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Cautionary Note on Using Cross-Validation for
Molecular Classification
Li-Xuan Qin, Huei-Chung Huang, and Colin B. Begg

A B S T R A C T

Purpose
Reproducibility of scientific experimentation has become amajor concern because of the perception
that many published biomedical studies cannot be replicated. In this article, we draw attention to the
connection between inflated overoptimistic findings and the use of cross-validation for error esti-
mation in molecular classification studies. We show that, in the absence of careful design to prevent
artifacts caused by systematic differences in the processing of specimens, established tools such as
cross-validation can lead to a spurious estimate of the error rate in the overoptimistic direction, re-
gardless of the use of data normalization as an effort to remove these artifacts.

Methods
We demonstrated this important yet overlooked complication of cross-validation using a unique pair
of data sets on the same set of tumor samples. One data set was collected with uniform handling to
prevent handling effects; the other was collected without uniform handling and exhibited handling
effects. The paired data sets were used to estimate the biologic effects of the samples and the
handling effects of the arrays in the latter data set, which were then used to simulate data using
virtual rehybridization following various array-to-sample assignment schemes.

Results
Our study showed that (1) cross-validation tended to underestimate the error rate when the data
possessed confounding handling effects; (2) depending on the relative amount of handling effects,
normalizationmay further worsen the underestimation of the error rate; and (3) balanced assignment
of arrays to comparison groups allowed cross-validation to provide an unbiased error estimate.

Conclusion
Our study demonstrates the benefits of balanced array assignment for reproducible molecular
classification and calls for caution on the routine use of data normalization and cross-validation in
such analysis.

J Clin Oncol 34:3931-3938. © 2016 by American Society of Clinical Oncology

INTRODUCTION

Reproducibility of scientific experimentation has
become a major concern because of the percep-
tion that many published biomedical studies
cannot be replicated.1-3 A recent commentary by
Collins and Tabak4 outlined the problem, drawing
attention to the importance of valid experimental
design, especially in the preclinical setting. This
has been backed up by recent changes to the
format of grant submissions to the National In-
stitutes of Health to draw reviewers’ attention to
the scientific rigor of the experimental design.5 In
this article, we draw attention to a crucial feature
of the design of molecular classification studies.
We show that, in the absence of careful design to

prevent artifacts caused by systematic differences
in the processing of specimens, established tools,
such as data normalization and cross-validation,
will be ineffective in eliminating inflated over-
optimistic findings.

Developing molecular classifiers that aid in
treatment selection is an important ongoing
problem for precision medicine.6,7 An essential
characteristic of a classifier is the misclassification
error rate, which is defined as the measurement
of how the classifier will perform when applied
in practice (to an independent data set). Tradi-
tionally, a routine method for assessing a classi-
fier’s error rate is cross-validation of the same data
used for training the classifier (ie, the training
data set), through rotational estimation of ran-
dom data splits8,9; under the implicit assumption
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that the training data set is reproducible, cross-validation can
provide a nearly unbiased estimate of the error rate.10 Cross-
validation has been frequently used for assessing molecular clas-
sifiers: a review of the literature shows that from 2000 to 2015,
leading oncology journals published 74 molecular classification
studies, among which 19 (26%) used cross-validation as the sole
approach for assessing the error rate and 11 (15%) used split-
sample validation, in which the data were randomly split into
training and test data sets (Data Supplement).

Molecular data, however, often consist of irreproducible
nonbiologic variations that arise from the experimental handling
process, which we call handling effects throughout this article.11-14

For example, assays are usually processed in batches, and each
batch will typically have systematic differences in the output
metrics, leading to potential bias if suitable adjustments are not
used to offset these systematic effects. Handling effects have been
extensively studied for the problem of molecular biomarker dis-
covery and are often addressed by normalization in the data
preprocessing step.11,15,16 The same normalization strategy has
been used routinely to smooth out the data for molecular clas-
sification: among the aforementioned 74 studies, 61 (82%) ex-
plicitly stated that normalization was used (Data Supplement).
However, it has not been appreciated that normalization can
undersmooth handling effects (that correlate with the outcome of
interest) or oversmooth the inherent biologic variations in the data,
both leading to a spurious error rate estimated by cross-validation.
This overlooked connection between data preprocessing and data
analysis may explain some of the optimistic yet irreproducible
molecular classifiers reported in the literature.

We are able to demonstrate this overlooked complication of
cross-validation using a unique pair of microRNA (miRNA) array
data sets that we previously collected.17 These two data sets were
generated for the same set of tumor samples as follows. Arrays in
one data set were collected with uniform handling to minimize
handling effects, whereas arrays in the other data set were collected
with nonuniform handling and exhibited handling effects. In this
study, we used the former data set to approximate the ideal case and
to estimate biologic effects for each sample; we used the latter data
set to estimate handling effects for each of its arrays (by subtracting
the corresponding biologic effects). Data were simulated by ran-
domly reassigning arrays to samples (without replacement), fol-
lowed by adjusting the observed biologic effect of each sample
using the estimated handling effect of its assigned array, a tech-
nique that we call virtual rehybridization (Fig 1).

For the reassignment of arrays to samples, we examined two
schemes that resulted in different types of handling effects. First,
we used a typical batch allocation scheme, in which arrays were
assigned to sample groups in the order of array collection (ie,
earlier arrays assigned to one group and later arrays to the other),
leading to handling effects confounded with the groups being
compared. In the second allocation scheme, we used a strategy
designed to ensure that comparison between groups was unbiased,
in which arrays were assigned evenly in terms of collection order
(using statistical principles, such as blocking and stratification),
leading to handling effects balanced between sample groups.18-20

More specifically, for microarrays that come in multiplex units (ie,
multiple arrays placed on the same array slide), each multiplex unit
served as an experimental block; blocking means assigning arrays

in each block to the comparison groups in proportion to their
numbers of samples. When arrays are handled in multiple ex-
perimental batches, each batch serves as a stratum; stratification
means assigning arrays in each batch to each group proportionally.
Comparisons of data from the two designs allowed us to estimate
the biases induced by unbalanced handling effects directly. Blocking
and stratification have been shown to alleviate the negative impact of
handling effects on molecular biomarker discovery.17 In this article,
we examine their role on classification in connection with cross-
validation and data normalization.

Our simulation study illustrates the intricate interplay be-
tween data generation, data preprocessing, and cross-validation for
molecular classification. It offers insights into the desired practice
of study design and data analysis for such studies, so that research
sources can be optimally used to generate quality molecular data
and allow the development of reproducible classifiers.

METHODS

Microarray Data Collection
A set of 192 untreated primary gynecologic tumor samples (96

endometrioid endometrial tumors and 96 serous ovarian tumors) were
collected at Memorial Sloan Kettering Cancer Center from 2000 to 2012.
Their use in our study was approved by the Memorial Sloan Kettering
Cancer Center Institutional Review Board. The samples were profiled using
the Agilent Human miRNA Microarray (Release 16.0, Agilent Technol-
ogies, Santa Clara, CA), following the manufacturer’s protocol. This array
platform contains 3,523 markers (representing 1,205 human and 142
human viral miRNAs) and multiple replicates for each marker (ranging
from 10 to 40). In addition, it has eight arrays on each glass slide (ie, the
experimental block) arranged as two rows and four columns.

Two data sets were obtained from the same set of samples using
different methods of experimental handling. The first data set (referred to
hereafter as the uniformly handled data set) was handled by one technician
in one run, and its arrays were randomly assigned to tumor samples using
blocking (by both array slide and row-column location on each slide). The
second data set (the nonuniformly handled data set) was handled by two
technicians in five runs (each happened on a different day): the first 80
arrays by one technician (who was the technician for the uniformly
handled data) in two runs and the last 112 by a second technician in three
runs; its arrays were assigned in the order of sample collection with no
blocking, mimicking typical practice. More details on data collection can
be found in the article by Qin et al.17

As a proof of concept, we used tumor type (endometrial cancer v
ovarian cancer) as the outcome variable for classification. Among a total of
3,523 markers on the array, 351 (10%) were significantly differentially
expressed (P , .01) between the two tumor types on the basis of the
uniformly handled data set. To be consistent with the typical signal
strength in a molecular classification study, we halved the between-group
differences for the 351 significant markers (by reducing their levels of
expression in ovarian samples by half of the ovarian-v-endometrial
between-group differences), reducing the number of significant markers to
63 (2%); a similar reduction of sample group differences was also applied
to the nonuniformly handled data. Having previously observed that the
variation among replicates for the samemarker was small, we used only the
first 10 replicates for each of the 3,523 markers in this study so that
computational time could be saved; this reduction made no difference in
the number of significant markers.

Analysis of the Uniformly Handled Data
The analysis for the uniformly handled data set consisted of the

following main steps: (1) randomly split the data into a training set
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(n = 128) and a test set (n = 64), balanced by tumor type; (2) preprocess the
training data and the test data; (3) build a classifier using the preprocessed
training data; and (4) assess the error rate of the classifier using the
preprocessed test data. This analysis was repeated for 1,000 random splits
of the training set and test set. More details for each analysis step are
provided in the following sections.

Data preprocessing. Data preprocessing included three steps: (1) log2
transformation, (2) quantile normalization for training data and frozen
quantile normalization for test data (ie, mapping the empirical distribution
of each individual test-set sample to the frozen empirical distribution of
the normalized training data),21 and (3) marker-replicate summarization
using median.17

Classifier building. Two classification methods were used, including
one nonparametric method, prediction analysis for microarrays (PAM),22

and one parametric method, the least absolute shrinkage and selection
operator (LASSO).23 R packages pamr24 (for PAM) and glmnet25 (for LASSO)
were used. The tuning parameter for each method was chosen using five-
fold cross-validation.

Classifier error estimation. Classification accuracy was measured
using the misclassification error rate (ie, the proportion of samples that
were misclassified). The error rate was evaluated by both external vali-
dation (where the final model of each classifier was built on the entire

training data and applied to predict the group label for each sample in the
test data) and cross-validation of training data.

Generation and Analysis of the Simulated Data
First, we used the uniformly handled data set to approximate the

biologic effect for each sample and the difference between the two arrays
(one from the uniformly handled data set and the other from the non-
uniformly handled data set, subtracting the former from the latter) for the
same sample to approximate the handling effect for each array in the
nonuniformly handled data set. The 192 samples were randomly split in
a 2:1 ratio into a training set (n = 128) and a test set (n = 64), balanced by
tumor type; a nonrandom subset of the 192 arrays (n = 128; the first 64 and
last 64 arrays in the order of array processing) were used for the training set
(Appendix Fig A1, online only).

Second, for the training set, data were simulated through virtual
rehybridization by first assigning arrays to sample groups using a con-
founding design or a balanced design and then summing the biologic effect
for a sample and the handling effect for its assigned array. Simulation
allowed us to examine the use of various array-assignment schemes and
also the level of variability among different pairings of arrays and samples
within each scheme.

Estimated

biologic

effects

Estimated

handling

effects

Test data with

uniform

handling

Simulated

training data with

nonuniform

handling

Uniformly handled

Ovarian Endometrial

(n = 96) (n = 96)
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Blocking Partial confounding

Empirical data

Complete confoundingStratification

Ovarian Endometrial

(n = 64) (n = 64)
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(n = 32)
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(n = 32)
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Training set Not used

Fig 1. Illustration of the overall design of the simulation study on the basis of resampling from the paired microarray data sets on the same set of tumor samples.
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• We examined two completely confounding designs for array as-
signment in the training set: (1) the first 64 arrays in the training set
were assigned to endometrial samples and the last 64 arrays to ovarian
samples; and (2) the first 64 arrays in the training set were assigned to
ovarian samples and the last 64 to endometrial samples. The former
design was called Complete Confounding 1 and the latter Complete
Confounding 2 (Appendix Fig A1). We also examined two partially
confounding designs: they had the same array assignment as the two
Complete Confounding designs, except that for 10% of the arrays, the
sample-group labels were randomly selected and swapped. These two
designs were called Partial Confounding 1 and Partial Confounding 2,
respectively. The level of confounding was measured by the mod-
erated R2 statistic between the sample group and the most correlated
principal component of nonsignificant markers distinguishing the
two groups, as described in Leek et al.13

• We examined the use of blocking (by array slide) and stratification (by
array batch) to balance array assignment between the two sample
groups under comparison. For the Agilent miRNA array, each eight-
plex array slide served as an experimental block; blocking means
assigning arrays in each eight-array block to the two groups in
proportion to their numbers of cases (ie, four arrays to each group in
our study). The arrays from the nonuniformly handled data were
handled in five batches. Each batch serves as a stratum; stratification
means assigning arrays in each batch to each group proportionally.

Third, the analysis for each simulated data set followed the same steps
as previously described for the analysis of the uniformly handled data: (1)
data preprocessing, (2) classifier training, and (3) classifier error estimation

using both cross-validation and external validation. The only difference
was that here, external validation was based on the test data from the
uniformly handled data set and served as the gold standard for the
misclassification error estimation.

For a given split of samples to training set versus test set, 1,000 data
sets were simulated and analyzed for each array-assignment scheme. We
examined multiple sample splits and observed similar trends regarding the
role of the array-assignment scheme and training-data normalization on
cross-validation. Results are reported here for one split and in the Data
Supplement for another split.

RESULTS

Cross-Validation in the Absence of Handling Effects
We first evaluated the use of cross-validation for classification

error estimation (Fig 2, gold graphs) compared with the use of
external validation (Fig 2, blue graphs), derived from the results
generated from the study with no handling effects. This analysis
was based on 1,000 random training-versus-test splits of the
uniformly handled data set, and the level of variability in the error
rate reflected the level of sampling variability between various splits
of the training set and test set. Before applying normalization to
training data, error rates on the basis of cross-validation (me-
dian, 18.0%; interquartile range [IQR], 16.4% to 19.5%) were
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Fig 2. Box plots of classification error on the
basis of 1,000 training-versus-test-set splits of
the uniformly handled data set using the pre-
diction analysis for microarrays (PAM) method.
The error rate was estimated using (1) cross-
validation and (2) external validation in test data.
The x-axis indicates the normalization status of
the training data (Appendix Table A1, online
only).
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comparable with those on the basis of external validation (median,
15.6%; IQR, 12.5% to 18.8%), confirming that cross-validation
provided a nearly unbiased estimate when the data were re-
producible. After normalization, error rates on the basis of cross-
validation dropped noticeably (median, 14.1%; IQR, 12.5% to
15.6%), whereas error rates on the basis of external validation
barely changed (median, 15.6%; IQR, 12.5% to 17.2%), indicating
that normalization may have oversmoothed the data and hence led
to underestimation of the error rate by cross-validation. In other
words, normalization may be problematic when the data were
collected with uniform handling.

Cross-Validation in the Presence of Confounding
Handling Effects

We next examined the performance of cross-validation before
and after data normalization, when the training data were gen-
erated from the confounded assignment schemes. The level of
confounding in the simulated data was moderate, with the R2

statistic being 19% for Complete Confounding 1 and 17% for
Complete Confounding 2, comparable to a number of published
studies.13,26-31 As shown in Figure 3A, compared with external
validation (where the classification error was assessed by applying
the classifier to samples in an independent test data set), cross-
validation underestimated the error rate, with the level of un-
derestimation considerably worsened after applying normalization
to the data. Before normalization, error rates on the basis of cross-
validation (Complete Confounding 1: median, 19.5%; IQR, 18.0%
to 21.1%; Complete Confounding 2: median, 22.7%; IQR, 21.1%

to 25%) were consistently lower than those on the basis of external
validation (Complete Confounding 1: median, 21.9%; IQR, 20.3%
to 23.4%; Complete Confounding 2: median, 26.6%; IQR, 25.0%
to 29.7%). After normalization, error rates on the basis of cross-
validation (Complete Confounding 1: median, 14.8%; IQR, 13.3%
to 16.4%; Complete Confounding 2: median, 14.8%; IQR, 14.1%
to 15.6%) were lower to a much greater extent than were those on
the basis of external validation (Complete Confounding 1: median,
35.9%; IQR, 31.2% to 39.1%; Complete Confounding 2: median,
25.0%; IQR, 23.4% to 25.0%). Similar patterns of error un-
derestimation by cross-validation and data normalization were
also observed for the two partially confounding array-assignment
schemes (Partial Confounding 1 and Partial Confounding 2; Fig
3B). In short, cross-validation, which by definition is based on
random splits of the training data, fails to distinguish the biologic
signal from confounding handling effects and, as a result, does not
provide an unbiased estimate of classification error, and the level of
underestimation can be exacerbated when applying normalization
to the data.

Cross-Validation in the Presence of Balanced Handling
Effects

Figure 4 shows the results when the data possessed handling
effects that were balanced between the two sample groups via
the use of blocking or stratification. In the presence of balanced
handling effects, error rates on the basis of cross-validation
(blocking: median, 21.1%; IQR, 19.5% to 22.7%; stratification:
median, 21.1% IQR, 19.5% to 22.7%) were comparable to those on
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the basis of external validation (blocking: median, 21.1%; IQR,
17.2% to 26.6%; stratification: median, 21.9%; IQR, 17.2% to
26.6%). However, normalization still led to underestimation of
the classification error using cross-validation (blocking: median,
16.4%; IQR, 14.8% to 17.2%; stratification: median, 16.4%; IQR,
14.8% to 17.2%) compared with external validation (blocking:
median, 20.3%; IQR, 18.8% to 23.4%; stratification: median, 20.3%;
IQR, 18.8% to 23.4%). Our results suggest that careful study design
that balances handling effects between sample groups can effectively
circumvent their negative impact on the validity of cross-validation
for error estimation.

Cross-Validation Under Additional Simulation Scenarios
In our study, training data were normalized once before cross-

validation. Even when normalization was made a part of (k-fold)
cross-validation (ie, the k-1 folds data were renormalized and the
kth fold was frozen normalized to the k-1 folds), error underesti-
mation was still observed (Data Supplement).

In recent years, statistical methods for batch effect correction
have been developed to account for handling effects resulting from
known or unknown array processing batches, without making the
assumption that there are few or symmetric differential expression
in the data as many normalization methods do.16 Examples of such
methods include ComBat,32 remove unwanted variation (RUV),33

and surrogate variable analysis (SVA).34 We also applied these

methods (either alone or followed by quantile normalization) to
the test data in the simulation study, using their implementation in
R packages sva (for ComBat and SVA)35 and ruv (for RUV).36 As
shown in the Data Supplement, ComBat alleviated the level of
underestimation by cross-validation in some cases but exacerbated
the level of classification error at times; SVA resulted in little change
in the results; RUV led to poor classification results across the
board, likely because the negative control markers included on the
Agilent miRNA array are not suitable to serve as the negative
control markers required by RUV.

In addition to the PAMmethod, we also used another popular
classification method called LASSO and observed similar results
regarding the impact of confounding handling effects, the role of
normalization, and the benefits of balanced array assignment (Data
Supplement). We also examined the use of other existing nor-
malization methods and observed similar results (results not
shown).

In addition to the aforementioned simulation scenarios, we
also performed simulation at the original level of biologic signal
where the number of significant markers was 351 and with an
amplified level of handling effects (by adding a constant to arrays
assigned to endometrial samples) where the moderate R2 statis-
tic increased to 50%. When the biologic signal was strong, the
classification error rate was consistently low, regardless of the study
design and the normalization method (Data Supplement). When
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tion status of the training data (Appendix Table
A4, online only).

3936 © 2016 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY

Qin, Huang, and Begg



the amount of handling effects increased, data normalization
started to show a beneficial effect (Data Supplement).

We note that molecular classification is a complicated problem
that depends on the nature of the collected data (such as the level of
biologic signal and the relative amount of confounding handling
effects) and involves many analysis decisions (such as the method of
classification and the source of the validation data). We are making
the data and code used in our study publicly available and encourage
interested readers to use them to explore the topic.

DISCUSSION

Despite the ever-increasing accumulation of molecular data, it has
been challenging to translate the data into accurate and reproducible
molecular classifiers for clinical use.2,37 This challenge can be at-
tributed to a number of biologic and technical factors, such as
a typically weak level of molecular signal, an overwhelming pro-
portion of irrelevant markers measured, and the influence of
handling effects encountered in the data collection process. Han-
dling effects come from technical variations that arise in the ex-
perimental process, which can potentially be controlled to improve
classification. We have demonstrated that confounding handling
effects can lead to biased estimates of the misclassification error rates
when using cross-validation and that post hoc data normalization
may worsen the bias. We also showed that careful study design
through balanced array assignment can preserve the validity of
cross-validation for estimating themisclassification error. As a result,
our data strongly support the use of careful study design on the basis
of statistical principles such as blocking and stratification to ensure
the reproducibility of molecular classifiers. For data that exhibit
confounding handling effects, caution should be usedwhen applying
post hoc data normalization, because it may lead to underestimation
of the misclassification error on the basis of cross-validation.

We would like to stress again that the development and as-
sessment of a molecular classifier is an involvedmultistep process for
which the analysis steps and decisions should be carefully planned
and documented. Analysts have many degrees of freedom, which
may help customize the analysis to the data set under analysis and at
the same time lead to difficulty in reproducing the model with other
data sets. It is extremely important to carefully evaluate analysis
options and document the methods used for each analysis step.38

A major strength of our study is that the unique pair of
array data sets on the same set of samples allowed us to conduct
resampling-based simulations, rather than parametric-model–
based simulations. This allowed us to evaluate the impact of
handling effects, the role of data normalization, and the benefit of
careful study design in the context of a real experiment. Theo-
retically, a proper parametric simulation study with known error
quantities would be helpful as well. However, the error structure
for high-throughput molecular data is complex (because of, eg, the
deviation from normality for some of the markers and the exis-
tence of weak or strong correlations between some markers) and
difficult to model. In our best attempt at a parametric simulation
study, where the group-specific mean and group-specific standard
deviation, estimated from the empirical data, were used to simulate
normally distributed data as the biologic effects, we confirmed the
main message of our article, the overoptimistic tendency of cross-
validation and the benefits of careful design via the use of blocking
or stratification.We also found that, in the presence of careful study
design, external validation resulted in an extremely small classi-
fication error rate, which is likely due to the idealized normal
distribution and the lack of intermarker correlation in the para-
metrically simulated data. The paired data design and the virtual-
rehybridization simulation design can also be applied to other
types of molecular profiling platforms. In summary, our study
provides strong evidence for the use of careful study design for
developing and validating accurate and reproducible molecular
classifiers.
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Fig A1. Box plots of the estimated handling effects for 192 arrays in the nonuniformly handled data set. Array allocation to the training set is indicated by the shading:
white for the training set and gray for not used. Below the x-axis are labels for the array slide (indexed as 1-24), handling batch (indexed as 1-5), handling technician (indexed
as 1 and 2), sample group assignment in the empirical data (E for endometrial; V for ovarian), and sample group assignment for the simulated designs: Complete
Confounding 1 (CC1) and Complete Counfounding 2 (CC2).

Table A1. Summary Statistics of the Classification Error in the Absence of Handling Effects

Uniformly Handled Data Set

No Normalization Quantile Normalization

External Validation (%) Cross-Validation (%) External Validation (%) Cross-Validation (%)

Median 15.6 18 15.6 14.1
IQR 12.5-18.8 16.4-19.5 12.5-17.2 12.5-15.6

Abbreviation: IQR, interquartile range.

Table A2. Summary Statistics of the Classification Error in the Presence of Complete Confounding Handling Effects

Complete Confounding 1 Complete Confounding 2

No Normalization Quantile Normalization No Normalization Quantile Normalization

External
Validation (%)

Cross-Validation
(%)

External
Validation (%)

Cross-Validation
(%)

External
Validation (%)

Cross-Validation
(%)

External
Validation (%)

Cross-Validation
(%)

Median 21.9 19.5 35.9 14.8 26.6 22.7 25 14.8
IQR 20.3-23.4 18.0-21.1 31.2-39.1 13.3-16.4 25-29.7 21.1-25 23.4-25 14.1-15.6

Abbreviation: IQR, interquartile range.
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Table A3. Summary Statistics of the Classification Error in the Presence of Partial Confounding Handling Effects

Partial Confounding 1 Partial Confounding 2

No Normalization Quantile Normalization No Normalization Quantile Normalization

External
Validation (%)

Cross-Validation
(%)

External
Validation (%)

Cross-Validation
(%)

External
Validation (%)

Cross-Validation
(%)

External
Validation (%)

Cross-Validation
(%)

Median 23.4 19.5 26.6 15.6 26.6 22.7 23.4 15.6
IQR 20.3-25 18.8-21.1 21.9-29.7 14.1-17.2 25-26.6 20.3-24.2 21.9-25 14.1-16.4

Abbreviation: IQR, interquartile range.

Table A4. Summary Statistics of the Classification Error in the Presence of Balanced Handling Effects

Blocking Stratification

No Normalization Quantile Normalization No Normalization Quantile Normalization

External
Validation (%)

Cross-Validation
(%)

External
Validation (%)

Cross-Validation
(%)

External
Validation (%)

Cross-Validation
(%)

External
Validation (%)

Cross-Validation
(%)

Median 21.1 21.1 20.3 16.4 21.9 21.1 20.3 16.4
IQR 17.2-26.6 19.5-22.7 18.8-23.4 14.8-17.2 17.2-26.6 19.5-22.7 18.8-23.4 14.8-17.2

Abbreviation: IQR, interquartile range.
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