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Abstract

Simultaneous recordings from large neural populations are becoming increasingly common. An 

important feature of the population activity are the trial-to-trial correlated fluctuations of the spike 

train outputs of recorded neuron pairs. Like the firing rate of single neurons, correlated activity can 

be modulated by a number of factors, from changes in arousal and attentional state to learning and 

task engagement. However, the network mechanisms that underlie these changes are not fully 

understood. We review recent theoretical results that identify three separate biophysical 

mechanisms that modulate spike train correlations: changes in input correlations, internal 

fluctuations, and the transfer function of single neurons. We first examine these mechanisms in 

feedforward pathways, and then show how the same approach can explain the modulation of 

correlations in recurrent networks. Such mechanistic constraints on the modulation of population 

activity will be important in statistical analyses of high dimensional neural data.

Introduction

A main challenge in systems neuroscience is to understand the patterns of neural activity 

that support sensory processing1, memory2, decision making3, and cognition4. This activity 

emerges from interactions between neurons5, as well as bottom-up sensory and top-down 

modulatory inputs6. Determining how neural circuits give rise to these activity patterns will 
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provide constraints on theories of neural computation, as well as bridges between 

physiology and cognition.

Different statistical approaches have been used to successfully uncover the important 

features of network activity, such as the functional coupling within a network7, the 

dimensionality of population responses8, and their variability9,10,11. While these approaches 

allow us to identify the essential statistical features of large scale network activity, they give 

little insight into the physiological causes of the observed activity patterns. Moreover, the 

high dimensionality and the limited amount of available data obtained from neural 

recordings require the development of new statistical approaches12,13. As recordings from 

larger and larger groups of neurons become more common14, identifying constraints on the 

recorded activity will become essential. Computational models that capture the essential 

biophysical properties of actual neurons can be better constrained and interpreted than 

models that make no assumption about the dynamics of individual units and their 

interactions.

Mechanistic models have long been used to understand the receptive field organization and 

trial-averaged dynamics of single neuron responses. Most famously, Hubel and Wiesel 

postulated the structure of thalamic projections to cortex from single neuron firing responses 

to bars of light at various orientations15. Others have used mechanistic models to examine 

the impact of feedforward16 and recurrent17,18 neural architectures on stimulus selectivity, 

providing targeted predictions for subsequent experimental studies of vision19,20 and other 

modalities21,22. This approach is not restricted to sensory areas where neural responses are 

easily affected by changes in stimuli. For example, there has been extensive work in building 

circuit models of persistent activity in pre-frontal cortex during working memory tasks23, 

and the formation of grid cell responses in hippocampus24, all replicating trial-averaged 

single neuron responses. We propose to extend this modeling approach by outlining how 

specific biophysical aspects of cellular and circuit structure can explain the joint variability 

of pairs of spike trains.

Of particular interest is the trial-to-trial covariability between the spiking activity from 

simultaneously recorded neuron pairs. These noise correlations provide a simple and robust 

measure of the internal coherence of neural activity25. There is a vibrant debate about how 

noise correlations impact neural coding26,27,28,29. However, in this review we focus on the 

relation between noise correlations and underlying circuit and cellular mechanics.

Noise correlations are frequently attributed to the presence of common afferent projections 

to a neuron pair30. A variety of mechanisms, however, can lead to correlated neural 

responses. On the one hand, direct common projections are not required if the presynaptic 

ensembles are themselves correlated31. On the other hand, correlations due to shared 

excitatory and inhibitory projections can cancel one another yielding low net correlations 

despite shared afferent input32. Correlations can also reflect local recurrent 

connectivity33,34,35, or feedforward inputs such as those induced by fluctuations in bottom-

up or top-down projections36. Finally, the cellular nonlinearities involved in the transfer of 

input currents to spike outputs are also important in shaping neural correlations37,38,39. It is 
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this diversity in the circuit and cellular causes of noise correlations that make them 

challenging to study from a mechanistic perspective.

An often-used strategy in systems neuroscience is to record neural activity under different 

neural states. State comparisons have been made between spontaneous and stimulus evoked 

neural activity40, when attention is directed within or outside the receptive field of a 

population41, different levels of arousal42, and active versus passive sensory acquisition43. 

State modulation is essential to understanding neural activity that is specific to a certain 

neural computation. It also serves another purpose: It offers important clues about the circuit 

and cellular mechanisms underlying collective neural activity. Different mechanisms could 

explain the correlations observed under a single state. However, only some of these 

mechanisms will be consistent with observations from multiple states.

We begin our review with a partial listing of the increasing number of experiments showing 

state dependent modulation of neural correlations. We next synthesize several theoretical 

results into one general framework that includes three mechanisms of correlation 

modulation: pre-synaptic correlations, internal fluctuations, and neural transfer. We explore 

these distinct mechanisms separately using a feedforward circuit model, highlighting their 

differences. We finish by discussing how these insights can inform the analysis of 

correlation modulation in recurrent networks of spiking neurons, where several mechanisms 

can be simultaneously engaged. Our review highlights how modulations in neural 

correlations could provide a window into the physiology that underlies state dependent 

changes in the nervous system.

Modulation of neuronal correlations

Simultaneous recordings from large populations of neurons are becoming commonplace in 

systems neuroscience14. Consider two spike trains from the kth trial of such an experiment, 

 and , where the Dirac delta function, 

, represent the mth spike from neuron i. The spike count correlation coefficient44,25 

between the two spike trains is:

Here  is the random spike count computed over a duration T on trial k, and 

 and  denote the covariance and variance over trials, respectively. When 

ρ appears without a subscript, it always refers to output spike correlations. Over small 

durations (T ~ 1 – 10 ms) ρ measures spike train synchrony, while over long durations (T ~ 

102 – 103 ms) it captures the shared fluctuations in the firing rates of the two neurons over 

trials.

A growing list of studies show large heterogeneity in correlations measured across the 

nervous system, as well as from neuron pairs within the same brain region25,45,46,47. 
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Nevertheless, the average correlation coefficient across paired spike trains in a cortical 

population is typically small, ranging from 0.01 to 0.3 depending on the brain region, brain 

state, and joint stimulus preference of the neuron pair48,25,45. Here we primarily consider 

long-timescale correlations, although our general framework is applicable to arbitrary time 

windows.

Neuronal correlations are modulated by a variety of factors including attention and arousal, 

learning, as well as stimulus onset and type. In this study we will consider correlation 

changes induced by a broadly defined state change of the nervous system (see Box 1). We 

present a partial list of examples in Table 1 with each entry describing two states, labeled A 
and B. For each case we list the relative change of correlation from state A to B, as well as 

the trial duration T over which ρ is measured. Table 1 shows that ρ can be modulated 

considerably in different animals, brain regions, cognitive contexts, and when measured over 

various durations, T. The three final entries in Table 1 highlight correlation modulation 

determined by intracellular recordings, results that are especially important when 

establishing physiological mechanisms.

In sum, the diversity in the conditions and states in which modulations in correlation have 

been observed suggests that distinct cellular and circuit mechanisms may be responsible. We 

next present a unified framework to discuss and compare a number of mechanisms that can 

impact the correlation coefficient, ρ, as well as how it is modulated across brain states.

Central framework for correlation modulation

Biological neural circuits consist of neurons belonging to a variety of cell classes wired in 

complex ways. It is tempting to try to infer the structure of these circuits and the 

physiological properties of neurons within them from multicellular recordings from subsets 

of neurons. Such an approach is fraught with difficulties49, many of which are due to the fact 

that only part of the population is observed. Here we describe an alternative strategy that is 

more modest in scope, but provides a general framework for discussing how modulations in 

spiking correlations depend on biophysical changes in the underlying circuit to which the 

neurons belong.

To start, we consider a pair of simultaneously recorded neurons (Fig. 1, black triangles) that 

are members of a larger, yet unknown, neural circuit (Fig. 1, colored symbols). To simplify 

our analysis we assume that neurons in the pair are not directly coupled (although this is not 

required for our treatment). In this case any correlations between spike trains of the neuron 

pair are inherited from correlations between their inputs. Under this assumption, we will 

explore how the cellular properties of the postsynaptic neurons, and those of the presynaptic 

circuit that drives them, influence correlation transfer.

On trial k of the experiment neuron i of our pair (i = 1 or 2) responds to its afferent inputs, 

, with  spikes over the window T. We consider values of T that are much larger than 

the synaptic and membrane timescale of the neurons, thereby not explicitly measuring the 

fine temporal structure of the spike trains. For simplicity, we assume that Var(n1) = Var(n2) = 
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Var(n), so that the correlation coefficient between the responses from the neuron pair is 

.

The two neurons do not interact directly, so ρ ≠ 0 implies that the presynaptic inputs to the 

neurons, x1(t) and x2(t), are themselves correlated. We quantify this correlation using the 

input covariance Cov(x̂1, x̂2), between the integrated synaptic inputs, . When 

the input covariance, is small we can use the linear approximation:

(1)

to relate input and output covariance37. Here L = L1 = L2 is the linear response of the target 

neuron50,51. Briefly, for weak common fluctuations, s(t), we have 〈ni〉 ≈ 〈nio〉 + Liŝ, where 

〈·〉 denotes the expectation over trials, 〈nio〉 is the mean spike count of the of neuron i at its 

operating point (defined by s = 0), and . The common fluctuations then simply 

perturb the neuron pair’s joint activity about an operational point (where Cov(n1o, n2o) = 0). 

If the operating point changes (say through a modulation), the linear approximation may 

change L but Eq. (1) remains valid. However if perturbations are too large, this linear 

approximation can break down, although it could still provide qualitative insights. For large 

time windows, T, the response function L/T is approximately the derivative (slope) of the 

firing rate – input curve of a neuron at the operational point37,38.

We assume that the response of each neuron is the result of a leaky, potentially nonlinear 

integration of its inputs. The total integrated input, x̂i(t), includes presynaptic and 

postsynaptic components. The covariance between presynaptic inputs, Cov(P1, P2), is 

determined by both common projections to the neuron pair, as well as correlations in the 

activity of the presynaptic pool of neurons32,31. From the vantage point of a postsynaptic 

neuron pair these sources are indistinguishable. If we neglect synaptic and dendritic 

nonlinearities then we have that Cov(x̂1, x̂2) ∞ Cov(P1, P2), where the covariance on the 

right is between the activities, , of the population presynaptic to neuron i on trial k (Fig. 

1).

Postsynaptic effects, such as stochastic vesicle release from synaptic contacts or channel 

fluctuations, are another well studied source of variability52,53. Since these fluctuations are 

private to each neuron, we assume that they are uncorrelated between the neuron pair. 

Further, they are also likely uncorrelated with the activity of the presynaptic population, so 

that Var(x̂i) ∞ Var(Pi) + Var(Ni), where Ni is the postsynaptic noise (integrated over T) 

within neuron i (Fig. 1).

The total correlation coefficient of the inputs is then
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where Rx = Var(N)/Var(P) and ρP = Cov(P1, P2)/Var(P). We again assume that the two 

neurons are statistically identical, so that Var(x̂) = Var(x̂1) = Var(x̂2), and similarly for the 

other variances. The coefficient Rx then measures the excess fluctuations in the input current 

due to internal processes in each neuron. Ultimately, we are interested in the variability of 

the spiking output of a neuron, ni. Unfortunately there is no simple linear relationship 

between Var(ni) and Var(x̂i)54, as there is for Cov (see Eq. (1)). This makes it difficult to 

determine the excess variability in the spike response due to internal fluctuations, Ry, from 

only the knowledge of Rx. However, we make the reasonable assumption that there is a 

monotonic relationship between them (i.e when Rx increases so too does Ry). In our review 

we use this observation to simplify our exposition, and hereafter make no distinction 

between Rx and Ry.

Finally, we consider the network to be in one of two states (labelled A and B) that differ in 

their spike count pairwise correlation coefficient ρ. This analysis then yields the following 

expression for the ratio of spike count correlations, ρA and ρB in the two states, A and B:

(2)

The modulation in the output correlation between the two states results from three separate 

terms:

1.  captures state dependent changes in the correlations of the presynaptic 

input;

2. [(1 + RB)/(1 + RA)]−1 captures state dependent changes in the internal 

fluctuations within each neuron in the pair;

3. [LB/LA]2 captures state dependent changes in the response gain of the transfer 

from synaptic input to the neurons’ output. Generally LA ≠ LB, since the 

linearization about the operational point at state A will typically differ from that 

at state B.

We next explore each of these modulatory terms in our feedforward network.

Three mechanisms of correlation modulation

There are several distinct ways to model a state change within the network. For example, 

neuromodulation through the activation of cholinergic and monoaminergic pathways can 

have diverse effects on the cellular and synaptic properties in a network55. Alternatively, the 

temporal dynamics of large scale neural activity as measured by electroencephalogram 

(EEG) and local field potential (LFP) recordings, show qualitative differences when 

comparing two distinct neural states41. This can be modeled by changing the statistics of the 

global input to the network9,10,11,56. In our framework a presynaptic pool of excitatory and 

inhibitory neurons (red and blue respectively in Fig. 2) project to a representative neuron 

pair (Fig. 2, black). We model the shift from state A to state B as an increase in a static 

external drive to the presynaptic neuron population (Fig. 2, a1,b1, and c1 vs. a2, b2, and c2). 
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This modeling choice is sufficient to cause changes in both the firing rate and correlations of 

the postsynaptic pair and can be loosely interpreted as capturing a wide array of 

neuromodulation schemes. We examine this general model of modulation (see Methods: 

general feedforward model) in three examples, each highlighting a different mechanism of 

correlation modulation.

Modulating presynaptic correlations

We start by analyzing the effect of changes in the correlations in the pool of presynaptic 

neurons (see Methods: Modulating presynaptic correlations). Here, as in other examples, the 

target pair of neurons receive correlated excitatory (E) and correlated inhibitory (I) inputs 

via an overlapping set of projections from the presynaptic pool. In the present case we also 

include direct connections from excitatory to inhibitory neurons within the presynaptic pool 

itself. These connections can correlate the inhibitory activity received by one neuron in the 

pair with the excitatory activity received by the other neuron. The covariance of the total 

presynaptic activity,  over trials is computed as:

(3)

In state A both excitatory and inhibitory presynaptic pools are weakly driven, resulting in 

low firing rates in the presynaptic populations and subsequently low firing rates of the 

postsynaptic neuron pair. The low rates in the presynaptic populations allow the spike 

threshold nonlinearity of the presynaptic cells to suppress neural transfer (the response gain 

L of the presynaptic populations is small). This compromises the presynaptic inhibitory 

pool’s response to projections from the excitatory presynaptic population. In particular, the 

low firing rates in the inhibitory pool imply that the excitatory input fluctuations given to the 

inhibitory pool are poorly transferred by the inhibitory pool to the postsynaptic neuron pair. 

This results in approximately uncorrelated outputs of the excitatory and inhibitory pool, 

Cov(Êi, Îj) ≈ 0 (Fig. 2, a3 orange dot). In this case  is due primarily to overlapping 

projections with Cov(Ê1, Ê2) > 0 and Cov(Î1, Î2) > 0 (Fig. 2, a3 orange dot).

In state B the presynaptic pool of neurons fires at a higher rate, increasing the net input to 

the postsynaptic pair, yielding a higher postsynaptic firing rate compared to state A (Fig 2, 

a4 green). Further, since the drive to the inhibitory pool in state B is larger than in state A 
then the spiking nonlinearity of the inhibitory neurons does not compromise their response 

to the projections from the excitatory pool. Thus the activity of the presynaptic inhibition is 

correlated with that of the presynaptic excitation. However, since inhibition is 

hyperpolarizing while excitation is depolarizing, the projections from the excitatory pool to 

one postsynaptic neuron are anticorrelated with the inhibitory projections to the other 

postsynaptic neuron. In the end, Cov(Ei, Ij) < 0 (Fig. 2, a3 blue dot), and this negative 

covariability cancels the positive covariability due to overlapping projections. This has the 

effect of reducing overall input correlations, so that  (Fig. 2, a3 blue dot). This 

leads to a reduction in output correlations (Fig 2, a4 black) with ρB/ρA < 1 (via Eq. 2). In 
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this example the linear transfer function remained approximately constant between the two 

states (LA ≈ LB) and we did not model private fluctuations (RA = RB = 0).

Excitatory and inhibitory currents are widely reported to be strongly correlated with one 

another57,58,59. In our model such correlations are due to feedforward excitatory and the 

associated disynaptic inhibitory pathways from the presynaptic population – a canonical 

circuit in the brain60. The functional consequences of this type of connectivity were first 

investigated using trial-averaged single neuron activity, with delayed inhibition creating a 

‘window of opportunity’ for neural responses 61,62,21,63. More recent studies have 

investigated the influence of this circuit structure on correlations between excitation and 

inhibition and the covariability of population responses. In the whisker barrel cortex of 

rodents this circuit structure supports an active decorrelation of the spiking activity between 

putative excitatory and inhibitory units when measured in the stimulus evoked state, when 

compared to the spontaneous state64,65. A functionally similar feedforward circuit in the 

electrosensory system of weakly electric fish drives a decorrelated state when stimuli are 

spatially broad as opposed to spatially compact66,67. The example presented above was 

based on the models developed in those studies.

The cancelation of overall input current covariability by anti-correlated excitatory and 

inhibitory inputs to neuron pairs was initially studied by Renart, de la Rocha et al.32. 

However, they considered the case of recurrently coupled cortical networks, as opposed to 

the feedforward structure analyzed above. They showed that in balanced networks of 

neurons68 the large sources of correlation due to shared projections within and outside the 

circuit were robustly and fully cancelled, stabilizing an asynchronous network state. 

Conditions under which such cancellation occurs have been clarified in further studies of 

recurrently coupled networks of model spiking neurons69,70. Modulation of correlations is 

difficult to study in these cases, mainly because correlations are very small (on the order of 

the inverse of the network size). We will revisit correlation modulation in recurrent networks 

in a later section.

In sum, the circuit mechanisms that determine pre-synaptic covariability are diverse, and a 

complete treatment is beyond the scope of this review. Nevertheless, in many cases a 

cancellation between various sources of opposing pre-synaptic correlations is a key 

component.

Modulating postsynaptic noise

To demonstrate the influence of private noise on correlation transfer, we consider a model in 

which synaptic release is random (see Methods: Modulating internal fluctuations). Every 

presynaptic spike releases a random number of synaptic vesicles to the postsynaptic 

neuron53. This is due to both the nature of vesicle release and the fact that vesicles are 

replenished at random times. Vesicle recovery dynamics result in activity-dependent changes 

in the synaptic current’s mean and variability. This type of synaptic dynamics is standard in 

models of short term synaptic depression and has been widely used in past 

studies71,72,73,74,75.
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We again consider the response of our model neuron pair in two states. In state A the 

modulatory drive is weak and presynaptic populations fire at a low rate. In this case, the 

variability in the postsynaptic current, Var(N), is due primarily to probabilistic vesicle 

release, since vesicle uptake almost always happens before the next spike arrival. Thus the 

relative synaptic noise, RA = Var(NA)/Var(PA), is small (Fig. 2, b3 blue dot). As a result the 

output correlation, ρA, is only weakly diluted by synaptic noise.

In contrast, the larger modulatory drive in state B results in higher presynaptic and 

postsynaptic firing rates (Fig. 2, b4 green). Higher postsynaptic activity results in increased 

depression of synaptic transfer due to vesicle depletion. The probabilistic nature of vesicle 

recovery increases fluctuations in the synaptic current, so that relative synaptic noise, RB, is 

larger than in state A (Fig. 2, b3 orange dot). Since vesicle recovery is independent across 

synapses such increased variability dilutes input correlations, . This results in a 

modulation of output spiking correlations with ρB < ρA (Fig. 2, b4 black).

Variability due to internal release and recovery dynamics within individual synapses is a 

well documented component of synaptic dynamics76,53. Previous studies focused on the 

impact of such synaptic variability on the information transmission across a synapse77,75. 

Here we follow our past study78 and show how input correlations are diluted by synaptic 

variability in a firing rate dependent manner (see also79).

Synaptic variability is not the only cause of correlation dilution. Alternative mechanisms 

only need two features: First, the variability must be independent across neurons, so that 

Cov(x̂1, x̂2) is unaffected by changes in state, and second, the variability must be activity 

dependent so that Var(N)/Var(P) changes with the state80,81. A multitude of biophysical 

mechanisms satisfy these requirements, including fast membrane potential fluctuations due 

to stochastic openings and closings of ion channels52,81, action potential threshold 

fluctuations due to finite-sized populations of axonal sodium channels82, and slow 

fluctuations in the cellular excitability of neurons83.

Modulating neural transfer

In the previous example the intensity of background synaptic fluctuations changed the input 

statistics. We next show how it can also influence output correlations by changing the 

response gain (L) of a neuron (see Methods: Modulating neural transfer). In our example the 

drive from the presynaptic populations is balanced, meaning that both excitation and 

inhibition increase with the modulatory input (Fig. 2, c1 and c2). We chose parameters so 

that the total mean presynaptic input to the target pair is approximately state-independent 

(through a cancelation of excitation and inhibition currents), but the overall variability of the 

synaptic input increases with the modulatory drive so that Var(PB) > Var(PA). Further, the 

modulation was such that despite the increase in variance the presynaptic correlations 

remained fixed, i.e. . Finally, we neglect synaptic variability, so that RA = RB = 0. 

Thus, any change in output correlation, ρ, cannot be due to a change in input correlation, ρx.

Modeling work84,85,86,87, dynamic-clamp slice experiments88,89, and in vivo whole cell 

recording90 have all demonstrated that increases in conductance-based input fluctuations 
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lower L. Indeed, in our model since in state B synaptic fluctuations are larger than in state A, 

it follows that LB < LA (Fig. 2 c3). Thus, despite the increase in firing rate between state A 

and B (Fig. 2, c4 green), and the absence of changes in the input correlations, , we 

nevertheless observe ρB < ρA (Fig. 2, c4 black). The reduction of L by increased synaptic 

activity is well studied88, and the subsequent decrease in output correlations under this 

modulation scheme has been previously noted89.

Calculating the response gain, L, and determining its impact on the collective behavior of 

neuronal populations has a long history91,50,51. In particular, the example of a pair of 

uncoupled neurons driven by partially correlated inputs has been extensively studied. 

Formally, the nonlinear transfer between continuous input and spike response ensures that ρ 
< ρx 92,37,39,93,94, yet the influence of the nonlinearity can be controlled by several factors. 

In many neuron models L increases with the firing rate of a neuron resulting in a relationship 

between firing rates and ρ37,38,95. This prediction has been verified in a variety of 

experimental studies25,96,10,95, and firing rate is often a core determinant of output 

correlation45. However, in general, output spiking correlations and firing rate do not have a 

prescribed relation, as our examples illustrate (Fig. 2 a4,b4,c4).

Neural excitability can shape how input correlations are transferred to output correlations, 

with neural integrators favoring spike count correlations measured over long timescales93, 

while resonator and phasic membrane dynamics show enhanced short timescale 

synchrony97,98,99,100. Subthreshold cellular dynamics, such as spike frequency adaptation101 

or fast membrane tracking of slow synaptic inputs92 also shape L and hence the transfer of 

correlation. Increased cellular heterogeneity between the postsynaptic neuron pair typically 

reduces ρ38,102, particularly when measured over short timescales38,103,104. These studies all 

explicitly considered the case of correlation transfer for a neuron pair; however the cellular 

and synaptic mechanisms that determine the response gain of a neuron have been a long 

standing topic of interest105. Our theory suggests that all of these gain control mechanisms 

will also influence correlation transfer.

Distinguishing between the mechanisms

These three examples demonstrate how distinct cellular and circuit mechanisms impact both 

firing rates and pairwise correlations. We have chosen model parameters so that the changes 

in firing rate and correlations are nearly identical in all three cases (Fig. 2, a4,b4, and c4). 

This illustrates an inherent difficulty in using changes in output statistics to infer the 

biophysical mechanisms that have caused them.

One way to distinguish the mechanisms underlying correlation modulation is to consider 

spiking correlations ρ as a function of the time window (T) over which they are computed, 

because different mechanism modulate correlations on different timescales 89,78,101. In 

general, ρ increases with the time window106, as in the case of the feedforward model with 

non-plastic synapses (Fig. 4a1 and a3). However, plastic synapses with short-term 

depression have long timescale vesicle uptake dynamics (~ 400 ms), attenuating low 

frequency pre- to post-synaptic transfer. Consequently, broadband presynaptic activity is not 

correlated with post-synaptic responses over long timescales, and hence ρ is reduced for T > 

Doiron et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2017 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



400ms (Fig. 4a2). While measuring ρ as a function of T can help distinguish some 

mechanisms from others (Fig. 4a1 and a3 vs. a2), it does not provide a perfect diagnostic. 

Indeed, some qualitatively distinct mechanisms may only show quantitative differences in 

the timescale dependence of ρ (Fig. 4a1 vs. a3).

Another way to distinguish the mechanisms is to recall that ρ is defined as a ratio:

In the second equality we used the co-Fano factor93, CoF(n1, n2) = Cov(n1, n2)/〈n〉 and the 

Fano factor, F(n) = Var(n)/〈n〉 (〈n〉 is the mean spike count). A decrease in ρ between state A 
and B may be due to either 1) a larger decrease in CoF(n1, n2) than F(n), or 2) a larger 

increase in F(n) than CoF(n1, n2). The cancelation of presynaptic covariability through 

feedforward inhibition or the increase in variability through probabilistic vesicle release both 

lead to a reduction in ρ as in the first case (Fig. 4b1 vs. c1 and b2 vs. c2). In contrast, larger 

overall variability with increased background fluctuations coupled with a reduced gain leads 

to a reduction in ρ as in the second case (4b3 vs. c3). However, as with timescales, 

separating modulations of ρ into modulations of spike count Fano and co-Fano factors can 

only give partial information about underlying biophysical mechanisms.

It is possible to indirectly measure the stimulus-response gain L of a neuron by ranging over 

a stimulus parameter. If the stimulus dependence and the sources of input variability are 

known (or can be approximated) then one can account for changes in ρ by changes in L66. 

Manipulations of a neural circuit by pharmacological or optogenetic means can give further 

insights into how the organization of pre-synaptic correlations, ρP, or post-synaptic 

variability, R, contributes to state-dependent changes in ρ (see next section).

The most direct method to characterize the mechanisms responsible for state dependent 

changes in correlation remains to use whole-cell recordings of membrane potential voltage 

fluctuations. Whole cell recordings give information about both the synaptic inputs and 

spike outputs, allowing us to measure input correlations, Cov(x1, x2), internal fluctuations, 

R, and response gain, L, directly. In vivo whole cell recording is challenging. However, there 

are several studies where pairwise correlations have been modulated and simultaneously 

membrane potentials, or a membrane potential and local field potential have been recorded 

(see Table 1). Studies of this type continue to be well suited to uncover the physiological 

basis of state-dependent correlation modulation.

Correlation modulation in recurrent networks

Thus far we explored correlation modulation in a simple feedforward circuit (Figs. 1 and 2). 

However, a primary characteristic of cortical networks is large recurrent projections between 

neurons. Theoretical neuroscientists have developed and analyzed various models of 

recurrent networks of excitatory and inhibitory neurons107,108,109. These models have 

provided key insights into the mechanisms that shape spike train correlations. For instance, 

networks with rapid but delayed recurrent inhibition produce fast timescale correlated 
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activity in the γ frequency range (30–70 Hz)110,50,111, but often show negligible correlations 

on slow timescales. Networks with weak or balanced coupling produce slow-timescale 

correlated activity whose magnitude scales inversely with system size, becoming 

exceedingly small in networks with thousands of neurons34,69,35,32,112. However, we are far 

from a complete understanding of self-generated correlated activity in recurrently networks 

of spiking neurons.

Clustered feedforward113, clustered recurrent114,115,116, and spatially distributed network 

architectures47,117,118 can all produce correlated activity between spiking neurons. In such 

networks, only neurons that belong to the same cluster or are close to one another are 

strongly correlated. Indeed, experiments show that noise correlations are large for neuron 

pairs that are reciprocally connected119 (same putative cluster), similarly tuned or are nearby 

in space to one another48. However, the mean correlation between neuron pairs that fall 

outside these categories are also positive on average48.

Large parallel recordings from neural populations show that spiking correlations have some 

simple features: network-wide correlations can be largely explained by a one dimensional 

source of shared fluctuations, often treated as a latent variable in statistical 

approaches120,11,10,9,56. The origin of this source is not known. A straightforward (albeit 

phenomenological) way to model these dynamics is to drive a network of spiking neurons 

with a spatially coherent input that represents an external source of 

fluctuations121,122,123,56,28,94. We employ this strategy to study correlation modulation in 

recurrent networks.

We consider a network of model excitatory (E) and inhibitory (I) spiking neurons with 

dense, recurrent connections between them (see Methods: Correlation modulation in 

recurrent networks). Weak feedforward input fluctuations, F(t), are shared by all neurons 

(providing feedforward covariability CovF), alongside private fluctuations specific to each 

neuron in the network (Fig. 4a). The shared fluctuations are the largest source of network 

covariability in the model. In addition, we assume that there is a modulatory input similar to 

that of our previous models (Fig. 2) and simply depolarizes all neurons (different magnitude 

for E and I neurons). This modulatory input does not affect the external fluctuations F(t).

In response to the modulation, E neurons have a higher time-averaged firing rate in state B 
than state A (Fig. 4b,e). In both states the shared fluctuations produce significant variability 

in the population-averaged instantaneous firing rates (Fig. 4b, lower panel). If the strength of 

shared input fluctuations is small compared to private fluctuations then the linear response 

framework assumed in Eq. (2) is valid121,122,124,112,66,28. In this case the intuition developed 

from our feedforward analysis will apply to a representative pair of neurons selected from 

the recurrent network. However, to understand the modulation of neural correlations, ρ, we 

must understand the combined modulations of the correlations in their presynaptic inputs P, 

the transfer of presynaptic activity to synaptic current x, and the gain of the postsynaptic 

response to those currents, L.

The nonlinearity of the transfer between synaptic input and spike response allows the gain L 
to be state-dependent. In our model we have that LA < LB (Fig. 4c). This differs from our 
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previous analysis (Fig. 2 c3) since the network model has current-based synapses, while the 

feedforward case has conductance-based synapses, mimicking a high conductance state89. 

With current-based synapses and moderate firing rates, an increase in firing rate results in an 

increase in L, which is supported both by in vitro37,105 and in vivo20 recordings. Thus, in 

our model it is expected that the modulation will produce LB/LA > 1.

Any pair of neurons in our network are correlated through the shared fluctuations F(t) via 

two pathways: the direct feedforward component that provides input with covariance CovF 

between neurons, and the indirect pathway via recurrent excitatory and inhibitory 

projections between neurons in the network that also receive F(t). To simplify the exposition 

we consider the joint common recurrent input R(t) = E(t) + I(t). The full covariance of the 

presynaptic input to a neuron pair then decomposes as:

Here CovR is the covariability due to common recurrent input to the neuron pair, while 

CovFR is the interaction between the feedforward and recurrent pathways. This 

decomposition is similar to feedforward case shown in Eq. (3). While the feedforward input 

F(t) is state invariant, the recurrent activity R(t) changes with state. In our model the 

inhibitory pathway is dominant, making CovFR < 0 because dynamic recurrent inhibition 

acts to partially cancel the feedforward drive121,69. The modulatory input enhances this 

cancellation so that , ultimately yielding CovA(P1, P2) > 

CovB (P1, P2) (Fig. 4d).

The combined effect of the modulation is then to produce two opposing manipulations of 

correlation transfer. An increase in response gain (LB/LA > 1) occurs in tandem with a 

decorrelation of the presynaptic input (Cov(P1, P2)B/Cov(P1, P2)A < 1). Our theory in Eq. 

(2) suggest that the response gain modulation will produce an increase in correlation in state 

B, that is ρB/ρA > 1, while the presynaptic correlation modulation lead to decrease, ρB/ρA < 

1. We chose parameters and a modulation so that the latter effect dominates, and the spike 

correlation is reduced in state B (Fig. 4e). In general, modulatory inputs result in state 

changes in multiple stages of correlation transfer. Nonetheless, the ideas presented in this 

review can help disentangle the various effects of a network modulation on the spike train 

correlations of pairs of neurons within the network.

As in the feedforward networks, it is difficult to use spike train data alone to dissect the 

individual contributions of gain and pre-synaptic correlation modulations in a recurrent 

network. Further probing of the network can, however, give insight into the mechanisms of 

correlation modulation. To illustrate, we model an experiment where light is used to activate 

interneurons expressing halorhodopsin in a cortical network (Fig. 4e). We assume that light 

hyperpolarizes a fraction (50%) of the I cells in our model. Removing a large fraction of 

recurrent inhibition changes state dependent modulations in two important ways. First, the 

increase in firing rates in going from state A to B is much larger (Fig. 4f, green). Second, 

spike correlations now increase with the state modulation (Fig. 4f, black).
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With weaker inhibition the cancellation of feedforward correlations CovF through CovFR is 

attenuated. Thus, when halorhodopsin is activated the decorrelation in neural activity 

through recurrent inhibition is compromised. Further, the increase in firing rate with 

decreased inhibition allows L to increase to a larger extent as the network transitions from 

state A to B. The combination of these effects lead to an increase in ρ with the state change 

when inhibition is reduced. Had recurrent inhibition not been a primary component of the 

mechanism underlying the state dependent dependent modulation in the control case, then 

we would not expect to observe these qualitative changes.

This example shows how contemporary circuit manipulation techniques can be used to test 

concrete predictions about state-dependent correlation changes in recurrent networks. We 

have confined our analysis to recurrent networks with weak coupling and where neurons 

receive external sources of fluctuations121,122,66,34,69,35. In this case linear response 

techniques are valid. The network simply transforms global input fluctuations into network-

wide spiking correlations. However, when coupling is stronger the network can generate 

globally coherent activity110,50,111 and strong 125 or slow115,126. The complete analysis of 

such dynamics involves the nonlinear network properties, and hence the factorization in Eq. 

(2) is not applicable. Such behavior is beyond the scope of this review.

Conclusion

We presented a general framework for analyzing the physiological mechanisms underlying 

the modulations of neuronal correlations. We demonstrated our theory using several 

examples; however, the list of mechanisms we considered was not exhaustive. The large 

number of factors that modulate intrinsic cellular properties, as well as synaptic excitation 

and inhibition, suggest that many distinct mechanisms control neuronal correlation. Our 

theoretical approach allows for an easier navigation of this large space, and the development 

of a circuit-based understanding of state-dependent modulation of neuronal activity.

Unravelling the mechanics of correlation modulation in vivo will require a concerted 

experimental effort. We noted that whole-cell recordings will give invaluable data to validate 

the aspects of certain mechanisms over alternative ones. In addition, the combination of 

genetic specification127 and targeted optogentic manipulation of neural circuits128 promises 

to provide fundamental insights into neural correlations. Finally, analysis of population-wide 

recordings describes how pairwise correlations are distributed across large groups of 

neurons120,11,10,9,56. Extending our theory to networks of neurons is 

straightforward121,122,34. However, understanding how the dimensionality of population-

wide input correlation is represented by the spike responses of interconnected neurons is an 

open challenge.

The changes in correlated activity we describe may have a number of consequences for 

neural coding. Theoretical26,123 and experimental96,129,130 studies show that changes in 

correlations can increase the accuracy with which stimulus can be decoded from the 

population response. Further, increased synchrony has also been shown to precede 

behaviorally relevant events131. However, recent work has exposed that it is the degree of 

overlap between the structure of population noise correlations and population stimulus 
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tuning that ultimately identifies the correlations that limit information transfer28. This 

implies that conclusions about the effect of noise correlations on neural coding should be 

made with care.

We have come a long way in characterizing the mechanics underlying the responses of 

single neurons. Understanding circuit and cellular modulations of the collective activity of 

neural populations will be an essential step toward understanding the brain.
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Box 1: Neural State

The operating state of the brain, or simply state, refers to the context under which neural 

activity is recorded. This includes several possibilities, such as: The cognitive state is 

determined by an animal’s level of arousal, attentional focus, or degree of engagement in 

a task. In the absence of a stimulus or task the neural network is in the spontaneous state, 

as opposed to an evoked state. Stimuli that do not directly drive a neuron, yet recruit a 

non-classical surround can change the processing state of a neuron. A change in stimulus 

features within a neuron’s receptive field may change its firing rate. However, it does not 

change the context under which the neural activity is observed, and hence such stimulus 

features do not determine a state.
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Figure 1. Schematic illustration of correlation transfer in networks of spiking neurons
We consider a pair of unconnected neurons (black triangles) that receive input from a 

presynaptic population of excitatory neurons (red triangles) and inhibitory neurons (blue 

circles). Covariability, Cov(P1, P2), in the presynaptic inputs, P1 and P2, to the postsynaptic 

pair is due to a combination of shared anatomical projections leading to a shared input 

(overlap between P1 and P2) and correlations between the activity of the presynaptic 

populations. This presynaptic activity along with internal synaptic and cellular fluctuations, 

Ni, determine the postsynaptic currents, xi (i = 1, 2) in each of the two postsynaptic cells. 

Finally, the nonlinear spike generation mechanism translates these postsynaptic currents into 

the output spike trains, y1 and y2.
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Figure 2. Three mechanisms for correlation modulation
(a) The presynaptic excitatory (E) population (red) and the inhibitory population (blue) both 

project to the postsynaptic neuron pair. In state A the presynaptic populations are weakly 

driven, with a slight asymmetry favoring the E population (a1). In contrast, both presynaptic 

E and I populations are driven strongly in state B (a2). The increase in presynaptic rate 

uncovers an anticorrelation between the E and I currents, ultimately decorrelating the overall 

synaptic inputs to the postsynaptic pair (a3). The result of the modulation from state A to B 
is to both increase the postsynaptic firing rate (a4, green) and decrease spike count 

correlation (a4, black). (b) The synapses linking presynaptic activity to postsynaptic current 

are probabilistic, with activity dependent reliability of vesicle release (we show only the E 

population for schematic brevity). In state A the presynaptic populations are weakly driven 

and the number of vesicles released per presynaptic spike, and their reliability, is high (b1). 

In contrast, in state B the presynaptic population fires at a higher rate, resulting in less 

reliable synaptic transmission (b2). The decrease in synaptic reliability from state A to B 
increases the synaptic noise to signal ratio, 1 + R (b3). As in a4, the transition from state A 
to B has the effect of both increasing the postsynaptic firing rate (b4, green) and decreasing 

the spike count correlation (b4, black). (c) The presynaptic E and I populations project 

Doiron et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2017 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



balanced, conductance based inputs to the postsynaptic pair. In state A the firing rates of the 

presynaptic populations are low, and the overall synaptic fluctuations are small (c1). In 

contrast, in state B the presynaptic rates are higher, resulting in larger fluctuations in the 

input to the postsynaptic pair (c2). The increase in conductance based fluctuations between 

state A and B reduces the spike response gain (L) (c3). As in a4, the transition from state A 
to B increases the postsynaptic firing rate (c4, green) and decreases the spike count 

correlation (c4, black).
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Figure 3. Dissecting correlation modulation
(a) Output correlation coefficient ρ as a function of the window T over which spike trains 

are counted. The pre-synaptic correlations (column 1), internal fluctuation (column 2), and 

neural transfer (column 3) examples are identical to those of Figure 2. (b) The Fano factor 

F(n) = Var(n)/〈n〉 for the same data as panel a. (c) The co-Fano factor CoF(n1, n2) = Cov(n1, 

n2)/〈n〉 for the same data as panel a.
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Figure 4. Correlation modulation in recurrent networks
a. Schematic of recurrent excitatory (E) and inhibitory (I) network. The neurons in the 

network receive a global source of shared fluctuations, alongside individual sources of 

private variability. b. Spike train rasters (top) and instantaneous firing rates (bottom) of the 

E-neuron population in state A and B. c. Change in spike response gain (L) as modulatory 

drive (state) is varied. d. Change in presynaptic correlation to a representative pair of 

neurons within the population as modulatory drive (state) is varied. e. The result of the 

modulation from state A to B is to both increase the postsynaptic firing rate (green) and 

decrease spike count correlation (black). f. Schematic showing a silencing of a portion of the 

inhibitory population through activation of halorhodopsin. g. Same as e) but with half of the 

inhibitory neurons hyperpolarized.
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Table 1
Examples of state dependent modulation of neural correlation ρ between two states

We denote the two states with A and B, and the correlations measured in each state by ρA and ρB with ρA > ρB 

unless otherwise noted.

System Modulation Window length T ρB/ρA Reference

Extracellularly recorded spike trains

Electrosensory (fish) Spatially broad (A) vs. compact
(B) stimuli

50ms ~ 0.68 132

V4 (macaque) Unattended (A) vs. attended (B)
(spatial)

200ms, 100ms ~ 0.70, 0.66 96,133

V4 (macaque) Unattended (A) vs. attended (B)
(spatial+contrast discrimination)

333ms ~ (0.85,1.05)1 134

V4 (macaque) Attended with PFC lesion (A) vs.
attended (B)

150ms ~ 0.75 135

V1 (macaque) Spontaneous (A) vs. evoked (B)
activity

100ms ~ 0.63 48

V1 (macaque) Non-adapted (A) vs. adapted (A)
responses

1.86s ~ 0.78 2 136

V1 (macaque) Spontaneous (A) vs. stimulation of
the non-classical surround (B)

600ms ~ 0.85 137

V1 (macaque) Anesthetized (A) vs. awake (B) 500ms ~ 0.14 10

V1 (macaque) Attended with drug application3
(A) vs. attended without drug (B)

300ms ~ 0.60, 0.4, 1.8 138

V1 (mouse) Low (A) vs. high (B) arousal 10s, 150ms ~ −0.22, 0.8 139,140

V1 (mouse) Stationary (A) vs. locomotion (B) 100ms ~ 0.45 141

A1 (macaque) Passive (A) vs. detection task (B) Not given ~ 0.5 4 142

PFC (rhesus) Untrained (A) vs. trained (B) 100ms ~ 0.5 143

MSTd (macaque) Untrained (A) vs. trained (B) 100ms ~ 0.2 5 129

MT (rhesus) Task cooperation (A) vs. competi-
tion (B)

~ 650ms ~ (0.65,1.55) 6 144

Piriform cortex (mouse) Pre-task (A) vs. odor sniff (B) 120ms ~ 0.12 145

CLM (European starling) untrained (A) vs. task-relevant (B) 565ms ~ (0.35, 1.65) 7 146

Area 17 (cat) Perpendicular (A) vs. aligned (B)
surround grating

1ms ~ 0.8 8 147

V1 (cat) Flashed stimuli (A) vs. drifting
grating (B)

100ms ~ 0.5 45

Intracellularly recorded membrane potentials

V1 (cat) Spontaneous (A) vs. evoked (B)
activity

0–10 Hz 9 ~ 0.75 148

Barrel cortex (mouse) Quiet wakefullness (A) vs. active
whisking (B)

2 ms ~ 0.5 149

V1 (macaque) Spontaneous (A) vs. evoked (B)
activity

0.5–4 Hz 10 ~ 0.5 150

1
Neuron pairs were grouped according to their task tuning similarity (TTS). Neuron pairs with TTS > 1 show an attention mediated decrease in ρ, 

while pairs with TTS < −1 show an increase.
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2
Restricted to neuron pairs with ρA > 0.

3
Three different drugs were applied to recorded neurons during a cued spatial attention task: DL-2-amino-5-phosphonopentanoic acid (APV), 6-

cyano-7-nitroquinoxaline-2,3-dione (CNQX), and an NMDA receptor agonist; relative correlations are listed in that order.

4
Restricted to neurons with similar tuning.

5
Trained and untrained correlations are obtained from separate animals.

6
Task specifics placed neuron pairs to have either a cooperative relation to one another, or a competitive one. Neuron pairs were grouped according 

to the difference in their preferred direction of motion (PD), and competition decreased ρ for neuron pairs with PD < 135°, while it increased ρ for 
pairs with PD > 135°.

7
Neuron pairs with signal correlation > 0.4 show a relative modulation of 0.65, while pairs with a signal correlation < 0.4 show a modulation of 

−0.65.

8
Since firing rate changes were negligible the measures were computed only from Cov(y1, y2).

9
Computed from the integrated spectral coherence between simultaneously recorded membrane potentials.

10
Computed from the integrated spectral coherence between simultaneously recorded membrane potential and nearby local field potential.
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