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Massively Parallel Signature Sequencing (MPSS), a recently devel-
oped high-throughput transcription profiling technology, has the
ability to profile almost every transcript in a sample without
requiring prior knowledge of the sequence of the transcribed
genes. As is the case with DNA microarrays, effective data analysis
depends crucially on understanding how noise affects measure-
ments. We analyze the sources of noise in MPSS and present a
quantitative model describing the variability between replicate
MPSS assays. We use this model to construct statistical hypotheses
that test whether an observed change in gene expression in a
pair-wise comparison is significant. This analysis is then extended
to the determination of the significance of changes in expression
levels measured over the course of a time series of measurements.
We apply these analytic techniques to the study of a time series of
MPSS gene expression measurements on LPS-stimulated macro-
phages. To evaluate our statistical significance metrics, we com-
pare our results with published data on macrophage activation
measured by using Affymetrix GeneChips.

transcription profiling � noise model

The last decade has witnessed a shift in molecular biology
from methods that probe hypotheses a few molecules at a

time toward whole-genome measurements. With the advent of
global gene expression assays, data are becoming available at
considerably accelerated speeds. Interestingly, the power of
global methodologies brings along its own drawbacks; useful
information is typically measured amid high levels of noise.
Thus, the quality of analyses obtained from these data depends
crucially on an understanding of how noise affects measurement.

The most mature global gene expression technology is arguably
the microarray (1, 2). In all of its implementations (cDNA arrays,
oligonucleotide arrays, etc.), this transcription profiling method
exhibits significant technology-dependent noise. Models that char-
acterize this noise through the study of replicate measurements
have been developed (3–9) and provide a measure of security
against false discoveries. An alternative gene expression profiling
method uses the sequencing of short sequence tags derived from the
ends of messenger RNA. This methodology encompasses the
techniques of serial analysis of gene expression (SAGE) (10, 11)
and Massively Parallel Signature Sequencing (MPSS) (12, 13).
MPSS represents a powerful alternative to microarray technologies.
Recent studies comparing gene expression measurements for the
same biological samples with different probe-based microarray
technologies showed considerable divergence across platforms (7).
Some of these differences are due to the fact that different
platforms use different probes for detection of the same genes.
Because MPSS provides a sensitive measure of gene expression
without requiring a priori knowledge of transcribed sequences,
probe selection is not a problem for MPSS.

The MPSS process is complex; from the extraction of the total
RNA to the quantification of transcripts, there are a number of
steps that contribute to noise. In this paper, we develop a

quantitative description of this noise. We then use this descrip-
tion to develop statistical hypotheses that test whether an
observed change in gene expression is significant both in binary
comparisons and in time course data. Finally, we apply this
methodology to MPSS data from macrophages activated with
LPS. We identify genes whose expression levels are significantly
altered by this pathogenic challenge and compare our results
with earlier data obtained by using Affymetrix GeneChips (14).

Materials and Methods
MPSS. A review of the principal stages of the MPSS protocol
follows (see Overview of the Protocols Used in MPSS Transcription
Profiling in Supporting Text and Fig. 5, which are published as
supporting information on the PNAS web site; refs. 12 and 13;
or www.lynxgen.com for more details).
cDNA signature�tag conjugate library construction. Poly(A)� mRNA is
extracted from the tissue of interest from which cDNA is
synthesized. The 20 bases adjacent to the 3�-most DpnII site
(GATC) of each cDNA are captured. The GATC and its
contiguous 13 mer form a 17-mer sequence referred to as a
signature. These signatures are PCR-amplified, and a unique
identification tag is added to each signature.
Microbead loading. Multiple pools of �640,000 signature�tag con-
jugates are amplified, and the tags are hybridized with mi-
crobeads, each of which has bound to it �104 copies of one of
the antitags. The signature�tag-containing microbeads (loaded
microbeads) are isolated by using a fluorescence-activated cell
sorter. Approximately 1.5 � 106 loaded microbeads are assem-
bled in a flow cell, and the signature sequence on each bead is
determined by MPSS.
MPSS. The signatures are sequenced by the parallel identifica-
tion of four bases by hybridization to f luorescently labeled
encoders, followed by removal of that set of four bases and
exposure of the next four bases by type IIs endonuclease
digestion. The process is then repeated. The imaged f luores-
cent data are processed to yield the number of beads that have
a given signature sequence. Two types of initiating adaptors,
whose type IIs restriction sites are offset by two bases, are
ligated to two separate sets of microbeads containing a
replicate of the same signature library. This is done to reduce
signature losses from self-ligation of ends of signatures pro-
duced when digestion exposes palindromic overhangs. These
two alternative sequencing reactions are referred to as two-
stepper (TS) and four-stepper (FS) sequencing.
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Matching the signature to the genome. Each of the sequenced 17-mer
signatures [which typically matches only one position in a
complex genome (11)] is associated with a proximal gene.
Depending on the position of the signature relative to its
associated gene, the signature is given a category (see Classifi-
cation of Signatures from Genomic Sequence in Supporting Text
and Table 1, which are published as supporting information on
the PNAS web site) indicative of the quality of the association.

Result of an MPSS Run and Nomenclature. The net result of an MPSS
run is a list of 17-mer signatures and the count of beads having
that signature. MPSS sequencing is typically done in replicate.
For a given biological sample, loaded beads are taken in fixed
aliquots and independently sequenced k times with the TS and
FS protocol (k � 2–4). We call these the MPSS or sequencing
replicates. All of these sequencing replicates correspond to the
same biological sample.

From the several replicate measurements, we compute a tran-
scripts-per-million (tpm) measure for each signature. First, for each
signature i, either the TS or FS data are chosen by selecting the
stepper that counted the most beads for that signature across all
available experiments. Because a signature may resist sequencing by
one or the other stepper protocol, the stepper with the largest count
is most likely to be better suited for measuring that signature. Once
the stepper is chosen for each signature, the values of the k
independent sequencing replicates are combined to give an aggre-
gate tpm value �i � ((�i1 � � � � � �ik)�(N1 � � � � � Nk)) � 106, where
the �is and the Ns are the bead counts for the given signature i and
the total number of sequenced beads in each MPSS run, respec-
tively. If, for a given signature, �ij � 0, then the MPSS replicate j is
excluded from both the numerator and the denominator. The
reason for this is that zero counts deserve special attention in MPSS
measurements, as will be discussed later (see also Discussion on the
Effects of Zero Measurements in MPSS in Supporting Text). In
addition to the aggregate tpm, we also define the tpm value
obtained from a single replicate measurement as �ij � (�ij�Nj) � 106.
Experimentally observed tpm values can span several orders of
magnitude, and thus we find it useful to define �ij � log10 �ij and �i
� log10 �i.

Inherent Noise in Replicate Measurements. In Fig. 1a, we compare
two replicate MPSS runs by plotting (�ij, �ij�) for replicate MPSS
runs j and j�. Each point corresponds to a signature i and, ideally,
these points should lie along the diagonal. Deviations from the
diagonal are due to noise. As is the case for DNA microarrays (9),
the noise depends strongly on the expression level. Therefore, an
expression-dependent distribution function is needed to character-
ize the variability between replicates. For two replicate values �ij and
�ij� for the same signature, we define the measurement error as �i �
(�ij� � �ij)��2 and estimate the mean expression level as �� i � (�ij� �
�ij)�2. Fig. 1c shows the dependence of measurement error on
expression level by binning the data in intervals containing a fixed
number k of signatures whose values of �� i are the closest and then
computing the standard deviation � in each bin as a function of the
mean � of the �� i in the bin’s k signatures. (Results were independent
of k in the range between 100 and 500. We chose k � 250.) That
is, �(�) � 	�2��� � �
1�2. Plots of the function �(�) derived from
several pairs of replicate data (including those in Fig. 1a) are shown
in Fig. 1c. The dominant feature of these plots is that � decreases
with increasing �. Plots of �(�) can be used to characterize the
variability between equivalent MPSS data runs (such as those
shown in Fig. 1a), as well as the variability observed between the
aggregate tpms obtained from biological replicates (such as those
shown in Fig. 3).

Binary Comparisons. To evaluate the significance of the difference
between a pair of gene expression values (�ij, �ij�) for the same
signature but different experiments, we begin with the null
hypothesis that the �ij and �ij� arise from the same distribution,
and that the difference between them is due to noise. We define
a gene expression-dependent p value as

p��ij,�ij�� � �
������ij��ij����2

d� P����� �,

where P�� ��� � is the conditional probability of measuring a
difference � � (�1 � �2)��2 between two replicate measure-
ments �1 and �2 given that (�1 � �2)�2 � �� . An explicit

Fig. 1. Noise analysis in the MPSS process. (a)
Scatter plot of signature log-tpm pairs (�i,A1.a,
�i,A1.b), where replicates A1.a and A1.b are sepa-
rate MPSS measurements on samples taken from
the same set of loaded beads (see d). (b) Scatter
plot of signature log-tpm pairs (�i,A1.a, �i,B.a), where
replicates A1.a and B.a are taken from distinct
initial mRNA biological replicas and processed sep-
arately (see d). In both a and b, noise appears as
deviations of the data points from the diagonal.
Note that the noise level is higher in b than a. (c)
Standard deviation of measurement noise � as a
function of signal level � for pair-wise comparisons
between replicates A1.a and A1.b (�), A1.a and
A2.a (�), and, A1.a and B.a (F) (see text). (d) Illus-
tration of replicate experiments setup.
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calculation of P�� ��� � is presented in Results. The change in
expression between two measurements �ij and �ij� will be deemed
significant when P(�ij, �ij�) is smaller than some threshold P0. For
more details, see Statistical Significance of Differential Expression
in Binary Comparisons in Supporting Text and Fig. 6, which are
published as supporting information on the PNAS web site.

Time Traces and Multiple Comparisons. Changes in expression level
as a function of time are particularly important in understanding the
response of cells to a perturbation. Suppose that the aggregate tpm
of a signature is measured at n time points t0 � 0 (i.e., before
perturbation), t1, t2,. . . , tn�1, yielding a series of log-tpms
��t0, �t1,. . . , �tn�1

�. If the perturbation significantly affects the ex-
pression of that signature, then we expect a small P value for at least
one of the n � (n�1)�2 pair-wise comparisons between temporal
data points. We consider all pair-wise comparisons and not just
those between consecutive measurements, because we have ob-
served numerous instances (see All vs. All Comparisons for Assign-
ment of Significance to Time Traces: An Example in Supporting Text
for an example), where consecutive comparisons are not beyond the
level of significance, but those between nonadjacent time points are.
A significance index (SI) for the time series of a given signature is
defined as the minimum P value obtained from all possible pair-
wise comparisons within the series. (For more details, see All vs. All
Comparisons for Assignment of Significance to Time Traces: An
Example in Supporting Text and Fig. 7, which are published as
supporting information on the PNAS web site.) An SI is considered
significant if it is smaller than some chosen threshold P0. Note that
the most significant P value does not necessarily correspond to the
largest fold change, because the significance of a fold change
depends on the expression level.

Data Sets Used in This Study. Human breast cancer cells. Estrogen
receptor-negative BT-20 cell lines (15) were grown. Two distinct
poly(A)� mRNA samples (A and B in Fig. 1d) were collected
from plated cells and used to generate two signature�tag librar-
ies. One of these two libraries was split in two parts and used to
generate two sets (A1 and A2 in Fig. 1d) of loaded microbeads.
The other library was used to generate one set of loaded
microbeads (B in Fig. 1d). After loading, each set of beads was
independently processed in multiple MPSS runs.
Macrophage samples and data. Plastic-adherent monocytes were
isolated from peripheral blood mononuclear cells collected from
buffy coats from five healthy humans and cultured for �10 days
in RPMI medium 1640, supplemented with 20% FBS�L-
glutamine�20 mM Hepes�penicillin�streptomycin�50 ng/ml
macrophage colony-stimulating factor to generate monocyte-
derived macrophages. Macrophages were stimulated with 100
ng/ml LPS (Salmonella minnesota R595 ultrapure LPS, List
Biological Laboratories, Campbell, CA) and sampled at time
points 0 (i.e., before stimulation), 2, 4, 8, and 24 h. For each of
these time points, total RNA was isolated with the Trizol reagent
(Invitrogen), the total RNA from the individual donors was
pooled, and poly(A)� RNA was isolated with a MicroPoly(A-
)Pure kit (Ambion, Austin, TX). Culture supernatants were
tested to confirm appropriate induction of cytokines (tumor
necrosis factor, IL-6, and IL-12), and an aliquot of total RNA
was tested by using real-time PCR to ensure appropriate induc-
tion of selected genes. The poly(A)� RNA was processed
through the signature library generation and assayed by using
MPSS. Duplicate samples at 0 and 4 h were generated by using
independent cultures of macrophages and independent pools of
RNA for the purpose of replicate noise modeling. We summarize
some characteristics of the signature library in Summary of
Signature Libraries Obtained from Our MPSS Measurements in
Supporting Text and Table 2, which are published as supporting
information on the PNAS web site.

Results and Discussion
Analysis of Noise Inherent in MPSS. To separate the sources of
measurement noise in MPSS, we have carried out multiple replicate
experiments (9) where, at different stages of the MPSS process, the
sample is divided into multiple aliquots, and subsequent steps of the
experiments are carried out independently. The experimental de-
sign (shown schematically in Fig. 1d) allows us to separate the
measurement variances resulting from signature library generation,
bead loading, and sequencing. Total RNA from estrogen receptor-
negative breast cancer cell lines (see Materials and Methods) was
divided into two aliquots (A and B in Fig. 1d). Each of these aliquots
was processed independently, generating separate signature�tag
libraries. The signature library (A) was subdivided into two equal
parts and each part, along with the signature library (B), was
independently loaded onto beads, giving rise to loaded bead groups
denoted by A1, A2, and B. Finally, each of these loaded bead groups
was processed with three MPSS FS runs (FS a, b, and c in Fig. 1d)
and three MPSS TS runs (TS a, b, and c in Fig. 1d). Assuming that
each stage of the process is independent of the others, these data
sets enable us to estimate the noise introduced at each stage of the
process.

In Fig. 1 a and b, we compare two replicate MPSS runs by
plotting (�ij, �ij�) for replicate MPSS runs j and j�. The spread
around the diagonal is a measure of noise. In Fig. 1 a and b, the
x axes are the log-tpm value of the signatures in experiment
FS.A1.a (see Fig. 1d), whereas the y axes correspond, respec-
tively, to the log-tpm of the signatures in experiments FS.A1.b
(Fig. 1a) and FS.B.a (Fig. 1b). The spread due to the combined
variance introduced by library creation, bead loading, and
sequencing (Fig. 1b) is much larger than that due to sequencing
alone (Fig. 1a). Plots of the standard deviations �(�) (see
Materials and Methods) derived from the data of Fig. 1 a and b
show that � decreases with the expression intensity �, with the
overall � (filled circles, Fig. 1c) being about twice as large as the
� arising from the bead loading and sequencing (diamonds, Fig.
1c). Note that the noise from the combination of bead loading
and sequencing is almost indistinguishable from that of sequenc-
ing alone (plus signs, Fig. 1c), demonstrating that noise stem-
ming from bead loading is negligible.

The Statistics of the Zero Counts. Thus far, our analysis has dealt
only with signatures whose bead counts are at least unity in each
of the replicate experiments under consideration. Many signa-
tures, however, have a finite bead count for one replicate
experiment and zero for the other. These appear in Fig. 1 a and
b as the sets of points forming linear structures at the left and
bottom of Fig. 1 a and b. (The value of zero counts, i.e., 0 tpm,
has been arbitrarily given a log-tpm value of 0.) This figure shows
that the statistics of the signatures with low but positive counts
in both runs are quite different from the statistics of the
signatures measured as zero in one of the replicates. Similar
results have been observed in other MPSS experiments (16).

To investigate the significance of zero count measurements, we
studied expression data taken on macrophages 8 h after LPS
stimulation. (These data were chosen because four TS and four FS
MPSS runs were taken on this sample.) We identified the signatures
with exactly four, three, and two nonzero bead counts within the
four replicates (see Materials and Methods for the method of
determining whether the TS or FS data were used for a given
signature). We compute the function �(�) [in computing �(�), two
nonzero replicate measurements are chosen at random when
dealing with signatures with more than two nonzero values] sepa-
rately for the data sets in which zero, one, or two of the four
sequencing replicates yielded a zero count. The results are shown
in Fig. 2. It can be seen that � for the nonzero statistics (circles)
reaches values of more than one order of magnitude larger than
those for the one- or two-zero statistics (squares and diamonds).
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Further, the observed noise strength is considerably smaller for the
nonzero statistics than for the other two, which are of similar
magnitude.

It is clear from Fig. 2 that data on signatures for which some
of the sequencing replicates are zero exhibit significantly higher
variability, suggesting that the absence of a signature in one of
the sequencing replicates indicates the need for statistical mod-
eling different from that used when the signature is present in all
replicate measurements. See Discussion on the Effects of Zero
Measurements in MPSS in Supporting Text and Fig. 8, which are
published as supporting information on the PNAS web site. for
more discussion of zero measurements in MPSS.

Three Null Hypotheses Are Required for Binary Comparisons. To
determine the significance of changes in tpm value observed for
different signatures in the LPS-activated macrophage data, it is first
necessary to formulate null hypotheses by using biological replicates
(see Materials and Methods). Both before activation and at 4 h after

activation, biological replicate data were taken (each biological
replicate data set is comprised of two sequencing replicates), and it
is from these data sets that we formulate our null hypotheses. Each
signature that was measured at least once in a pair of biological
replicates yields two aggregate (i.e., determined from two or more
sequencing replicates) tpm values, �1 and �2. Three possibilities can
arise in these measurements: (i) none of the counts (�is) used to
compute �1 and �2 were zero. (ii) At least one of the counts was zero,
but neither �1 nor �2 is zero. (iii) Either �1 � 0 and �2  0 or �2 �
0 and �1  0. As shown above, the statistics characterizing the
expression of signatures when measurements of zero counts are
observed are fundamentally different from those resulting when no
zeros are observed. Thus, it is necessary to formulate three distinct
conditional hypotheses, one for each of the three conditions above.
That is, given two samples and their respective MPSS measure-
ments, we inspect the pattern of zeros obtained in the different
sequencing replicas and use the appropriate null hypothesis signa-
ture by signature.

We begin formulating the null hypothesis for signatures with
nonzero count measurements (case 1) by plotting in Fig. 3a all (�ij,
�ij�), where j and j� are biological replicates taken at t � 0 (where
each � is the log of an aggregate tpm count) for all signatures i that
have nonzero tpm values in all replicate MPSS runs. Also plotted
are equivalent points for which j and j� are biological replicates
taken at t � 4 h. A plot of �(�) derived from these data [along with
a fit of the calculated values of �(�) to an exponential] is shown in
Fig. 3b. For a given �, we can define a distribution for the rescaled
noise 	 � ���(�) and obtain the conditional distribution function
P(	��). We plot this distribution for several ranges of � in Fig. 3c.
These ranges of values for � correspond to the regions delimited by
the dashed lines in Fig. 3a, and the symbols drawn in each region
correspond to the symbols in Fig. 3c. Notice that once normalized
by its standard deviation, the distribution of the spread away from
the diagonal (measured by �) is independent of the expression
strength, because all of the distributions coalesce approximately to
the same curve. The tails of these distributions decrease more
slowly than a Gaussian (dashed line in Fig. 3c) and are well
described by the function (9) 0.5 exp{�x2�(0.5 � 0.6�x�)} (thick solid
line in Fig. 3c).

The noise distribution plotted in Fig. 3c can be used to formulate

Fig. 2. Standard deviation of measurement noise � as a function of signal
level � (see text) for MPSS measurements on LPS-activated macrophages at 8 h
after activation. Four replicate MPSS runs were taken, and the noise level was
calculated separately for signatures with no (o), one (■ ), and two (�) zero
measurements (see text). Note that those signatures with nonzero measure-
ments exhibit significantly lower noise at higher expression levels.

Fig. 3. Nonzero null hypothesis for binary compari-
sons. (a) Scatter plot of signature log-tpm pairs (�i,j,
�i,j�), where replicates j and j� are biological replicates
taken at t � 0 (i.e., each � is the log of an aggregate
tpm derived from two biological replicates) for all
signatures i that have nonzero tpm counts in all four
sequence replicates. Also plotted are equivalent
points for which j and j� are biological replicates taken
at t � 4 h. (b) Standard deviation of measurement
noise � as a function of signal level � for data shown
in a. Solid line is best fit of calculated values of � to an
exponential decay function. (c) Conditional probabil-
ity density function P(	��) as a function of the rescaled
noise 	 � ��� for ranges of signal level 1.25 � � � 1.75
(�), 1.75 � � � 2.25 (F), 2.25 � � � 2.75 (‚), and 2.75
� � � 3.25 (�). Note that after normalization, these
distributions are independent of signal level. Fits to
the data are discussed in the text. (d) P value as a
function of the fraction of significant data for mea-
surements to which the nonzero null hypothesis is
applicable (�) as well as for all measurements (�). (d
Inset). Illustration of data in region of significance for
a and P � 0.05.
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the null hypothesis testing whether a difference in expression in a
binary comparison is beyond measurement error (9). Given a
positive value of 	, say 	0, the area under the distribution of Fig. 3c
for �	�  	0 is the P value corresponding to a normalized differential
expression of magnitude 	0. Likewise, for a chosen P value, we can
find a corresponding x0. For example, a P value of 0.05 corresponds
to a 	0 of 2.13. That is, all points with ���  2.13�(�) will have a P
value �0.05. These points are plotted in Fig. 3d Inset, along with the
two delimiting curves corresponding to the equation ��� � 2.13�(�).
If our parameterization of the distribution is correct, then the
fraction of points outside of those curves should be close to 0.05.
Indeed, it is 0.04.

The one-zero null hypothesis (case 2) is formulated in a manner
similar to the nonzero hypothesis. That is, we begin by considering
all replicate points (�ij, �ij�) where j and j� are biological replicates
taken at t � 0 as well as at t � 4 h. However, in this instance, only
those signatures i for which at least one of the pair of biological
replicates is comprised of one zero and one nonzero sequencing
replicate are considered. The variation between replicates in these
data is significantly greater than that observed for the nonzero data.
However, upon computing �(�), we find that the conditional
distribution function P(	��) as a function of the rescaled noise
distribution 	 � ��� independent of � for these data as well. Thus,
we can follow the procedure outlined above to determine P values
by using this one-zero null hypothesis data set (see Further Details
on the Three Null Hypothesis in Supporting Text for more details).

The two-zero hypothesis (case 3) is formulated from data for
which one of the biological replicates shows zero counts for a given
signature in both sequencing replicates, whereas the other biolog-
ical replicate shows at least one nonzero measurement for the
signature. The probability distribution of the aggregate tpm values
of the nonzero replicate measurements is computed, and the
significance region for a particular P value is defined as the region
under the high signal tail of the distribution whose area equals the
desired P value (see Further Details on the Three Null Hypothesis in
Supporting Text for more details).

Fig. 3d shows a plot of the fraction of points left out of the
delimiting curves given by ��� � 	0�(�) as a function of the P value
(	0 depends on the P value). The curve with solid diamonds
corresponds to the subset of signatures for which the nonzero
hypothesis applies. The open diamonds indicate all of the measured
signatures and the corresponding null hypotheses. Both the nonzero

hypothesis and the all-hypothesis curves show that the fraction of
points left out of the delimiting curves is very well estimated by the
P value calculation over four orders of magnitude. The precipitous
drop-off of the curves at the small P value range is due to the two
outliers indicated with arrows in Fig. 3d Inset.

We have developed our P value formalism in the context of
binary comparisons (typically case�control studies) and time traces.
By using the same formalism, it is also possible to estimate error
bars for the log-tpm for a given signature. To do this, simply notice
that if the log-tpm value of a signature yields a value �, then [�
�2.13�(�), � �2.13�(�)] is an estimate of the 95% confidence
interval. In other words, the probability that a subsequent mea-
surement of that signature falls outside that interval is �0.05. This
confidence interval interpretation of our analysis is especially useful
when data from only a single MPSS run of a given condition are
extant, and error bars need to be assigned to these measurements.
The calculation of a 95% confidence interval requires an estimate
of �(�). When replicate measurements are not available, �(�) can
be estimated from studies such as the one presented in this paper.
Computational tools to analyze MPSS data for confidence inter-
vals, as well as P values in case�control measurements and time
traces, can be obtained at www.research.ibm.com�FunGen.

The Macrophage Data. We measured the gene expression of mac-
rophages before LPS stimulation and at times t � 2, 4, 8, and 24 h
after it. For each observed signature, we computed the SI of its time
series (see Materials and Methods). Often, multiple signatures were
found to correspond to a single gene (in the National Center for
Biotechnology Information database). In such cases, the signature
with the lowest SI values was associated with the gene. Following
this protocol, we identified 12,657 signatures, of which 2,356 (20%)
are statistically significant with SI � 0.05 (see Statistics of Significant
Signatures in the Signature Library in Supporting Text and Fig. 10,
which are published as supporting information on the PNAS web
site. for more details). Significant signatures corresponded to well
characterized genes in greater proportion than nonsignificant sig-
natures (see Statistics of Significant Signatures in the Signature
Library in Supporting Text), an indication that the SI allows the
identification of meaningful signals from massive amounts of
signature data.

Comparison with Earlier Experiments. We compare our results on
LPS-activated macrophages with measurements reported by Nau et

Fig. 4. Hierarchical cluster analysis of LPS-activated mac-
rophage expression data. Columns are individual genes,
and rows are MPSS measurements taken at 2, 4, 8, and 24 h
after activation as well as previously published (14) Af-
fymetrix GeneChip measurements taken at 1, 2, 6, 12, and
24 h after activation. See text for details and Table 4 for
gene names.
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al. (14), in which gene expression is measured by using Affymetrix
6800 GeneChips. In both studies, the biology is similar: cultures of
human monocyte-derived macrophages were stimulated with LPS,
and the gene expression was measured over the course of 24 h.
However, Nau et al. (14) measured gene expression at 0, 1, 2, 6, 12,
and 24 h, as opposed to our measurements at 0, 2, 4, 8, and 24 h.
In addition, Nau et al. (14) reported the expression levels of only 132
genes after exposure to LPS, where these genes were selected
because they were induced by exposure to at least six of eight
different bacteria (as defined by a fold change-based significance
criterion). By using Nau et al.’s (14) significance criterion, we find
that 107 of these 132 genes are also significant in their pure-LPS
stimulation time-series measurements.

We studied the same 132 genes in the context of our MPSS
measurements. We identified signatures corresponding to 127 of
the 132 genes. Of the 127 genes identified in both data sets, 26
(20%) were nonsignificant with SI  0.05. The remaining 101
significant genes have values of SI that range from 10�13 to 0.05.
These 101 genes, although statistically significant, are not the most
significant genes identified by using our LPS time-series data.

By performing a hierarchical cluster analysis (17) of the time-
series data for these 101 genes, we find that the time course of these
genes is similar in both data sets. As shown in Fig. 4, the measure-
ments done with these two expression assaying techniques (after
normalizing the expression of each gene relative to its value at t �
0 to zero mean and unit variance within each platform) are highly
consistent. This remarkable consistency between techniques is
observed in the correct ordering of the temporal conditions: the two
pairs of conditions at 24 and at 2 h in both platforms are the closest,
whereas the MPSS 8-h results interpolate between the Affymetrix
6 and 12 h, and the MPSS 4-h results interpolate between the
Affymetrix 6 and 2 h. This consistency is much less clear when the
remaining 26 nonsignificant genes are considered (see Eisen Plot of
the MPSS Statistically Nonsignificant Genes Among the Macrophage
Activation Program Genes in Supporting Text and Fig. 11, which are
published as supporting information on the PNAS web site.).

Fig. 4 shows two clear gene clusters and two condition clusters.
We interpret this structure as a group of 55 early responder genes
(genes mostly active between 1 and 6 h) and 46 late responder genes
(genes mostly active between 8 and 24 h). A number of interesting
features of this set of genes follow from this early and late response
interpretation (see Categories of Earlier and Later Responders
Among Genes Significant in Both Nau et al. and MPSS Measurements
in Supporting Text and Tables 3 and 4, which are published as
supporting information on the PNAS web site.). Antiapoptotic,
adhesion, cytokines, chemokines, transcription-related, and signal-
ing genes tend to be expressed soon after stimulation, whereas

enzymes (mostly associated with metabolism) and receptors are
transcribed later. One of the earlier responder genes is the tran-
scription factor NFKB1, which itself is regulated by the NF
B
signaling pathway. Indeed, at least 20 of the 101 genes under
consideration have been previously reported as NF
B targets (K.
Basso, personal communication). The categories that are strongly
associated with an early LPS response are composed mostly of
NF
B targets; 8 of the 10 early responding cytokines and chemo-
kines are known NF
B targets, as are 4 of the 8 early responding
transcription-related genes and 4 of the 5 early responding antiapo-
ptotic genes. Although Affymetrix arrays are necessarily biased
toward previously identified genes (such as NF
B targets), we
believe this bias alone is insufficient to explain these observations.

Conclusion
Given the digital nature of the MPSS measurements, it is natural to
put our work in the context of prior ideas developed for SAGE
analysis. Previous statistical analyses of SAGE used Fisher’s exact
test (18) and the �2 or Z test for comparison of proportions (19) to
model SAGE as a process of sampling signatures from signature
libraries. In MPSS, signature-sampling fluctuations alone cannot
account for the involved biochemical manipulations taking place in
the process of signature library production. More elaborate Bayes-
ian approaches represent the distribution of SAGE signature counts
as mixtures of binomial (20) or Poisson (18) statistics whose
parameters are weighted with prior distributions (chosen using
heuristic criteria or mathematical convenience), yielding an en-
hanced variance when compared with plain Bernoulli or Poisson
statistics. It is unlikely, however, that the basic process at play is a
Bernoulli-type process, because there are many manipulations done
to the signatures before they are counted that inherently contribute
to its sample-to-sample count variability. Our approach was to
empirically estimate the distribution of the differences in replicate
data for MPSS measurements. Given that SAGE and MPSS differ
considerably in the biochemical manipulations and in the sequenc-
ing of the signatures, a determination of empirical distributions of
replicate fluctuations would be worthwhile in SAGE.

In conclusion, we have seen that, despite the complexity involved
in the measurement of gene expression using MPSS, it is possible
to formulate reasonable statistical tests to determine the extent to
which the differential expression between two conditions could be
masked by measurement noise. These statistical tests provide a
valuable means of identifying significant genes from the vast
number of signatures yielded by this technology.
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