and the second
variations of E with respect to d jk and θki be positive definite. The condition on di j
is automatically satisfied, except at specific transition points, once it is shown that a
given configuration exists. Thus only the second-order variation conditions need to be
evaluated.

First, note that the cross variations δ2d jkθki
E are identically zero, and only consider

the second variations δ2θki E and δ2d jk
E separately. Computing the first of these and

evaluating it at the nominal condition yields

δ2θki E = −mkmi

[

−H2

I 2H
+ 1

d3ki

]

(1 − rk) (dki − (1 − rk)) (δθki )
2 (58)

Make the substitution H2/I 2H = 1
d3ki

F(m j/mi , 1 − (1 − rk)/dki ). Then, stability

in this variation can be established by showing that

F(m j/mi , 1 − (1 − rk)/dki ) > 1 (59)
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However, the function F(μ, 1− 1/r) was shown to be monotonically decreasing in r
with the limiting value of 1 as r becomes arbitrarily large. Thus this is always satisfied
and the EA configurations are always stable to variations in the angle θki .

All that is left is to consider when δ2d jk
E > 0. First, re-express Eq. (87) as

δd jkE = mk
(
m jk jk + midki

)

I 2H

{

−H2 + I 2H(
m jk jk + midki

)

[
m j

d2jk
+ mi

d2ki

]}

δd jk

(60)

The term inside the brackets is identically zero at equilibrium, thus one does not need
to take the variation of terms outside of the brackets. Taking the variation inside the
brackets and simplifying yields

δ2d jk
E = mk

(
m jd jk + midki

)

I 2H

{

4mk IH

[
m j

d2jk
+ mi

d2ki

]

− I 2H (mi + m j )
(
m jd jk + midki

)2

[
m j

d2jk
+ mi

d2ki

]

− 2
I 2H(

m jd jk + midki
)

[
m j

d3jk
+ mi

d3ki

]}

(61)

First consider the case when d ∼ d jk ∼ dki � 1. The second variation then reduces
to

δ2d jk
E = mk(m j + mi )

d3
δd2jk (62)

which is always positive. Thus, all EAi j-k configurations with large enough distances
are stable.

The stability of the ER i jk configurations at fission can be checked using Eq. (61)
by evaluating it at the contact conditions and plotting level sets of its zero value.
Doing so shows that configurations ER123 and ER312 are always unstable when
they fission. The configuration ER132 is found to have a small region where it
is stable when it fissions, in the vicinity of the region which had stable TR132
configurations, and shown in Fig. 11. Over the remaining domain the ER132 con-
figuration is unstable when it fissions. From Corollary 1 we conclude that the
region where the ER132 is stable at fission corresponds to a Transition Fission
(see Fig. 3, bottom). From the uniqueness of the Euler Orbital configurations
these EA13-2 configurations should remain stable for all larger distances. Con-
versely, for the unstable fission cases, Corollary 1 implies that these are Termination
Fissions. For these cases, consider the stability of their EA configurations as a
function of separation. At their minimum separation, when terminating the ER
configurations, they begin as unstable. As the distance is increased they eventually
become stable, indicating that Ed jkd jk evaluated at the EA configuration must cross
through zero at some specific equilibrium configuration, indicating the point where
the H -Bifurcation occurs.
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Bifurcation Studying this aspect of the situation can provide qualitative insight into
how the EA configurations bifurcate into existence and evolve as H is increased.
ConsiderEq. (53),whichmust be satisfied for anEArelative equilibriumconfiguration.
As all of the terms on the right hand side are positive and bounded from below,
there is an absolute minimum value such that if H is below this value the equality
cannot be satisfied and the EA relative configuration does not exist. At this value
of angular momentum there will be a bifurcation from no relative equilibria to two
relative equilibria, corresponding to the point identified above where Ed jkd jk = 0. The
exception are the stable ER132 fissions, where the bifurcation point occurs at a closer
distance not allowed. For the other cases, as H increases further one branch of the EA
relative equilibria must migrate toward the ER configuration and the other to larger
distances, due to the uniqueness of this family. The branch that migrates to the larger
separation will be stable while the branch that migrates to the contact configuration
must be unstable, fromLemma 5. A similar bifurcationwill occur for the configuration
that intersects with the Euler Orbital family.

5.4 No Active Constraint

Finally consider the case where none of the constraints are active. Then the three
conditions must all be identically zero. Due to the structure of the problem, it is
well known that there are only five relative equilibria to this problem (Wintner 1941).
These are divided into the Lagrange solutions, which lie at the vertices of an equilateral
triangle (Lagrange 1772), and the Euler solutions, which lie in a single line and are
appropriately spaced (Euler 1767).

5.4.1 Lagrange Solutions

For the Lagrange solutions, set d = d12 = d23 = d31. From Eq. (3) note that this
requires cos θ31 = 1/2,meaning that θ31 = ±60◦. Then the condition canbeuniformly

satisfied by choosing the distance d such that H2 = IH (d)2

d3
. Note that for all d >

max(ri + r j ) = r1 + r2 (given the assumed ordering) such a solution will always
exist. However, for a given H2 a solution to the non-contact case may not always
exist. Indeed, since for this case IH = (m1m2 + m2m3 + m3m1)d2 + IS , H has a
minimum value that is greater than zero, and thus will not exist for all values of angular
momentum.

The point where the Lagrange orbital configuration comes into existence can be
explicitly probed. In general there are two possibilities. One is that it appears as a
two branch family once the angular momentum goes above its minimum value. Then
one branch will migrate inwards with increasing angular momentum and terminate by
intersection with the IS12-3 family. Otherwise, if the minimum angular momentum
point arises at a mutual distance less than r1 + r2, then the inner IS12-3 family will
transition directly into the LO family, as it is known that the equal mass case has this
sort of a bifurcation (Scheeres 2012), it is relevant to test for when this will occur. To
do this just compute ∂H/∂d and solve for the zero to find
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Fig. 13 Transition line between the two different bifurcation modes of the Lagrange orbital configuration.
The two different patterns of bifurcation are shown in Fig. 5

d2 = 3IS
m1m2 + m2m3 + m3m1

(63)

Which bifurcation structure ensues can be found by finding where this solution is
greater or less than (1 − r3). Figure13 plots the region where the double branch
occurs andwhere the single branch occurs. Figure5 shows the two different bifurcation
pathways.

While it is well known that the classical three-body problem is spectrally stable
when the Routh Criterion is satisfied, it should be noted that the stability considered in
this paper, energetic stability, is a stronger type of stability. An observation byMoeckel
(1990) shows that central configurations in the point-mass N -body problem never have
a positive definite second variation of their energy, and thus it can be suspected that
the same holds true for the Lagrange orbital configuration in the full body. To test
this, take the second-order variation of E , evaluated at the equilibrium, and determine
if the resulting matrix of values is positive definite. Here it is simpler to take the 3
distances d12, d23 and d31 as the degrees of freedom, with the general form, starting
from Eq. (89), substituting the equilibrium condition and simplifying

∂2E
∂d2i j

= mim j

d IH

[(
mim j − 3mk(mi + m j )

)
d2 − 3IS

]
(64)

∂2E
∂di j∂d jk

= 4mim2
jmk

d IH
(65)

where d ≥ 1 − r3 for the specific case of interest.
For the full Hessian of E , [∂2E/∂di j d jk], to be positive definite utilize Sylvester’s

Theorem again, which states that a necessary and sufficient condition is that all of
the principal minors of the Hessian matrix be positive. Thus, a necessary condition
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for being positive definite is that the diagonals all be positive. Should any of these
be negative, then the matrix is not positive definite and hence the relative equilibrium
configuration is not energetically stable. Consider the entry for ∂2E

∂d223
. The controlling

condition for stability is then that [m2m3 − 3m1(m2 + m3)] d2 − 3IS be positive.
However, it is easy to show that the term [m2m3 − 3m1(m2 + m3)] < 0, showing that
the Lagrange orbital configurations are always energetically unstable, consistent with
Moeckel’s result. First, restate the negative condition as 3m1(m2+m3) > m2m3, then
note that m2 + m3 > m3 and m1 > m2, establishing the inequality unequivocally.

5.4.2 Euler Solutions

For the Euler conditions consider di j ≥ ri + r j , d jk ≥ r j + rk , and θki = π . This
case also has dki = di j + d jk . Both Eqs. (86) and (87) must equal zero in this case,
yielding the two conditions.

0 = mim j

[

−H2

I 2H
+ 1

d3i j

]

di j + mimk

[

−H2

I 2H
+ 1

d3ki

]

dki (66)

0 = mkm j

[

−H2

I 2H
+ 1

d3jk

]

d jk + mkmi

[

−H2

I 2H
+ 1

d3ki

]

dki (67)

First, there is a more fundamental equality within these results

mim j

[

−H2

I 2H
+ 1

d3i j

]

di j = mkmi

[
H2

I 2H
− 1

d3ki

]

dki = mkm j

[

−H2

I 2H
+ 1

d3jk

]

d jk

(68)

By inspection, with the knowledge that dki ≥ d jk, di j , note that

1

d3ki
≤ H2

I 2H
≤ 1

max (d jk, di j )3
(69)

Alternately, this ratio can also be solved for the quantity (H/IH )2 to find

H2

I 2H
= 1

m jdi j + mkdki

[
m j

d2i j
+ mk

d2ki

]

(70)

H2

I 2H
= 1

m jd jk + midki

[
m j

d2jk
+ mi

d2ki

]

(71)

which is the condition used to analyze how the ER configurations fissioned. Indeed,
at the transition lines on Figs. 10 and 12 the resting configuration is in fact a central
configuration,meaning that the relative attractions between the bodieswill be balanced
so long as their relative distances are preserved.
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This can be generalized to identify the possible bifurcation pattern in the EO config-
urations. Assume, say, that bodies i and j are in contact and that as body k is moved to
a larger distance it reaches the point where the equality between the above conditions
occurs, meaning that bodies i and j are now in a relative equilibrium condition and
the entire system satisfies a central configuration conditions (Wintner 1941). At this
point the relative distances between these bodies can be uniformly scaled with the
ratio H/IH following along. The change in angular momentum with this scaling is
not uniform, however, due to the 3IS term in IH . Of specific interest regarding the
pattern of bifurcation is whether the angular momentum decreases or increases with
this change in relative distance. In the following it can be shown that both conditions
can occur in general.

Define the distance between bodies k and i where the EO conditions are satisfied
(assuming di j = 1 − rk) as d∗

ki , and thus d∗
jk = d∗

ki − (1 − rk), and define the ratio
H/IH = �∗ at this point. Then, for increasing the distance the relative equilibria will
all scale uniformly, meaning that

H2

I 2H
= �∗2

d3
(72)

where d ≥ 1 and di j = d(1 − rk), d jk = dd∗
jk and dki = dd∗

ki . With this structure, it
is possible to compute the gradient

∂H

∂d
= �∗2

2d5/2

[(
mim j (1 − rk)

2 + m jmk(d
∗
ki − (1 − rk))

2 + mkmid
∗2
ki

)
d2 − 3IS

]

(73)

How the bifurcation occurs can be tested by plotting the level sets from d∗
ki = (1+r j )

to large values. For the 1, 2, 3 and 2, 1, 3 orderings the gradient is positive toward the
apex of the triangular region and can take on negative values near the base. Thus, the
appearance of the EO orbits occur as a transition closer to the equal mass condition
and as a bifurcation followed by a termination away from there. Precise limits could
be computed, but would require root solving algorithms.

Finally, consider the stability of the Euler Orbital solutions. These are again sus-
pected to be energetically unstable due to the instability of the point-mass cases;
however, this should be checked given the changes in the current approach. First, note
that the second-order variation in θki is uncoupled from the variations in distance, and
evaluated at the equilibrium yields

δ2θki E = −mkmi

[

−H2

I 2H
+ 1

d3ki

]

di j d jk(δθki )
2 (74)

The quantity in the brackets is negative, as established above, and hence the angle
variation is stable. For the distance variations the full 2 × 2 Hessian matrix must be
evaluated, however one can again just check the necessary conditions that the diagonals
must all be positive. Taking the second-order variations of both conditions from the
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diagonal of the Hessian matrix shows that both of the following conditions must be
positive for stability

mim j − 3(mi + m j )mk > 0 (75)

m jmk − 3(m j + mk)mi > 0 (76)

For the orderingm3 ≤ m2 ≤ m1 it can be shown that for all combinations of i , j and k
that at least one of these conditions will be violated, and hence the EO configurations
are always unstable.

6 Summary

To finish, the results are presented in light of the main theorem. First, consider the total
number of relative equilibria found. For the no contact case recall the classical result
of five distinct relative equilibria. When one contact is active the EA and IS relative
equilibria were identified, which have 6 unique components each, raising the count to
17. For the two contact cases there are three ER and six TR configurations, resulting
in a total of 26. Finally, for three contact cases there are the two LR configurations,
leading to the total of 28.

Now consider the bifurcation patterns, which are focused on the transitions between
the different contact cases, and the identification ofwhen the H -Bifurcations can occur.
The details of the transitions will be outlined, although a few observations can be given
first. With regard to stability the system starts with only two stable LR configurations
at low values of H and eventually has six stable EA configurations for arbitrarily large
values of H . Between these limits the number of stable configurations can vary, and to
establish the precise sequence and number would require a more detailed investigation
for a specific set of sizes. It is noted, however, that there always exist at least one stable
configuration.

The bifurcation pattern seen in Fig. 3 is described first. The LR configurations all
end at a Termination Fission condition with the TR132 configurations. These con-
figurations either arise from an H -Bifurcation (in a limited region of the parameter
space) or more commonly emerge as a symmetric bifurcation as the unstable ER132
configuration stabilizes. Under increasing H the ER132 configuration either ends with
a Termination Fission with the unstable component of the EA13-2 configuration, or
for a limited range of parameters ends with a Transition Fission into the EA13-2 con-
figuration. This second occurrence is of great interest as it is the only occasion in
which the spherical full three-body problem will fission into a stable configuration.
The EA13-2 configuration itself usually arises as an H -Bifurcation, with its unstable
branch terminating as mentioned above and its stable branch existing for all H with
an increasing distance proportional to H2. The only exception is when it arises as a
Transition Fission, as described above. The EA23-1 configuration has an evolution that
is completely isolated from the rest of this chart. It arises through an H -Bifurcation,
with its unstable component either having a Termination Fission with the EO132 con-
figuration or a Transition Fission into an EO132 configuration. Its stable component
continues for all larger values of H with a similar asymptotic form as the EA13-2 con-

123



J Nonlinear Sci (2016) 26:1445–1482 1479

figuration. The EO132 configuration can either arise as an H -Bifurcation or through
a Transition Fission, however the EO components are always unstable. It is important
to note that at each stage of the system evolution with H , that there is at least one
stable configuration, providing proof of that aspect of the theorem.

Now consider the bifurcation patterns for the ER123 and ER213 pathways, shown
in Figs. 2 and 4. These are similar, and distinct from the ER132 pathway. Each of
these start out in unstable ER configurations and both stabilize by a symmetric bifur-
cationwith the TR123 and TR213 configurations, respectively. The TR123 and TR213
configurations end with a Termination Fission with an IS23-1 and IS13-2 configura-
tion, respectively. The IS configurations arise through an H -Bifurcation with the inner
configuration ending with the Termination Fissionmentioned above and the outer con-
figuration extending for all H , ultimately with their size on the order of H2, although
the IS configurations are always unstable. The stable ER123 and ER213 configura-
tions end with a Termination Fission into an EA12-3 or EA32-1 configuration for
the ER123 case or an EA21-3 or EA31-2 configuration for the ER213 case. Limits
where these transitions occur have been delineated in Figs. 10 and 12. Note that at the
transition between these fission pattern the ER123 and ER213 configurations are in
a central configuration, a situation that does not happen for the ER132 configuration.
When the EA inner configurations do not end with a Termination Fission with an
ER configuration, they end with a Termination Fission or Transition Fission with the
corresponding EO configuration. The outer EA configurations are all stable and have
the same asymptotic structure for large H . The EO123 and EO213 configurations
either arise as an H -Bifurcation or as a Transition Fission, with the details of these
boundaries left for future investigation.

Finally consider the sequence involving the LO configuration, represented in Fig. 5.
This sequence is the least complex, with the IS12-3 configurations arising from an
H -Bifurcation. The inner component ends with a Termination Fission or Transition
Fission with the LO configuration. The LO configuration, in turn, either arises as an
H -Bifurcation, with the inner component ending with a Termination Fission, or as a
Transition Fission. All configurations in these sequences are unstable.
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Appendix

Partial Derivatives

It is useful to state the relevant partial derivatives of the amended potential and its
constituent terms, as a function of the distances and angles. In the following use the
convention that the distances are denoted with indices i j and jk and the angle with
indices ki .
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If the third degree of freedom is the angle θki then

∂E
∂di j

= − H2

2I 2H

∂ IH
∂di j

+ ∂U
∂di j

(77)

∂E
∂θki

= − H2

2I 2H

∂ IH
∂θki

+ ∂U
∂θki

(78)

where

∂ IH
∂di j

= 2mim jdi j + 2mimk
(
di j − d jk cos θki

)
(79)

∂ IH
∂θki

= 2mimkdi j d jk sin θki (80)

Similarly

∂U
∂di j

= mim j
1

d2i j
+ mimk

(
di j − d jk cos θki

)

d3ki
(81)

∂U
∂θki

= mimk
di j d jk sin θki

d3i j
(82)

If the third degree of freedom is the distance dki , and if not at a limiting constraint,
then

∂E
∂di j

= − H2

2I 2H

∂ IH
∂di j

+ ∂U
∂di j

(83)

where

∂ IH
∂di j

= 2mim jdi j (84)

and

∂U
∂di j

= mim j
1

d2i j
(85)

Equilibrium Conditions

For a relative equilibrium there are two different possibilities. Either δE = 0 or δE > 0.
For either, the relevant statement of the variations is given in the following for the two
different formulations of the third degree of freedom.

123



J Nonlinear Sci (2016) 26:1445–1482 1481

If the third degree of freedom is the angle θki , then the full set of variations are

δdi j E = mi

{

m j

[

−H2

I 2H
+ 1

d3i j

]

di j

+mk

[

−H2

I 2H
+ 1

d3ki

]
[
di j − d jk cos θki

]
}

δdi j (86)

δd jkE = mk

{

m j

[

−H2

I 2H
+ 1

d3jk

]

d jk

+ mi

[

−H2

I 2H
+ 1

d3ki

]
[
d jk − di j cos θki

]
}

δd jk (87)

δθki E = mkmi

[

−H2

I 2H
+ 1

d3ki

]

di j d jk sin θkiδθki (88)

If the third degree of freedom is the distance dki and the system is not at a constraint
limit (i.e., dki �= |di j ± d jk |), then the full set of variations are

δdi j E = mim j

[

−H2

I 2H
+ 1

d3i j

]

di jδdi j (89)

δd jkE = m jmk

[

−H2

I 2H
+ 1

d3jk

]

d jkδd jk (90)

δdki E = mkmi

[

−H2

I 2H
+ 1

d3ki

]

dkiδdki (91)

These expressions are used to develop the necessary and sufficient conditions for
a configuration to be a relative equilibrium. If any two components are in contact,
then the condition for the degree of freedom that is blocked should be δE > 0 for all
allowed variations, otherwise the condition should be δE = 0.

Properties of the Function F(µ, x)

Lemma 7 The function

F(μ, x) = 1 + μ

x2

1 + μx
(92)

is monotonically decreasing in x and is convex in x over the interval x ∈ (0,∞).
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Proof Consider the first derivative of the function with respect to x :

F ′(μ, x) = −2μ

x3
1

1 + μx
− μ

1 + μ

x2

(1 + μx)2
(93)

By inspection it can be seen that all terms are negative and nonzero, and thus the
function is monotonically decreasing in x .

Taking the second derivative with respect to x :

F ′′(μ, x) = 6μ

x4
1

1 + μx
+ 4μ2

x3
1

(1 + μx)2
+ 2μ2

1 + μ

x2

(1 + μx)3
(94)

By inspection again see that all terms are positive and nonzero and is thus convex. ��
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