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Abstract

Clinical assessment of bone marrow is limited by an inability to evaluate the marrow space 

comprehensively and dynamically and there is no current method for automatically assessing 

hematopoietic activity within the medullary space. Evaluating the hematopoietic space in its 

entirety could be applicable in blood disorders, malignancies, infections, and medication toxicity. 

In this paper, we introduce a CT/PET 3D automatic framework for measurement of the 

hematopoietic compartment proliferation within osseous sites. We first perform a full-body bone 

structure segmentation using 3D graph-cut on the CT volume. The vertebrae are segmented by 

detecting the discs between adjacent vertebrae. Finally, we register the bone marrow CT volume 

with its corresponding PET volume and capture the spinal bone marrow volume. The proposed 

framework was tested on 17 patients, achieving an average accuracy of 86.37% and a worst case 

accuracy of 82.3% in automatically extracting the aggregate volume of the spinal marrow cavities.

Index Terms

bone segmentation; bone marrow extraction; CT/PET imaging

1. INTRODUCTION

The marrow space is the site of hematopoiesis in animal and human. It produces all the 

critical blood cells including red blood cells which disperse oxygen, white blood cells which 

are critical for the immune system, and platelets which are necessary for coagulation and 

hemostasis. Diseases of hematopoiesis are often life threatening and can include 

malignancies, medication or exposure toxicities, infection and autoimmune diseases. 

Currently there is no comprehensive way to evaluate the proliferation of hematopoetic cells 

within this compartment. Using current imaging modalities and techniques, the marrow 
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space can be visualized by MRI or CT or proliferation can be assessed by PET, albeit with 

poor specificity and sensitivity. However, neither has been shown to aid in hematopoetic 

evaluation. This may be in part due the challenges of evaluating the marrow space, including 

the irregularity of the medullary border and trabecular surface from the internal blood 

vasculature within osseous structures.

Recent studies [1–5] showed that joint CT/PET imaging can enable physicians to 

noninvasively monitor and evaluate recovery progress in patients who have undergone bone 

marrow transplant. With CT/PET imaging technology, anatomic details such as bone 

structures, kidney, and water are best captured by CT while the PET modality is capable of 

measuring biochemical changes inside organs. When used in tandem, these two modalities 

can improve the accuracy of segmentations that are restricted to specific organs or ROIs. The 

biochemical properties captured by PET allow physicians to efficiently quantify the bone 

marrow cell proliferation. However, in previous CT/PET studies [1–5], the ROIs were 

generally designated manually by physicans, making the the process of evaluating the 

marrow space time consuming, labor intensive, and prone to error. In addition, the evaluation 

obtained from a set of selected ROIs may not generalize to the whole bone marrow volume 

of the patient. While 3D semi-automatic or automatic bone segmentation algorithms have 

been reported in the literature, most do not include extraction of the medullary cavities and 

most were not designed for measuring bone marrow proliferation. The combination of CT 

and PET for the bone marrow segmentation makes our approach unique.

Recent bone segmentation research can be categorized into two main approaches: 

estimation-free methods and machine learning methods. The estimation-free methods 

usually do not require an explicit model for the segmented objects. This category of 

algorithms includes classical region growing, watershed segmentation, active contours, and 

graph-cut methods [6]. Hybrid approaches such as the hierarchical approach also produce 

promising results. For example, Kang et al. [7] combined adaptive thresholding and region 

growing to perform 3D bone segmentation. Mastmeyer et al. [8] used a hierarchical scheme 

where region growing was followed by segmentation of the vertebrae via detection of the 

disks between them. In addition, auxiliary detection techniques are augmented to the 

segmentation workflow to take advantage of the prior topological knowledge of the human 

body. Yao et al. [9] and Klinder et al. [10] proposed algorithms to locate the spinal column 

by detecting the spinal cord. Recent advances in segmentation techniques employ machine 

learning techniques. In particular, the statistical learning methods are used to build trainable 

models for the objects to be segmented. Huang et al. [11] used training with Adaboost to 

construct vertebrae detectors. Ma and Liu [12] learned low-level edge descriptors to detect 

vertebrae. Glocker et al. [13] used a supervised classification forest to train a model to detect 

vertebrae shapes and label them.

In this paper we propose a new, fully automatic framework for segmenting the marrow 

compartments of the human spinal column from CT data and for measuring biochemical 

activity from joint PET data. We use a graph-cut segmentation [14] to obtain an initial 3D 

map of the full-body bone volume. We then refine this segmented volume to extract the 

vertebral bodies. The vertebrae are isolated by detecting the vertebral discs. To overcome 

false detections, we formulate the vertebrae detection task as a tracking problem and use a 
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Kalman filter to reject false disc locations. The detected disc locations enable us to segment 

all the vertebral bodies in the spine. Once the medullary cavities inside the vertebral bodies 

are isolated, measurement of biochemical activity from joint PET images is achieved by 

registering the PET and CT voxels. While bone segmentation is a classical research problem, 

to the best of our knowledge, the proposed approach is the first automatic 3D bone marrow 

segmentation method to be specifically targeted for bone marrow cellularity analysis. We 

note that Sambucetti et al. [15] proposed an active contour approach to measure bone 

marrow volume. However, they used 2D active contour segmentation on a per-slice basis to 

construct the 3D bone volume and their method requires expert human intervention.

2. SEGMENTATION FRAMEWORK OVERVIEW

An overview of the proposed approach is given in Fig. 1. We use a 3D bilateral filter to 

smooth away certain artifacts that may be present in the original input CT volume (Sec. 2.1). 

We then perform 3D graph cut segmentation [14] to obtain the full-body bone structure. We 

isolate the spinal column and detect the discs between adjacent vertebral bodies. Bone cortex 

regions are rejected to obtain bone marrow spaces.

2.1. Volume Smoothing

We are specifically concerned with joint PET/CT scans of patients who have undergone 

marrow ablation with total body irradiation and chemotherapy prior to transplantation, 

which can lead to undesirable non-smooth artifacts in the CT data occurring at the interior of 

the hard bone regions. Prior to segmentation, we apply 3D bilateral filtering [16, 17] to 

remove these artifacts. The bilateral filter is a smoother that performs neighborhood 

averaging using weights given by the product of a spatial kernel and an intensity (range) 

kernel that are normally both Gaussian. It can smooth spurious artifacts while retaining the 

strong edges of the cortical bone tissue. For parameter tuning, we set the spatial bandwidth 

σs = 2, the range bandwidth σR = 5, the spatial sampling factor SS = 5, and the range 

sampling factor SR = 15.

2.2. Graph-cut Segmentation

In general, bone tissue tends to exhibit higher CT Hounsfield units (intensities) relative to 

non-bone material such as water, air, and muscle. Closely following the implementation 

described in [18], we use the graph-cut segmentation algorithm [6, 14] which optimizes a 

global energy functional consisting of a per-pixel component that penalizes misclassified 

voxels and a boundary component that enforces spatial coherence of the segmented objects.

Let  be a system of symmetric 7-voxel 3D cross-shaped neighborhoods on the 3D CT 

volume and let Ip be the intensity of bilateral filtered CT voxel π in Hounsfield units 

(intensity). Each voxel is assigned a label Bp according to

(1)
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As in [6], the labels Bp are assigned by minimizing the energy

(2)

where λ = 0.03, 1p,q = 1 if Bp and Bq assigned to different labels, and

(3)

The high and low thresholds Th and Tl are set to -50 and 200 Hounsfield units, respectively, 

and were determined through empirical analysis of the bilateral filtered CT volume data. 

Unlike [6], we use a simplified boundary penalty given by S(p, q) = exp(−|Ip − Iq|/σ) with σ 
= 10.

3. VERTEBRAE FILTERING

From the segmented full-body bone structure described in Sec. 2.2, we isolate the vertebral 

bodies from each other by detecting the disc region between two adjacent vertebrae. We then 

track these detected disc locations with a Kalman filter. From these filtered positions, we 

obtain the segmented vertebral bodies for the whole spinal column by simple 3D 

morphological filtering.

3.1. Vertebral Disc Detection

In order to isolate the vertebrae, we detect the locations of the discs between vertebral 

bodies. We observe that the voxels in the neighborhood of the disc locations tend to have 

lower Hounsfield value in the CT component. Therefore, on a slice by slice basis in the 

transverse plane, we compute the average slice intensity by intersecting the bone voxels with 

straight lines of varying slopes. Let  be the vertebral slice in the sagittal plane as shown in 

Fig. 3(a). Let ℒθi be a collection of lines with origins at slice i and slopes tan(θ). We 

compute the average distance for the slice i as

(4)

We find the slope of the line ℒi by minimizing the average Hounsfield unit H(i,θ) as

(5)
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An instance of distance H(i, θ*) is illustrated in Fig. 2. Here we are interested in the local 

minima of the distance H(i, θ*) because they represent the detected disc positions between 

vertebral bodies. The local maxima are also useful to suppress false disc locations because 

they indicate the cortical bone region next to the vertebral discs. In our implementation, we 

sweep θ from −π/4 to π/4 in increments of π/32. The optimal θ* is obtained by brute-force 

search. We also compute the distance H for the PET component. The combination of CT 

distance and PET distance gives us additional measurements to reduce false detections.

3.2. Disc Tracking by Kalman Filter

The disc detection process described in Sec. 3.1 is able to detect most disc locations. 

However, it often fails at a few locations due to noise, artifacts, and inherently non-visible 

vertebral discs. For example, in Fig. 3(b), the CT component gives false alarms at the 6th and 

8th positions starting from the bottom of the image, while the PET component misdetects the 

7th disc. To address this issue, we model the disc filtering process with a constant velocity 

dynamic model and track the disc locations with a Kalman filter. The state space 

representation of the dynamic model is given by

(6)

(7)

where  and where uk ~  (0, Uk) and vk ~  (0, Vk) are zero-mean white 

Gaussian noises with covariance Uk and Vk. The state variable xk models the position of the 

kth detected disc, while ẋk measures the height of kth vertebra in the sagittal plane. The gain 

of 0.95 in Eq. 6 implies that the height of vertebra decreases from the lumbar to the cervical 

region. In the experiments, we set the process noise variance and the observation noise 

variance to be 0.5 and 0.2. An example of tracking the disc locations is shown in Fig. 3. The 

Kalman filter is able to recover the missing disc positions while effectively rejecting the 

false detections.

From the tracked disc positions, we segment each vertebra by constructing a 3D boundary 

volume from these points. The segmented vertebral bodies include both cortical and 

cancellous bone tissue. The cancellous bone is located inside the cortical tissue and can 

therefore be extracted by applying a 3D morphological erosion filter having a ball 

structuring element of radius 3. Finally, we register the CT and PET voxels to measure 

biochemical activity within the bone marrow from the PET component. We select the simple 

rigid deformation model for the registration process and the cost function measures the 

mutual information between the CT and PET modalities. It is then straightforward to 

compute a statistical characterization of biochemical activity within the marrow volume.
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4. EXPERIMENT AND DISCUSSION

We tested the proposed framework on 17 patients who underwent complete bone marrow 

transplant. Patients were prospectively enrolled on an IRB approved protocol and underwent 

imaging for marrow and organ evaluation. Patients were evaluated at multiple points, some 

of which included chemotherapy and/or radiation therapy with depletion of the marrow 

compartment. As this study uses a novel contrast agent, the size of our dataset is currently 

limited.

Using the segmentation volume  obtained manually by expert physicians as a baseline, we 

evaluated the segmented volume ℳ delivered by the proposed automatic framework by 

computing the percent agreement D defined as

(8)

where |.| denotes bone volume summed across voxels. Intuitively, D measures the percentage 

overlap between the segmented volume and the manually labeled ground truth volume. A 

perfect segmentation result is 100%.

Results are shown in Table 1. Patient number is given in column 1 while column 2 shows the 

correct segmentation rate D. Across all 17 tested patients, the worst case performance is D = 

82.3570% while the best result is D = 89.8072%. The mean and median are D = 86.3728% 

and 86.9578% respectively. Currently, we model the vertebral body with an ellipse. 

However, most of the detection error occurs in regions where the shape of the vertebral body 

deviates from circles or ellipses. Thus, these results can be improved by developing a more 

sophisticated shape model for the vertebral body. In column 3 of Table 1, we also show root 

mean square error (RMSE) results for the vertebral disc tracker computed between the 

tracked and ground truth disc positions. The tracker performed well on 14 out of the 17 

patients. However, higher errors occurred on patients 7, 8, and 14 where significant noise 

and artifacts in the CT data degraded disc detection performance.

5. CONCLUSION

We introduced a fully automatic CT/PET 3D bone marrow segmentation framework to 

measure proliferation within the cortico-medullary junction and medulla of the marrow 

space. The framework consists of three main components including full-body 3D graph-cut 

segmentation, spinal column segmentation, and cancellous region extraction. We isolated the 

vertebral bodies by detecting the discs between adjacent vertebrae. The disc detection 

process was guided by a Kalman tracker. Our novel method was able to capture the 

proliferation of the hematopoetic space with a high degree of reproducibility. This technique 

could be valuable in evaluation of marrow changes due to malignancy, toxins, infections and 

autoimmunity.
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Fig. 1. 
Block diagram of the proposed spinal column segmentation framework.
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Fig. 2. 
Average Hounsfield unit of each transverse slice of the segmented vertebrae mask shown in 

Fig. 3(a).
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Fig. 3. 
Vertebrae filtering and segmentation: (a) Sagittal plane view of spinal column segmented 

from CT data. (b) Vertebral discs detected by finding local minima. Red circles denote disc 

positions detected from the CT component while blue crosses denote disc positions detected 

from the PET component. (c) Final disc positions obtained by Kalman filtering. The tracked 

locations are marked with yellow circles. (d) Segmented vertebral volumes (prior to isolation 

of the marrow cavities by erosion).
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Table 1

Segmentation results for proposed framework.

Patient D (%) ERMSE(voxel)

1 87.394 0.860464

2 85.002 0.942403

3 89.110 1.025827

4 87.289 1.026326

5 89.807 1.147532

6 84.976 0.884444

7 82.855 4.543005

8 88.439 5.821971

9 86.958 1.133246

10 84.273 0.860464

11 87.907 1.145727

12 88.523 2.000408

13 85.348 1.004205

14 82.357 5.006391

15 87.985 0.805521

16 84.626 0.805521

17 85.489 1.633903
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