Skip to main content
. Author manuscript; available in PMC: 2017 Jun 20.
Published in final edited form as: J R Stat Soc Ser C Appl Stat. 2015 Mar 26;64(4):673–691. doi: 10.1111/rssc.12098

Table 3.

MSE, bias and 90% coverage probabilities for estimating conditional regression coefficients from the simulation study

Design Model Results for the following parameters:
β1 = 0 β2 = 0.5 β3 = 0 β4 = 0.5
(a) MSE (× 100)
1, PS—weak PS     2.00     2.50   0.78     1.32
Gaussian     1.09     3.55   0.47     2.97
Independence     1.88     2.83   0.76     1.77
2, PS—strong PS   11.92   12.19   0.87     1.69
Gaussian     1.18   15.76   0.35   12.52
Independence     2.21   11.40   0.56   11.29
3, Gaussian PS     1.89   38.10   1.29   43.93
Gaussian     0.59     0.64   0.41     0.47
Independence     0.98     1.80   0.72     1.81
4, PS—higher censoring PS     2.63     3.73   1.10     2.50
Gaussian     0.96     3.52   0.66     2.31
Independence     1.70     3.08   1.05     1.59
(b) Bias (× 100)
1, PS—weak PS     1.48     5.77   0.08     4.49
Gaussian     1.33 −15.89   0.40 −15.86
Independence     1.87 −9.89   0.91 −9.32
2, PS—strong PS −1.26   13.15   0.19     7.59
Gaussian −0.71 −32.9   0.56 −34.69
Independence −0.06 −30.17   1.11 −32.36
3, Gaussian PS     1.09   28.77 −0.15   29.63
Gaussian     0.53 −1.18 −0.11 −1.49
Independence     0.01     8.07 −0.44     8.39
4, PS—higher censoring PS     0.46     8.59   0.28     9.63
Gaussian     0.02 −13.95   0.91   12.28
Independence     0.28 −8.12   0.62 −6.35
(c) Coverage probability of 90% intervals (× 100)
1, PS—weak PS 88 90 90 87
Gaussian 69 33 89 19
Independence 62 51 79 61
2, PS—strong PS 90 86 92 85
Gaussian 68    4 92    0
Independence 58 11 91    1
3, Gaussian PS 87 63 88 60
Gaussian 85 85 91 86
Independence 74 62 81 64
4, PS—higher censoring PS 91 90 91 81
Gaussian 84 47 81 49
Independence 67 60 74 70