Lo L

P

1\

AR AN

The landscape of genetic complexity across
5,700 gene expression traits in yeast

Rachel B. Brem*' and Leonid Kruglyak**

*Division of Human Biology and *Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109

Communicated by Leland H. Hartwell, Fred Hutchinson Cancer Research Center, Seattle, WA, November 23, 2004 (received for review August 11, 2004)

Many studies have identified quantitative trait loci (QTLs) that
contribute to continuous variation in heritable traits of interest.
However, general principles regarding the distribution of QTL
numbers, effect sizes, and combined effects of multiple QTLs
remain to be elucidated. Here, we characterize complex genetics
underlying inheritance of thousands of transcript levels in a cross
between two strains of Saccharomyces cerevisiae. Most detected
QTLs have weak effects, with a median variance explained of 27%
for highly heritable transcripts. Despite the high statistical power
of the study, no QTLs were detected for 40% of highly heritable
transcripts, indicating extensive genetic complexity. Modeling of
QTL detection showed that only 3% of highly heritable transcripts
are consistent with single-locus inheritance, 17-18% are consistent
with control by one or two loci, and half require more than five loci
under additive models. Strikingly, analysis of parent and progeny
trait distributions showed that a majority of transcripts exhibit
transgressive segregation. Sixteen percent of highly heritable
transcripts exhibit evidence of interacting loci. Our results will aid
design of future QTL mapping studies and may shed light on the
evolution of quantitative traits.

Beavis effect | epistasis | transgressive segregation

ost heritable traits show continuous variation in a popu-

lation. Such quantitative traits have been a subject of
intensive study (see refs. 1-4 for reviews). Identification of
genetic polymorphisms underlying quantitative traits, known as
quantitative trait loci or QTLs, is of interest in medical genetics,
where they can provide insights into disease mechanisms and
lead to new diagnostics and therapeutics, and in agricultural
genetics, where they can aid breeding programs. Genetic factors
underlying quantitative traits also play a crucial role in evolu-
tionary theory. Most quantitative traits appear to be genetically
complex, i.e., controlled by multiple QTLs (2).

Linkage mapping of QTLs has been reported for thousands of
quantitative traits. In a handful of cases, the DNA sequence
polymorphisms underlying a quantitative trait have been identified
(4-8). However, it has proven difficult to comprehensively identify
the multiple QTLs that combine to determine the complex genetic
architecture of a trait, largely because of limitations in the statistical
power of mapping experiments (9). As a result, the principles that
govern genetic complexity remain an area of active research. Are
traits more likely to be controlled by a few loci of large effect or
many loci of small effect (10, 11)? Are most QTL effects additive,
or do QTLs often act in a nonadditive (epistatic) manner (12)?
Does inheritance of alleles from a given parent at multiple QTLs
usually affect a trait in the same direction, as predicted by certain
evolutionary models (13)? In addition to elegant theoretical ad-
vances (1, 10, 11, 13), several studies have surveyed large numbers
of traits empirically to identify genetic trends (14-16). But many
questions remain.

Recently, we and others have shown that gene expression levels,
as measured with DNA microarrays, can be treated as quantitative
traits, allowing thousands of such traits to be studied simultaneously
(6, 17-19). These studies have demonstrated that levels of many
transcripts vary among genetically diverse individuals in a species,
and that linkage mapping can be used to identify hundreds of QTLs
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that underlie this variation. Here, we use a cross between two strains
of the budding yeast Saccharomyces cerevisiae to extract general
principles about the complex genetics of quantitative traits from this
large data set. Examination of QTL detection for thousands of
expression traits allows us to make inferences about the distribution
of QTL numbers and effect sizes across traits. We also use trait
distributions in parent strains and their progeny to study the
prevalence of different classes of inheritance patterns that underlie
genetic variation in gene expression.

Materials and Methods

Expression Measurements. As parent strains we used BY4716 (BY
for short), isogenic to the lab strain S288C, and the wild isolate
RM11-1a (RM for short) (6, 17). We grew 6 independent cultures
of BY, 12 of RM, and 1 of each of 112 segregants, isolated RNA,
and hybridized cDNA to microarrays as described in ref. 6. Each
array (20) assayed 6,216 yeast ORFs, 13 of which were spotted
twice, but we did not consider data from the 496 ORFs rejected by
Kellis et al. (21). We did not incorporate special corrections for
potential cross-hybridization (22). The remaining ORF set com-
prised 5,740 spots and 5,727 genes. Each hybridization was done in
the presence of the same BY reference material, and all reported
expression values are logy(sample/BY reference), averaged over
two dye-swapped arrays. Results in the text were obtained from
data normalized by subtracting the mean logy(sample/BY refer-
ence) over all spots for every array. For comparison (see below), we
also normalized data using the MAANOVA package, downloaded
from www.jax.org/staff/churchill/labsite/software/anova/
rmaanova. Normalizing the complete data set of all segregant and
parent arrays at once, we performed spatial lowess smoothing,
followed by a mixed-model ANOVA with dye, array, and sample as
random factors (23), then eliminated data from flagged spots
before further analysis.

Genetic Linkage. We genotyped segregants at 2,957 markers, per-
formed linkage calculations using the Wilcoxon test, and assessed
significance via permutations, as described in ref. 17. The false
discovery rate (FDR) (24) was computed as the ratio between the
expected false positive count and the number of transcripts with
detected linkage, as in ref. 25, with 7y = 1. Results in the text are
the average of 10 independent permutations; the FDR = 0.05
cutoff corresponded to a nominal P < 5.7 X 107°. Linkage results
did not vary appreciably when array data were normalized with
ANOVA methods, when 100 permutations were used, or when a ¢
test was used to detect linkage (data not shown). Because of
numerical overflow during computations, for any linkage with
—In(P) > 36.8, we assigned it to have exactly —In(P) = 37.

Abbreviations: FDR, false discovery rate; QTL, quantitative trait locus.

Data deposition: The expression data reported in this paper have been deposited in the
Gene Expression Omnibus database (accession no. GSE1990).
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Table 1. Unbiased estimates of percent genetic variance
explained by detected QTLs, in real and simulated data

Variance explained Data Four-locus model Best model
0-10 0.26 0.11 0.2
10-20 0.15 0.27 0.18
20-30 0.14 0.33 0.16
30-40 0.13 0.2 0.12
40-50 0.09 0.07 0.09
50-60 0.07 0.02 0.06
>60 0.16 0.004 0.2
Median 0.27 0.24 0.27

Numbers in each cell represent the fraction of QTLs in a given data set that
explain a percent of genetic variance in a given range. Data: QTLs detected
across all real transcripts. QTLs detected in the subset of highly heritable
transcripts were not significantly different (data not shown). Four-locus
model: QTLssimulated under a model of four additive loci of equal effect. Best
model: QTLs simulated under the best-fit additive model for highly heritable
transcripts. QTLs with negative estimates were not included. When transcripts
linked to multiple loci, results are for the QTL with the most significant Pvalue
in the linkage test.

Proportion of Variance Explained by QTLs. We repeated the linkage
and permutation tests as above on a randomly selected “detection
set” of 56 segregants. For each transcript that linked to at least one
QTL at the FDR = 0.05 significance level in this calculation, we
used the remaining 56 segregants as the “estimate set” to estimate
the proportion of genetic variance in transcript levels explained by
the QTL, as described in ref. 26. Data in the text and Table 1
represent the distribution over all transcripts that linked in any of
10 independent detection/estimate sets. If the estimated proportion
of genetic variance explained by a QTL was <0 (26), we assigned
it to be identically 0 (10% of QTLs); if the estimate was >1, we
excluded it (3% of QTLs). Transcripts with estimated heritabilities
<0 (see below), or <2 parental or segregant measurements without
missing data, were excluded (5% of transcripts).

Simulations. For each genetic model of interest and each transcript,
we proceeded as follows (27). We simulated environmental and
measurement error with the normal distribution, and adjusted the
effect size of QTLs in the model such that the heritability (see
below) calculated from simulated segregants and parents agreed
with the heritability from a single real transcript. We did not
attempt to model explicitly the specific sources of variation asso-
ciated with microarray data. Details are described in Supporting
Text, which is published as supporting information on the PNAS
web site. For each simulated transcript we assessed the significance
of linkage to simulated loci and estimated the proportion of
variance they explained as above, using FDR = 0.05 cutoffs for
significant linkage from the real data. Data in the text and Table 1
represent the average over 10 independent simulations. Transcripts
from the real data with 42 < 0 or a lot of missing data were excluded
(see above).

Statistically Significant Heritability. We calculated the heritability of
each real transcript as h2 = (02 — crf,)/ o2, where o2 and oﬁ are the
variance among phenotype values in the segregants and the pooled
variance (28) among parental measurements, respectively. Herita-
bilities calculated this way can be inflated by outliers, but we found
this to be a problem for only a small fraction of transcripts (data not
shown). We determined the significance of heritabilities via per-
mutation: For each transcript, we combined all BY, RM, and
segregant trait values, then reassigned values to null parents and
null segregants at random from this pool. FDRs were computed as
above, and the FDR = 0.05 cutoff was 42 > 0.687.
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Fig. 1. Cartoon illustrating the calculation of bounds on complexity. Each

curve represents the results of linkage mapping on many highly heritable
transcripts. The x axis represents, for a given transcript, the most significant
linkage statistic across all loci tested; statistics are ordered by increasing
significance. The y axis shows the proportion of transcripts with a given
linkage statistic. In each panel, the red curve represents observed data and the
blue curve indicates a simulation of transcripts controlled by n additive QTLs
of equal effect. (Upper Left) Black shading represents the minimum propor-
tion of real transcripts less complex than the n-locus model. (Upper Right)
Black shading represents the minimum proportion of real transcripts more
complexthan the n-locus model. (Lower Left) Cyan and green curves represent
results from simulations of transcripts controlled by n + 1 and n — 1 additive
QTLs of equal effect, respectively; black shading represents the proportion of
real transcripts consistent with the n-locus model and no other. (Lower Right)
Black shading represents the maximum proportion of real transcripts consis-
tent with the n-locus model.

Minimum and Maximum Estimates of Complexity. We performed
linkage calculations on real data and on simulated transcripts
controlled by n loci of equal effect for n = 1-10, as above, using only
the subset of real transcripts with significant heritabilities. In
addition, for each simulated transcript, we modeled linkage to a
false positive locus by choosing a linkage P value at random from
the permutation test on real data. For every transcript, we identified
the most significant linkage P value across all loci tested, including
false positives in the case of simulated data. Given this set of peak
linkage statistics across all transcripts for the real and simulated
data, we constructed histograms as follows. We split the range of
linkage statistics into bins of one natural log unit; then we computed
fir, the fraction of transcripts with a linkage statistic falling into each
bini in the real data, and f;, the fraction of transcripts with a linkage
statistic falling into each bin i in the simulation of each n-locus
model. We then interpreted the real data with reference to the
simulations. For example, transcripts linking more significantly than
one would expect under an n-locus model are consistent only with
simpler models (n — 1,n — 2, ...). Thus, to estimate the minimum
proportion of real transcripts controlled by fewer than n loci, we
computed m1,,, the mean linkage statistic among all transcripts in the
n-locus simulation; then, for linkage statistics more significant than
this value, we calculated the excess density in the distribution of real
transcripts relative to the simulation, by computing f; — f;, for each
bin i to the right of m,, and summing these differences across all bins
(Fig. 1 Upper Left). Likewise, to estimate the minimum proportion
of transcripts controlled by more than 7 loci, for each bin i to the
left of m,, we computed f;; — f;, and summed these differences
across all bins (Fig. 1 Upper Right). To estimate the minimum
proportion of transcripts that could be controlled by » loci, we
calculated the density in the distribution of real transcripts that was
consistent with the n-locus model and no other: For each bin i, we
computed z = max(fiu+1, fin—1), then min(f;; — z, f;n), and then
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summed the latter minima, if positive, across all bins (Fig. 1 Lower
Left). To estimate the maximum proportion of transcripts that could
be controlled by 7 loci, for each bin i, we computed min(f;, f,) and
summed these minima across all bins (Fig. 1 Lower Right). Results
in Table 1 are an average over 10 independent simulations.

Model Fit. We considered models in which the proportion of
transcripts controlled by n loci of equal effect was given by (1 —
@)A1 /c. Here, ¢ is a normalization constant, A is the geometric
parameter, 1 =< n = 10, and « is the proportion of traits more
complex than n = 10, which we call higher-order traits. We
considered two different models for higher-order traits. In the null
model, all higher-order traits had no QTLs with individual effects
above the level of noise. In the 30-locus model, all higher-order
traits were controlled by 30 loci of equal effect. In either case, we
expressed the distribution of peak linkage statistics across all
transcripts as a combination of the distributions from the n-locus
and higher order models. Binning this distribution as above, and
given the parameters o and A, we write fi\, the fraction of all
transcripts with linkage statistics falling into the ith bin, as

fi)mt = 2n[(l - a))\(n_l)/c]ﬁn + afih'

To parameterize, we first ran 10 linkage simulations of highly
heritable transcripts under a model of # loci of equal effect, for
n = 1-10. We also ran 10 simulations of the 30-locus model and
10 permutations of real transcripts for the null model. Next, we
computed the fraction of transcripts with a peak linkage statistic
falling into each bin i in the real data, f;, in each n-locus model,
fin, and under each higher-order model, f;;. Plugging these into
the composite formula above, we fit the a and A parameters to
maximize the likelihood of the real data, f;,, given the prediction
from simulations, fx., across all bins, using maximum-likelihood
software available on request. Maximume-likelihood estimates
for the 30-locus model were a = 0.45 and A = 1.15, giving a
log-likelihood of —9,001; for the null model, « = 0.22 and A =
1.32, giving a log-likelihood of —9,577. Because the null model
gave a weaker likelihood, we concluded that most higher-order
transcripts could be modeled with a number of loci >10 but still
finite. We used the 30-locus model for further analysis.

Directional Test. In a Mendelian trait, on average 50% of segregant
trait values will fall between those of the parents. To identify
transcripts that significantly exceeded this expectation, we identi-
fied 2,790 transcripts differentially expressed between the parents
at FDR = 0.05, using methods described in ref. 17. For each such
transcript, we counted the number of segregants with trait values
between parental means and then assessed significance, P, by means
of a cumulative binomial test with an underlying probability of 0.5.
We used the Bonferroni correction to estimate false positives; the
FDR = 0.05 cutoff, computed as above, corresponded to P =
0.0084. For simulated data, we applied the binomial test to tran-
scripts simulated under additive genetic models as above, using the
FDR = 0.05 significance cutoff from the real data. Power for n =
2 was 98% and for all higher n was 100%.

Transgressive Test. We defined transgressive segregation in terms of
the pooled standard deviation, o (28), of both parents. Given a
cutoff, d, we tabulated for each transcript the number, j, of
segregants whose expression level lay at least do higher than the
mean expression level of the higher parent or do lower than the
mean expression level of the lower parent. To determine signifi-
cance, for each transcript we combined all BY, RM, and segregant
phenotype values, then reassigned values to null parents and null
segregants at random from this pool and tabulated j in each such
null transcript. The total number of such null traits with j greater
than a given threshold j, represented the genome-wide false positive
count at jo. The FDR was computed as the ratio between the
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estimated false positive count at j, and the number of real tran-
scripts withj > jy. Results were averaged over 10 permutations. The
FDR = 0.05 cutoff corresponded to j = 58 segregants for d = 1.0,
J = 35 segregants for d = 1.5,j = 21 segregants for d = 2.0,j = 13
segregants ford = 2.5, andj = 8 segregants for d = 3.0. Simulations,
described in Supporting Text, indicated that the test with d = 2.0
gave approximately maximal power under a range of transgressive
models, as shown in Fig. 5, which is published as supporting
information on the PNAS web site; results from real data in the text
were obtained with this test. For power results given in the text, we
ran 10 simulations of additive models for each of n = 2, 4, 6, and
8 using the heritability-based approach as above, except that at half
the loci, the “high” allele conferred a decrease in expression instead
of an increase.

Epistasis Test. We adapted the A statistic from Lynch and Walsh (1),
which assigns significance P based on a ¢ test for the difference
between midparent and segregant mean phenotype values, as
detailed in Supporting Text. To estimate false positive counts, for
each transcript we combined all segregant and parent values, then
assigned them at random to one of two null parent groups or a null
segregant group and reran the test. Results were averaged over 10
permutations; the FDR = 0.05 cutoff corresponded to —In(P) =
6.55. To estimate power, we simulated the model in which seg-
regants with either parental allele combination all had one expres-
sion level and those with nonparental combinations all had another.
Across highly heritable transcripts controlled by this model with two
or three loci, 99% and 100%, respectively, passed the epistasis test
at the significance level corresponding to FDR = 0.05 in the real
data. We also simulated the model in which segregants with one
parental allele combination had one expression level and all other
segregants had another. Across highly heritable transcripts con-
trolled by this model comprising two loci, 68% passed the epistasis
test, and with three loci, 100% passed the test. Simulations are
described in detail in Supporting Text.

Results

Strength of Detected QTLs. We searched for linkage between tran-
script levels and genetic markers in 112 segregants as described in
refs. 6 and 17. We detected at least one QTL for each of 2,984
transcripts at a FDR (see Materials and Methods) of 0.05. Linkage
results were robust to different normalization procedures and
linkage tests (see Materials and Methods). To assess the strengths of
detected QTLs, we computed the fraction of variance among
segregant trait values that was explained by each locus (26). We
eliminated bias in the calculation (29) by detecting QTLs in half the
segregants and using the remaining segregants to study locus
effects. Because this procedure reduced power in the linkage
calculation, we could only estimate fractions of variance for a subset
of linking transcripts. In 10 realizations of the method, on average,
we made estimates for 1,038 transcripts. Across this data set, we
measured the proportion of transcripts with QTLs explaining a
fraction of variance in a given range (Table 1). The median fraction
of variance explained was 27%, with a range of QTL strengths from
<10% to near 100%. This range could reflect true differences in
QTL strengths across transcripts, but some differences are also
expected as a consequence of estimating fractions of variance
explained in a finite sample.

We next wished to interpret the data with reference to a simple
model. We carried out computer simulations in which each tran-
script level was controlled by four additive loci with equal effects;
the number of loci was chosen to match the median fraction of
variance explained in the real data. A comparison of simulated and
real data suggests (Table 1) that we should expect considerable
spread in estimated proportions of variance explained due to
sampling variance but not to the extent seen in the real data. Thus,
underlying genetic architectures must differ across transcripts.

Relatively few transcripts showed evidence of loci with large
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effects. The strongest QTL explained >50% of genetic variance for
only 23% of mapped transcripts (Table 1) and <30% of genetic
variance for more than half of mapped transcripts (Table 1),
suggesting that weak undetected QTLs account for the rest of the
genetic variance in each such transcript. Examination of transcripts
with multiple detected unlinked QTLs did not alter this conclusion
(data not shown).

Predicting the Distribution of Inheritance Patterns Across Transcripts.
Variation of a given transcript level among the segregants can arise
from genetic factors (inheritance of different combinations of
parental alleles) and nongenetic factors (for example, measurement
noise or small differences in experimental conditions). The fraction
of variance in segregant phenotypes attributable to genetic factors
is known as the heritability. Because a major goal of this study was
to analyze the distribution of underlying inheritance patterns across
transcripts, and such analyses may not be meaningful for transcripts
influenced primarily by nongenetic factors, we chose to focus on a
subset of transcripts for which genetic factors predominated (that
is, for which heritability was high). We tested for statistically
significant heritability as described in Materials and Methods; 3,546
transcripts met this criterion, all with heritabilities >69%. Of these,
only 2,091 transcripts (59%) showed linkage to at least one QTL.
Because the remaining transcripts are highly heritable, and the
statistical power of our study to detect QTLs with large effects is
high (see below), these transcripts must be controlled by QTLs with
effects too small to be detected by our approach. Failure to detect
any QTLs for a highly heritable trait can be explained by one of two
scenarios, both involving multiple loci. In the first scenario, the trait
is controlled by many loci with small additive effects, with no single
locus strong enough to be detected. In the second scenario, the trait
is controlled by loci that interact nonadditively such that any one
locus has little marginal effect. Each scenario is likely to apply to
some transcripts (see below).

The fraction of highly heritable transcripts with no detected loci
can be used to further examine genetic complexity and the effect
sizes of QTLs that underlie transcript levels. To do so, we carried
out simulations of the power of our study to detect QTLs of a given
effect size under two genetic models. In the first, the genetic
variation in each transcript was controlled by » loci with equal
additive effects, whereas in the second, the variation was due to one
main locus of a given effect, with the rest of the variance accounted
for by loci with infinitesimal effects. Although these simulations
used a simplified error model (see Materials and Methods), they are
of use in allowing us to interpret the rate of mapping QTLs across
real transcripts. We found that our study had >90% power to detect
at least one locus for transcripts with n = 7 under the first model
or to detect a main locus explaining >25% of genetic variance
under the second model. Power was near the observed detection
rate of 59% for n = 13 under the first model and for the main locus
explaining 19% of genetic variance under the second model.

To gain additional insight into additive genetic models consistent
with our data, we considered the peak linkage statistic of each
transcript, regardless of whether each exceeded a threshold for
detection. A very significant statistic indicates the presence of a
locus with strong effect, whereas a weak statistic suggests that all
loci underlying that transcript have weak effects. From these data,
we sought to estimate the relative prevalence of different levels of
genetic complexity across transcripts. As illustrated in Fig. 1, we
attempted to place bounds on the fraction of transcripts that could
be explained by each value of n, by comparing the distributions of
linkage statistics for simulated data sets with different values of n
to the distribution in the real data. Results (Table 2) indicate that
few transcripts have simple genetics. Only 3% of all highly heritable
transcripts have linkage statistics consistent with single-locus in-
heritance; at most, 17-18% can be explained by models with one or
two loci, consistent with the observation above that a detected QTL
explained >50% of genetic variance for ~20% of the transcripts.

Brem and Kruglyak

Table 2. Estimated bounds on the proportion of highly heritable
transcripts with a given inheritance pattern

n Min = n loci Min > n loci Min n loci Max n loci
1 0.03 0.97 0.03 0.03
2 0.05 0.83 0.02 0.15
3 0.07 0.71 0.01 0.25
4 0.09 0.60 0.01 0.33
5 0.1 0.49 0.03 0.42
6 0.13 0.42 0.05 0.47
7 0.15 0.35 0.04 0.52
8 0.17 0.30 0.08 0.56
9 0.18 0.26 0.06 0.58

10 0.20 0.22 0.07 0.61

The second through fifth columns represent, respectively, the minimum
proportion of highly heritable transcripts that could be controlled by n or
fewer additive loci of equal effect; the minimum proportion that could
be controlled by more than n loci; the minimum proportion that could be
controlled by exactly n loci; and the maximum proportion that could be
controlled by exactly n loci. See Fig. 1 for an illustration of methods.

Approximately half of the transcripts require models with n > 5,
and almost a third require models with n > 8.

The bounds in Table 2 constrain the range of additive models
consistent with our data. We next sought to fit a single model that
best described the frequency of transcripts consistent with inheri-
tance patterns of n = 1, 2, . . ., nmay additive loci with equal effect.
For simplicity, we used a geometric distribution to describe the
frequency of highly heritable transcripts with a given value of n and
arbitrarily set nm,, to 10. The geometric distribution has a single
adjustable parameter, A, that ranges from 0 to infinity. In our case,
A > 1 implies higher frequencies for larger values of n, whereas A <
1 implies higher frequencies for smaller values of n. Because we
obtained evidence that some transcripts require values of n > 10
(see above), we added an additional parameter «, such that a
fraction 1 — « of transcripts was described by the geometric
distribution over n = 1-10 while the remaining fraction a was
described by a single model with more complex genetics (30 loci of
equal effect). We estimated the parameters A and a by maximum
likelihood (see Materials and Methods). The best fit to the distri-
bution of linkage statistics was obtained for A = 1.15 and « = 0.45.
In a model with this choice of parameters, 55% of transcripts are
divided among those consistent with values of n between 1 and 10,
with frequencies ranging from ~3% for n = 1 to ~10% forn = 10
(Fig. 2); the remaining 45% of transcripts are consistent with 30
additive loci of equal effect. This model captured the distribution of
real linkage statistics with reasonable accuracy (Fig. 6, which is
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Fig. 2. Distribution of inheritance patterns in best-fit additive model. Each
bar represents an inheritance pattern involving additive loci of equal effect.
Bar heights give the proportion of highly heritable transcripts predicted to
have each type of inheritance under the fitted geometric model.
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Fig.3. Prevalence of different inheritance patterns among highly heritable
transcripts. The black rectangle represents all transcripts with high heritabil-
ity. Colored squares and numbers represent the transcripts with high herita-
bility that pass the indicated tests for inheritance patterns. Black numbers in
overlapping squares represent transcripts that pass multiple tests; the black
number at the lower left represents highly heritable transcripts that do not
pass any of the tests.

published as supporting information on the PNAS web site) and
also gave a distribution of fraction of variance explained by detected
QTLs similar to that observed in the data (Table 1). We note that
this model merely provides a single scenario of additive effects
consistent with our data, and we do not expect it to accurately
represent the full distribution of locus effects within and across
transcripts; the model also explicitly ignores interactions.

Directional Genetics. We have presented several lines of evidence for
multilocus genetics among most heritable transcripts in the yeast
genome. We next sought to classify different types of multilocus
inheritance and determine the prevalence of each. We first con-
sidered the case of additive QTLs with inheritance from a given
parent at a majority of loci affecting the phenotype in the same
direction. We call this a directional model, after its hypothesized
role in directional selection (13). Under the most extreme direc-
tional model, segregants inheriting all loci from each parent have
the phenotype level of that parent, whereas all other segregants
have phenotypes between those of the two parents. We developed
a statistical test for this class of genetics by counting, for each
transcript, the segregants with phenotype values between those of
the parents. Of 3,546 highly heritable transcripts, 406 (11%) passed
the directional test (Fig. 3); the top-ranking example is shown in Fig.
4 Left. Power simulations indicated that >98% of transcripts
controlled solely by additive loci of equal effect would pass the
directional test. This finding suggests that most transcripts with
simple directional genetics have been identified.

Transgressive Segregation. Next we considered additive QTLs with
opposing effects, i.e., the allele from a given parent at some loci
elevates transcript levels and at other loci lowers transcript levels.
Given this type of inheritance, segregants with nonparental allele
combinations may have higher or lower expression levels than those
of either parent, a phenomenon called transgressive segregation.
Because previous qualitative approaches to detect transgression
(e.g., refs. 30-32) may not be suitable for genome-wide application,
we developed a statistical test for transgressive segregation (de-
scribed in Materials and Methods), based on the number of seg-
regants whose expression levels fall far outside the parent means. Of
3,546 highly heritable transcripts, 2,093 (59%) passed our test at
FDR = 0.05 (Fig. 3); Fig. 4 Center shows the transcript that scored
most significantly. To assess the power of the test, we ran simula-
tions of highly heritable transcripts controlled by two to eight
opposing loci of equal effect; >80% passed the test in all cases,
showing that the test has high power to detect transcripts controlled
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Fig. 4. Expression of genes with strongest evidence for directional, trans-

gressive, and epistatic genetics. In each panel, the first column shows data
from 112 segregants and the second and third columns show replicate mea-
surements in the BY and RM parents, respectively. (Left) The cytochrome ¢
reductase subunit YPR191W/QCR2, the annotated gene giving the most
significant statistic in the test for directional genetics. (Center) The histidine
and purine biosynthetic enzyme YMR120C/ADE17, which gave the most
significant statistic in the test for transgressive segregation. (Right) The tran-
scriptional regulator YMLO51W/GALB8O, the annotated gene that gave the
most significant statistic in the test for epistasis.

predominantly by additive, opposing QTLs. We conclude that
transgression is widespread, affecting the majority of highly heri-
table transcripts. Even more transcripts may be controlled by more
complex transgressive inheritance, involving loci with weaker ef-
fects that are not detected by the test.

Epistasis. We next considered epistatic interactions, in which the
effect of one QTL on a trait depends on another QTL. We used a
modified version of the epistasis test of Lynch and Walsh (1), which
tests for a difference between the mean expression levels of
segregants and parents, because the means are equal for any
additive inheritance pattern. Of 3,546 highly heritable transcripts,
583 (16%) passed the epistasis test (Fig. 3); Fig. 4 Right shows the
top-scoring transcript from an annotated gene in this analysis.
Power simulations involving highly heritable transcripts controlled
by two or three loci, under several epistatic models, indicated that
our test had 70-100% power to detect such transcripts (see
Materials and Methods). Thus, our estimate of the number of highly
heritable transcripts with strong interactions between a few loci may
be reasonably accurate. Many additional transcripts may have more
complex epistatic inheritance patterns that are undetectable by the
test.

Discussion

Complexity and Mapping. We surveyed the genetics of a large
collection of similar phenotypes (the transcript levels of all yeast
genes) in an attempt to extract general principles about quantitative
traits and QTLs. Our results indicate considerable genetic com-
plexity in the data. Unbiased estimates of QTL strength revealed a
wide range in the proportions of variance explained by mapped loci,
with the majority of transcripts mapping to weak QTLs. Model-
based analyses of mapping rates indicated that only a small pro-
portion of transcripts appear to have simple inheritance, whereas
most have a reasonably high effective number of loci. We also fit an
analytic form for the distribution of genetic architectures across
transcripts. Although the quantitative details of the fit are model-
dependent, the general conclusions may be useful as a starting point
for power simulations in future studies of quantitative traits.
Additionally, we identified hundreds of transcripts consistent with
each of three classes of inheritance pattern, predictions that can
help refine QTL mapping procedures (12, 15, 33).

Among highly heritable transcripts, the median genetic variance
explained by the strongest detected QTL was 27%, and QTLs for
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other transcripts explained even less variance. This finding is
consistent with the idea that most variation with very large effects
should have been fixed in or eliminated from stable populations
(10), although we also observed that 3% of highly heritable
transcripts followed essentially monogenic inheritance. Our ability
to detect such weak loci via linkage reflects in part the involvement
of multiple loci in the genetics of most transcripts, increasing the
chances that at least one locus is detectable because of a favorable
statistical fluctuation in the same direction as the effect of the locus
(27). Our estimates of QTL strength are consistent with those seen
previously in other systems. QTLs explaining <10% of variance are
routinely reported in the QTL mapping literature (e.g., refs. 1, 34,
35), and even these low estimates are probably biased upward (27).
The high effective number of QTLs for most highly heritable
transcripts and the small effect sizes of detected QTLs suggest that
QTL mapping and identification of the underlying polymorphisms
will continue to be challenging endeavors in model and agricultural
organisms and especially in humans.

Transgressive Segregation. Transcripts with an excess of segregant
values outside those of the parents (transgressive segregation) were
much more prevalent than transcripts with an excess of segregant
values inside those of the parents (directional genetics). A majority
of highly heritable transcripts showed transgressive segregation,
consistent with the results of metaanalyses of different traits in
plants and animals (16, 36). Widespread transgression in the yeast
transcriptome could be the result of genetic drift, i.e., the fixation
over time, in one strain, of mutations that increase and decrease a
transcript level with little effect on fitness. It has also been suggested
that such opposing QTLs may be a mechanism for generating
diversity in subsequent generations (16). Interestingly, among
highly heritable transcripts, 21% of those passing the test for
transgressive segregation also passed the test for epistasis, whereas
only 11% of those which did not show transgression passed the
epistasis test (Fig. 3). This finding suggests that additive QTLs of
opposite effect may not be exclusively responsible for transgression
(16, 32, 36).

Epistasis. The prevalence of epistatic interactions among loci is
important in evolutionary theory, because a trait under epistatic
control may require a relatively rare combination of several mu-
tations to arise before a phenotypic change is observed (37, 38).
Epistasis also complicates QTL mapping, because most mapping
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methods rely on detecting the additive effects of individual loci and
have little power to detect epistatic QTLs with small marginal
effects (12). We obtained evidence for epistatic interactions un-
derlying 16% of highly heritable transcripts. We also failed to detect
any additive QTLs for ~40% of highly heritable transcripts, raising
the possibility that some or all of these are controlled by interacting
QTLs.

Physiological Phenotypes. Transcriptional phenotypes may differ
from physiological phenotypes because of different biological and
technical sources of variation. Nevertheless, given the extensive
genetic complexity observed here, we conclude that transcript
levels may serve as a good model for the genetics of complex cellular
and physiological traits. Indeed, many macroscopic phenotypes may
have a basis in gene expression. Noncoding polymorphisms known
to affect transcription have been implicated in HIV-1 resistance
(39) and diabetes risk (40) in humans, plant morphology in maize
(41), muscle growth in pigs (8), and fruit weight in tomato (42).
Schadt ez al. (18) mapped a QTL controlling obesity in mouse to a
locus that also affected transcript levels of related genes. We have
shown that clumpy growth of yeast cells maps to the same locus as
the expression of daughter-specific genes involved in mitosis and
budding (6). In keeping with these observations, several groups
have used expression profiling to choose among gene candidates
when physiological traits map to large genetic regions (43-45).

Genetic studies of quantitative traits have identified many loci for
specific traits in humans, plants, and experimental organisms.
Understanding the complexity of multilocus genetics is an impor-
tant challenge in the field. Analysis of thousands of quantitative
traits in parallel offers the ability to extract general principles about
quantitative genetics; such insights can provide a step toward the
prediction of inheritance patterns for traits of particular interest,
which can lead to the improvement of QTL mapping procedures
(12, 15, 33).
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