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A central mechanism enhances 
pain perception of noxious thermal 
stimulus changes
B. Petre1, P. Tetreault1, V. A. Mathur2, M. W. Schurgin2, J. Y. Chiao2, L. Huang1 &  
A. V. Apkarian1,3

Pain perception temporarily exaggerates abrupt thermal stimulus changes revealing a mechanism 
for nociceptive temporal contrast enhancement (TCE). Although the mechanism is unknown, a 
non-linear model with perceptual feedback accurately simulates the phenomenon. Here we test if a 
mechanism in the central nervous system underlies thermal TCE. Our model successfully predicted an 
optimal stimulus, incorporating a transient temperature offset (step-up/step-down), with maximal 
TCE, resulting in psychophysically verified large decrements in pain response (“offset-analgesia”; 
mean analgesia: 85%, n = 20 subjects). Next, this stimulus was delivered using two thermodes, one 
delivering the longer duration baseline temperature pulse and the other superimposing a short higher 
temperature pulse. The two stimuli were applied simultaneously either near or far on the same arm, or 
on opposite arms. Spatial separation across multiple peripheral receptive fields ensures the composite 
stimulus timecourse is first reconstituted in the central nervous system. Following ipsilateral stimulus 
cessation on the high temperature thermode, but before cessation of the low temperature stimulus 
properties of TCE were observed both for individual subjects and in group-mean responses. This 
demonstrates a central integration mechanism is sufficient to evoke painful thermal TCE, an essential 
step in transforming transient afferent nociceptive signals into a stable pain perception.

Attention and behavioral response to important stimulus features is the culmination of a cascade of filtering and 
amplification mechanisms in the nervous system. In the early stages of vision for instance edges are enhanced 
first by retinal ganglion cells and again by simple cells of the primary visual cortex1, 2, and in audition temporal 
and context filtering facilitates stimulus binding for recognition of complex sounds like species-specific vocal-
izations3–6. The understanding of analogous processes in pain perception is comparatively primitive, especially 
for processing of time varying stimuli. Rapidly changing step-wise thermal stimuli applied to the skin are per-
ceptually salient due to disproportionate but transient change in pain intensity. Although initially observed as 
the familiar but disproportionate relief following stimulus decrements (“offset analgesia”)7, 8 temporal contrast 
enhancement (TCE) is more general and also occurs after noxious stimulus increments9.

Pain promotes defensive action and future avoidance behavior, which requires associating defensive behavior 
with resultant changes in pain10. A complete characterization of this process must incorporate an understanding 
of stimulus response dynamics, and in particular how stimulus changes are detected and interpreted. A temporal 
contrast enhancement mechanism must retain a memory trace of stimulus history and alter perceived stimulus 
intensity, and can occur at many levels of the neuraxis, whether as a consequence of adaptation in peripheral 
neurons, or more complex mechanisms in the central nervous system (CNS).

Several unsuccessful attempts have been made to link TCE to established CNS mechanisms of spatial and con-
text dependent nociceptive filtering. Context dependent nociceptive filters like placebo analgesia operate through 
an opioidergic circuit located in the periaqueductal gray matter (PAG)11. While fMRI studies show the offset 
analgesia TCE phenomenon also correlates with metabolic activity in the PAG12, 13 opiate agonists and antagonists 
fail to alter TCE dynamics14. Likewise, spatial contrast enhancement, in the form of conditioned pain modulation 
(CPM), has been dissociated from offset analgesia by ketamine antagonism of NMDA receptors, which selectively 
inhibits CPM15.
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Nevertheless, there are reasons to suspect some other CNS mechanism underlies nociceptive TCE. Across 
modalities contrast enhancement constructs behaviorally relevant perceptual features late in sensory processing, 
allowing for signal convergence and modulation by feedback projections16, 17, and, in the temporal domain, for 
longer information retention6, 18, 19. Additionally, asymmetric spatial interactions have been observed between 
time varying painful stimuli and simultaneous but remote noxious stimulation7. This at least reveals events in 
the CNS can interfere with pain dynamics because peripheral nociceptive neurons have receptive fields on the 
order of centimeters and are unaffected by remote stimulus changes20, 21. Consequently, we hypothesize a central 
mechanism underlies nociceptive TCE.

Responses to step-wise noxious stimuli cannot be reduced to a linear combination, or superposition, of 
responses to constituent boxcar stimuli, so this TCE is a nonlinear response. Here we leverage this property 
to probe for a central mechanism using psychophysics, theoretical modeling, and painful thermal stimuli. An 
optimal step-wise low-high-low stimulus paradigm is identified by exploring a recurrent feedback model trained 
on a preliminary dataset22. The complex stimulus is then fractured in two: a short high intensity boxcar stimulus 
bounded by a longer low intensity boxcar stimulus. Delivered simultaneously, their composite reproduces the 
low-high-low stimulus profile. A nonlinear response to the low-high-low stimulus is confirmed by comparison 
with responses to individual boxcars. We then bypass the ability of primary afferent fibers to detect changes in 
the overall stimulus profile by simultaneously delivering each boxcar stimulus to remote locations using two 
thermodes, and test if the response matches a superposition of constituent stimulus responses or is nonlinear. 
Nonlinear integration across peripheral receptive fields is sufficient to demonstrate a central mechanism for noci-
ceptive TCE.

Results
Model exploration and stimulus design.  A nonlinear stimulus-response function with perceptual feed-
back was fit to evoked pain ratings averaged across 11 naïve subjects (Eq. 1, Fig. 1A). The model fit performs 
well in capturing pain response features, sharing a greater proportion of variance with VAS ratings than does the 
stimulus (pain vs. stimulus: r2 = 0.656; pain vs. model fit: r2 = 0.855; forced timeseries data is not independent or 
identically distributed, but Pearson correlations serve as a similarity measure). The fit also shows a prominent 
nonlinearity following stimulus offsets which resolves within 15 s, matching the pain response during the first 
low-high-low stimulus epoch, but not later epochs, consistent with published reports on offset analgesia7. Model 
fitting was performed blind to model exploration or subsequent testing.

Model exploration was used to design a boxcar stimulus and a low-high-low complex stimulus which would 
evoke prominent and distinct nonlinearities in pain response. To find a candidate boxcar stimulus we first exam-
ined step functions that crossed the pain threshold (θ; initial temperature, Ti; final temperature, Tf; Ti < θ < Tf; 
Fig. 2A, top left). Peak response was predicted 14–15 s after stimulus onset regardless of Ti and with magnitude 
proportional to Tf. Time to peak and subsequent adaptation dynamics were independent of Tf. For the complex 
stimulus we examined positive and negative steps taken from suprathreshold holding stimuli (θ < Ti < Tf and 
θ < Tf < Ti). These also showed approximately temperature invariant dynamics. They were distinguished by a 
shorter 3–4 s time to peak (or trough), followed by prominent damped oscillations which stabilized within about 
40 s after stimulus onset (Fig. 2A, top right, bottom left).

In typical fashion23 predicted ratios of pain intensity were proportional to ratios of stimulus intensity, but with 
a time and Ti dependent proportionality constant (Fig. 2A, insert). In other words,
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In the range of experimentally tractable stimulus intensities (Ti ∈ [45 °C, 49 °C]), the dependence on Ti is triv-
ial (Fig. 2A, insert, shaded gray area). Thus, as a practical consequence of this relationship, an approximately 25% 
decrease in temperature relative to threshold (~2.5 °C for 45–49 °C stimuli) was predicted to transiently abolish 
pain. These predictions were unambiguously confirmed by preliminary testing in one subject (Pearson correla-
tion, VAS vs. stimulus: r2 = 0.570; VAS vs. model: r2 = 0.755; Fig. 2A).

We applied these lessons in the design of a new low-high-low complex stimulus (15 s–15 s–45 s at T1-T2-T1, 
T1 > θ, T2 = T1 + 2 °C) and also designed corresponding decompositions of this stimulus into two constituent 
boxcars (15 s–15 s–45 s at either T1-T1-T1 or baseline-T2-baseline, hereon ‘T1 stimulus’ and ‘T2 stimulus’, respec-
tively, baseline ≪θ; Fig. 3). 15 s stimulation periods ensure peak response is achieved, the final 45 s period resolves 

Figure 1.  A nonlinear feedback model (red) captures mean response of 11 subjects (black) to a painful thermal 
stimulus sequence (gray). Stimuli are similar to those previously used to study “offset analgesia” and include 
a 1 °C × 5 s up/down step. Pearson correlations between pain vs. stimulus and pain vs. model prediction are 
shown.
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the full time course of perceptual enhancement and 2 °C offsets (96% predicted pain reduction) avoid the ceiling 
effects in VAS ratings seen during preliminary testing of the larger 2.5 °C steps (Fig. 2B).

Complex stimulus paradigm maximizes nonlinear response.  Nonlinear dynamics were tested 
using boxcar and complex stimuli in a novel group of 20 subjects. Results are consistent with model predictions 
(Fig. 3, Table 1). For boxcar stimuli, mean T1 stimulus response showed a time to peak of 15.3 s (bootstrapped 
CI.95 = [11.5, 18.3], n = 50000 samples; times taken from start of response which lags the stimulus), and the T2 
stimulus response also follow this trajectory only truncated by the shorter stimulus duration (time to peak pain: 
12.7 s, CI.95 = [9.3, 13.2]). The complex stimulus is a linear combination of T1 and T2 stimuli, but the mean pain 

Figure 2.  Model exploration suggests ideal stimulus parameters to resolve painful TCE. (A) The model step-
response was explored outside the training space, and three different types of step responses were identified. 
Responses to threshold crossing steps peak at ~15 s while steps from supra-threshold ‘holding’ stimuli (Ti) 
peak after ~7.5 s. Oscillations follow which stabilize after 45 s. Finally, positive and negative supra-threshold 
steps show symmetric responses. For supra-threshold steps, relative change in pain is proportional to relative 
change in stimulus with a time and Ti dependent proportionality constant (insert; color coordinated slopes are 
plotted for two time points marked on supra-threshold step response plots; shadows illustrate Ti ∈ [45 °C, 49 °C], 
Ti = 47 °C featured). Response dynamics are approximately invariant with Ti and representative step-response 
functions are shown. (B) Model predictions were qualitatively evaluated in a single subject using a variety of 
threshold crossing and supra-threshold steps. Results confirm presence of nonlinear damped oscillations in all 
three types of step-responses, confirms dependence of nonlinearity amplitude on step size, and that 2.5 °C steps 
transiently abolish pain (epochs 3–5, 7).
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response is not a linear combination of evoked responses to boxcar stimuli. Although T2 stimulation occurs on 
top of a preexisting T1 stimulation, the T2 evoked response features a shorter time to peak pain (t2 maximum: 
5.4 s, CI.95 = [5.0, 8.2]) than occurs with the T2 boxcar stimulus (bootstrap p < 0.001). The model predicts this 
kind of TCE for supra-threshold step responses (3.6 s for supra-threshold vs. 14.6 s for threshold crossing steps). 
Additionally, the complex stimulus intensity returns to T1 after the 2 °C stimulus offset, at which point another 
prominent nonlinearity is visible in the form of an “offset analgesia” type transient downward deflection (t3 min-
imum predicted at 4.5 s; observed at 9.8 s, CI.95 = [6.6, 10.8]; predicted amplitude: 0.96, observed amplitude: 
0.85 ± 0.067, mean ± SE; VAS amplitude calculated at t3 minimum with respect to mean of t1 max and t3 max). 

Figure 3.  Group mean acute pain dynamics (black) from simple and complex single thermode stimuli (gray) 
are predicted accurately by the model (red). Three stimuli are shown (one per panel), but while stimuli are linear 
combinations of each other, the resulting pain ratings are not. Relevant temporal periods (t1-t2-t3) are labeled 
consistently across stimuli (15 s–15 s–45 s). Nonlinear pain dynamics are best resolved in the complex stimulus 
during t3 where a disproportionate transient pain reduction follows a small stimulus offset (“offset analgesia”). 
An additional more subtle nonlinearity is visible during t2 where a small increase in stimulus intensity 
results in a disproportionately fast rise in pain intensity. These properties cannot be explained through linear 
combinations of simple stimulus response relationships but are predicted by the model. (T2 = T1 + 2 °C, N = 20).
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This demonstrates the intrinsic contrast enhancing nonlinearities predicted by the model can be captured in the 
group level pain responses.

Subject level responses to dual thermode stimuli are nonlinear.  Simultaneous dual thermode stim-
ulation tested if central mechanisms are sufficient to evoke nonlinear contrast enhancing (TCE) pain dynamics. 
Only simple boxcar stimuli were used, but stimulus epochs featured coincident delivery of the T1 and T2 stimuli 
at different sites (Fig. 4). By design T1 stimulation began 15 s before -and ended 45 s after- T2 stimulation. Thus, 
the superposition of these two stimuli reproduces the optimal timeseries of the single thermode complex stimu-
lus (Figs 3 and 4). Critically, spatial separation between thermodes during dual thermode stimulation exceeded 
single peripheral receptive field sizes. In order to potentially disambiguate the level of the neuraxis at which the 
prospective CNS mechanism might act, stimuli were delivered at three distances: near and far on the same arm, 
or on opposite arms (Fig. 4).

In order to distinguish monotonic site specific sensitization and habituation from intrinsic nonlinear dynam-
ics (TCE), responses were first evaluated according to a simple on-off-on criterion. At the single subject level, 
many responses reflect transient absence of pain during the final 45 s of stimulus epochs (e.g. Fig. 5). However, if a 
pain free period interrupts distinct periods of unambiguous T1 evoked pain, then neither habituation (a continu-
ous decay process) nor sensitization (a continuous rise process) offers adequate explanation. Instead, a nonlinear 
TCE response provides the most parsimonious explanation (e.g. Fig. 5, gray dashed boxes).

This rudimentary on-off-on criterion for nonlinearity demonstrates the dual thermode stimuli evoke nonlin-
ear dynamics which can be discerned within individual subject responses. The complex single thermode stimulus 
acts as a positive control, and evokes significantly more frequent nonlinear responses (69% non-linear, n = 52) 
than the simple T1 boxcar stimulus which in turn serves as a negative control for random VAS variance (4% 
non-linear, n = 55; χ1

2 = 48.5, p < 1e-05; Cochran-Mantel-Haenszel Chi-squared test, accounting for stratification 
by stimulus intensity which was adjusted according to pain tolerance). The greatest incidence of nonlinearities 
among dual thermode stimuli occurs with delivery of both to the same forearm, either near each other or far apart 
(50% non-linear, n = 32, χ1

2 = 26.3, p < 1e-05; 48% non-linear, n = 31, χ1
2 = 21.5, p < 1e-05; resp). Delivery of T2 

T1 alone T2 alone Complex Near T1 + T2 Far T1 + T2

Opposite arm 
T1 + T2

t1 max 15.3 [11.5, 18.3] — — — — —

t2 max — 12.7 [9.3, 13.2] 5.4 [5.0, 8.2] 11.5 [9.6, 12.9] 11.7 [7.0, 13.4] 10.1 [7.2, 10.9]

t3 min — — 9.8 [6.6, 10.8] 11.5 [7, 15.6] 13.3 [4.7, 16.8] 19.5 [8.5, 36.0]

t3 max — — 40.1 [39.8, 44.2] 42.6 [31.3, 44.1] 37.5 [32.8, 44.1] 28.8 [11.0, 43.7]

Table 1.  Timing of local extrema in group mean responses with bootstrapped 95% confidence intervals 
(bracketed).

Figure 4.  Dual thermode experimental design allows for simultaneous delivery of stimuli to different sites. A 
complex stimulus is deconstructed into its component features, which are then delivered on the ventral forearm 
either near one another, far from one another or contralaterally. Illustrated arms are a partial reproduction of 
Leonardo da Vinci’s Vitruvian man35.
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on the opposite arm shows less frequent nonlinear responses, but still more than from the single thermode T1 
stimulus (19% nonlinear, χ1

2 = 4.44, p = 0.035, n = 27; all tests taken with respect to the negative control and sig-
nificant after Holm-Sidak correction for multiple comparisons; Table 2). Thus, dual thermode stimuli can pro-
duce nonlinear stimulus response dynamics, clearly discernable at the level of individual subjects, although there 
may be a distance or laterality dependence.

Group level dual thermode responses match the nonlinear complex stimulus response dynamics.  
Dual thermode stimuli evoke nonlinear responses, but single thermode complex stimuli show rich and predicta-
ble dynamics not captured by the simple on-off-on criterion. For instance, the psychophysical model exploration 
and single thermode stimuli highlight characteristic maxima and minima of group mean TCE responses (Figs 2 
and 3), while individual subject responses are discontinuous, resembling a random jump process with indistinct 
maxima and minima (e.g. Fig. 5), obscuring this precise temporal information. Employing group mean responses 
thus allows for further comparison between the precise dynamics of different stimulus responses.

Figure 5.  Stimulus and pain ratings from a representative subject exhibiting nonlinear pain for single complex 
stimuli and for dual stimuli configurations (near, far, and opposite arm). Each stimulation sequence consisted 
of two dual-thermode stimuli (red, blue, gray ratings), and three single thermode stimuli (black ratings). Dual 
thermode stimuli were delivered at three different distances from one another: near or far on the same arm or 
on opposite arms, and the order of these was randomized across subjects. The disproportionate diminution 
of perceived pain following a small offset shows that this subject rates all dual and single complex stimuli 
nonlinearly, in contrast to a linear sum of the simple stimuli. A more stringent but less ambiguous on-off-on 
criterion for nonlinear dynamics is also satisfied in many of these instances (gray boxes, one example and one 
counter example explicitly labeled): despite invariance of stimulus intensity there is pain before T2 stimulation, 
no pain immediately after T2 stimulation, and then pain comes back before the T1 stimulus ends. Thermode 
roles switch between the first and second dual thermode stimulus epochs.

Complex Near T1 + T2 Far T1 + T2

Opposite arm 
T1 + T2 T1 alone

Trials with 
transient VAS = 0 36 [0,9,13,14] 16 [0,5,7,4] 15 [0,5,5,5] 5 [1,2,2,0] 2 [0,2,0,0]

VAS > 0 trials 16 [3,8,0,5] 16 [2,3,1,10] 16 [1,5,3,7] 23 [0,6,4,13] 53 [3,17,13,20]

Rate of nonlinear 
pain abolition 0.69** 0.50** 0.48** 0.18* 0.04

Table 2.  Incidence of nonlinear responses with stratification by stimulus level (T1 = [44.5 °C, 45 °C, 46 °C, 47 °C]).
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Using group mean responses, time of (a) t1 peak pain, (b) t3 minimum pain, and (c) t3 peak pain were iden-
tified for the complex stimulus, and used as reference points for evaluating TCE in dual thermode stimulus 
responses (Fig. 6A). Differences in stimulus intensity between subjects did not affect reported pain or moderate 
TCE (p > 0.4 for T1 and TCE*T1 interactions, Table 3), so these terms were dropped from the model. However, 
the TCE reference points show significantly different pain ratings in near dual thermode stimuli, with pain at 
(a) and (c) significantly higher than (b) (planned comparison mean (a, c) – (b): 7.86 ± 2.75 VAS difference, 
mean ± SE., 47% pain reduction, p = 0.01). The same pattern occurs with far dual thermode stimuli responses 
(planned comparison: 7.15 ± 1.99 VAS difference, 50% pain reduction, p = 0.002), but not for opposite arm dual 
thermode stimuli (planned comparison: −0.39 ± 2.29 difference, 2% pain increase, p = 0.87; Table 4). Similarly, 
timing of t3 extrema observed with near and far stimuli compare favorably with extrema of the single thermode 
complex stimulus (bootstrapped contrast of local minima timing, near vs. complex: p = 0.24, far vs. complex 
p = 0.18, opposite vs. complex: p < 0.001; Table 1). Therefore, during a stimulus of invariant intensity, nonlinear 
dynamics are evoked across near and far dual thermode stimuli at the same timepoints which characterize the 
single thermode complex stimulus response.

Figure 6.  Near and far dual thermode stimuli produce a nonlinear response with the same dynamics as a single 
complex stimulus. (A) Simultaneous T1 stimulation and near or far T2 stimulation, but not T2 stimulation on 
the opposite arm, produces a nonlinear group-averaged pain response. Comparisons were performed based 
on timepoints selected from the complex stimulus response (insert): (a) maximal t1 VAS, (b) minimal t3 VAS 
and (c) maximal t3 VAS. Stimulus intensity was invariant between (a), (b) and (c) in dual thermode stimuli, 
but pain responses at (a) and (c) were significantly higher than (b) after near (p = 0.010) or far T2 stimulation 
(p = 0.002; planned contrast). No differences were found after T2 stimulation of the opposing arm (p = 0.87). 
(B) In near and far dual thermode stimuli the nonlinear response dynamics are the same as for the single 
thermode complex stimulus. Pain return dynamics were specifically examined between (b) and (c) (top panel, 
insert). Group averaged responses to near or far dual thermode stimuli significantly correlate with responses 
to the complex but not T1 stimulus while responses to opposite arm stimulation correlates with neither (left). 
Correlations between responses to near, far, and single thermode complex stimulation support the conclusion 
that the same process underlies all three nonlinear responses (multiple regression with ARIMA errors; near 
vs. complex: t = 4.54, p < 1e-05; far vs complex t = 1.99, p = 0.047; df = 437). Dynamical equivalence is best 
illustrated with variance normalized (z-scored) timeseries (right). *p < 0.05. NS = non significant.
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Although local maxima and minima reflect characteristic stimulus dynamics and edge enhancement, trajec-
tories between extrema also characterize pain dynamics. However, most group mean stimulus responses were 
too abrupt to robustly model. Changes in pain in response to stimulus changes affect the statistical properties of 

Coef. SE df t-stat p

Near (preliminary) F df p

 Intercept 14.09 2.10 17 6.71 3.64e-06*

 TCEac-b 7.86 2.83 17 2.78 0.0128*
4.20 2,17 0.0329NS

 TCEa-c −1.72 2.72 17 −0.63 0.537

S (demeaned) 6.42 2.21 17 2.90 9.93e-3*

T1 (demeaned) 0.403 2.34 17 0.17 0.865

 TCEac-b *T1 −0.16 3.16 17 −0.05 0.960
0.30 2,17 0.745

 TCEa-c *T1 2.13 3.04 17 0.70 0.493

  S*T1 −7.70 2.47 17 −3.11 6.27e-03*

Far (preliminary) F df p

 Intercept 11.81 1.29 16.28 9.17 7.83e-08*

 TCEac-b 7.16 2.04 17.72 3.52 2.52e-03*
6.69 2,17.95 6.75e-03*

 TCEa-c 2.42 3.38 16.14 0.72 0.48

S (demeaned) 5.75 1.89 15.87 3.05 7.68e-03*

T1 (demeaned) −0.79 1.40 14.40 −0.56 0.58

 TCEac-b *T1 −0.39 2.22 17.84 −0.18 0.86
0.02 2,18.06 0.98

 TCEa-c *T1 −0.03 3.68 16.23 −0.02 0.98

  S*T1 0.03 2.06 16.01 0.013 0.99

Opposite arms (preliminary) F df P

 Intercept 14.76 3.00 16.28 4.90 1.56e-04

 TCEac-b −0.50 2.35 17.83 −0.21 0.834
0.07 2,16.22 0.94

 TCEa-c −1.15 3.42 15.08 −0.34 0.740

S (demeaned) 4.59 3.30 16.74 1.39 0.183

T1 (demeaned) 2.23 2.58 14.62 0.87 0.401

 TCEac-b *T1 −0.83 2.59 18.64 −0.32 0.751
0.05 2,16.95 0.88

 TCEa-c *T1 −0.39 3.76 15.68 −0.10 0.919

  S*T1 −0.97 2.94 15.30 −0.33 0.745

Table 3.  Preliminary mixed model of dual stimulus responses, measured at timepoints of complex stimulus 
extrema, shows there is no interaction between TCE and stimulus intensity between subjects.

Coef. SE df t-stat p

Near (final) F df p

 Intercept 14.09 2.09 17.31 6.75 3.11e-06*

 TCEac-b 7.86 2.75 18 2.86 0.0104*
4.44 2,18 0.0271NS

 TCEa-c −1.72 2.68 18 −0.64 0.531

S (demeaned) 6.42 2.21 17.02 2.90 9.90e-3*

T1 (demeaned) 0.30 2.12 17 0.14 0.888

 S*T1 −7.44 2.45 17 −3.04 7.35e-03*

Far (final) F df p

 Intercept 11.81 1.26 17.35 9.35 3.44e-08*

 TCEac-b 7.15 1.99 19.00 3.59 1.95e-03*
6.94 2,19.2 5.39e-03*

 TCEa-c 2.42 3.28 17.17 0.74 0.477

S (demeaned) 5.79 1.82 16.98 3.17 5.55e-03*

Opposites (final) F df p

 Intercept 14.62 3.09 17.19 4.74 1.86e-04*

 TCEac-b −0.39 2.29 19.20 −1.7 0.865
0.06 2,17.61 0.946

 TCEa-c −1.08 3.34 16.02 −0.32 0.750

S (demeaned) 2.40 2.49 16.49 0.97 0.349

Table 4.  Final mixed effects model shows a statistically significant nonlinear response for near and far dual 
thermode stimuli, but not the opposite arm stimulus.
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the VAS timeseries (e.g. mean and variance) in a complicated way. These changes effectively introduce hetero-
geneity in the probability distribution of the timeseries from one stimulation period to the next (i.e. timeseries 
structure is “non-stationary”). This problem is compounded by the relatively short duration between stimulus 
changes (e.g. t1 and t2 pain ratings only span 214 frames each), which limits the number of effective degrees of 
freedom available to model these statistical properties. This confounds linear timeseries modelling of complete 
stimulus responses. Nevertheless, the pain return during t3 is sustained during a period of constant stimulation, 
which simplifies modelling. Dual thermode responses between timepoints (b) and (c) were therefore modeled 
as a linear combination of two independent variables, each representing a competing hypothesis: (1) the single 
thermode complex stimulus response (nonlinear hypothesis) and (2) the single thermode T1 stimulus response 
(linear hypothesis). Although competing, these hypotheses are not necessarily mutually exclusive, and combining 
both together in a single model recognizes the possibility that responses to dual thermode stimuli may be a hybrid 
of single thermode stimulus-response patterns.

Regression models of near and far dual thermode responses support the nonlinear hypothesis (multiple 
regression with ARIMA(1, 1, 0) errors; near βcomplex = 0.167, t = 4.54, p < 1e-05; far βcomplex = 0.083, t = 2.03, 
p = 0.043; df = 437). The psychophysical model predicts the overall shape of the nonlinear trajectory should be 
the same regardless of how much pain is reported (i.e. dynamics show amplitude invariance) (Fig. 2A), a property 
clearly illustrated when comparing amplitude (i.e. variance) normalized responses to the complex stimulus with 
responses to ipsilateral dual stimuli. Conversely, neither linear nor nonlinear hypothesis offered a consistent 
explanation when modeling responses to the opposite arm stimulus, suggesting it may have unique dynamical 
properties (Fig. 6B, Table 5).

Discussion
Temporal contrast enhancement in pain has thus far mainly been explored in the context of “offset analgesia” and 
a single stimulus pattern. Here we formally generalize this process to an entire class of stimuli with a nonlinear 
recurrent feedback model of temporal integration, and identify an invariance relationship underlying responses 
to step-wise dynamic stimuli. This enables simple and accurate construction of a highly effective novel stimulus 
paradigm for studying TCE in pain. Using simultaneous stimulation of different skin sites, we show the CNS is 
sufficient to perform nonlinear spatiotemporal integration of pain, and that resulting TCE pain dynamics are 
shared with nonlinear temporal integration of single stimuli.

Model extrapolations predict three distinct nonlinear stimulus-response motifs, two of which are contrast 
enhancing, and all are confirmed by single thermode stimuli. TCE responses to incremental stimulus increases 
and decreases are symmetric, peak around five seconds after stimulus onset and rapidly rebound. These dynamics 
enhance saliency of stimulus changes, and are absent in responses to initial stimulus onset. Critically, the stimu-
lus features of the model training dataset are mainly 5 s long, too short to fully resolve stimulus-response motifs 
which show characteristic extrema and relaxation dynamics over 15–45 s of constant stimulation. Nevertheless, 
modeling successfully predicts the magnitude of downward deflecting nonlinearities, and peak and rebound 
dynamics of their upward deflecting counterparts. Although each of these motifs has been shown in some form 
before8, 9, this is the first time to our knowledge that they are systematically characterized and unified under a 
single theoretical framework. This shows that TCE pain dynamics behave as if there is an underlying recurrent 
feedback process.

The model’s ability to successfully extrapolate stimulus-responses outside of its training space lends credence 
to its use for mechanistic insight and as an interpretive lens, but limitations must also be recognized. Because our 
usage intent was primarily instrumental other models were not considered for comparison, but alternatives have 
been proposed which successfully predict response dynamics like adaptation and habituation24, processes our 

Coef. SE t-stat P-value

Near

AR(1) 0.570 0.033 17.500 —

β Complex Resp. 0.167 0.037 4.537 7.38e-06*

β T1 Resp. 0.061 0.061 1.009 0.314

Variance 0.002 0.000 22.739 —

Far

AR(1) 0.388 0.037 10.393 —

β Complex Resp. 0.083 0.042 1.999 0.047*

β T1 Resp. 0.041 0.067 0.614 0.5395

Variance 0.002 0.000 22.007 —

Opposite arms

AR(1) 0.373 0.038 9.692 —

β Complex Resp. −0.038 0.038 −0.994 0.321

β T1 Resp. −0.003 0.066 −0.046 0.963

Variance 0.002 0.000 19.009 —

Table 5.  Regression models of dual thermode stimulus responses during t3 as a linear combination of single 
thermode stimulus responses.
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model was not designed to accommodate. Perhaps as a result our model overestimates the rate of pain rebound for 
the complex stimulus. Additionally, the predicted response symmetry between stimulus increases and decreases 
contradicts recent findings using painful laser stimuli9, which suggest more abrupt contrast enhancement for 
stimulus increments. However, it should be noted our model breaks symmetry in a similar manner as stimuli 
deviate from idealized steps, e.g. by using finite stimulus ramp rates. Any mechanistic insights gained from this 
model must undoubtedly be interpreted in the context of supplemental mechanisms affecting stimulus response 
properties. In fact, continuous rating of subjective states could be influenced by many factors such as attention, 
expectations, prior experience, and even trust in the experimenter. We imposed minimal control on such factors. 
Most importantly, the instructions of what to rate are critical, and subtle changes in the latter may lead to different 
outcomes. Finally, our model parameters were derived based on data collected mainly in males, while dual ther-
mode experiments were conducted primarily in females. Although the robust extrapolation of model outcomes 
to the dual thermode results suggests that sex may not be an important contributor to pain TCE mechanisms, 
this remains to be systematically studied, as sex is an important factor in pain psychophysics. The small dynam-
ical range of our thermodes limited the number of subjects that we could study; it remains unclear whether this 
introduced bias in our model fit. Further studies are needed to clarify the limits of the model’s extrapolations and 
dependence on stimulation apparatus and modality, task conditions and demographic composition.

The role of peripheral nociceptive neurons in TCE has not been systematically explored. Different classes of 
first order afferents contribute to stimulus dynamics by conveying unique stimulus information depending on 
response thresholds, latencies and adaptation dynamics. For instance, low threshold nociceptive C-fibers begin 
responding at 39–41 °C25, are unmyelinated and relatively slow to transmit afferent signals26 and rapidly adapt to 
stimulation27, properties conducive to detecting slow stimulus changes. Type-II Aδ fibers also rapidly adapt to 
stimulation but are much faster acting28 providing a second complementary method through which to detect fast 
stimulus changes29, while type-I Aδ fibers27 are slow adapting and might signal persistent stimulation. However, 
activity of first order afferents does not correlate with experimental tonic pain sensations27. Although we cannot 
a priori preclude that mechanisms in the periphery contribute to TCE dynamics, pain sensations appear more 
likely to be indirectly constructed from stimulation of the sensory epithelium, just as in vision, where a crisp and 
stable sensory representation is indirectly constructed from the radically different retinal image that is subject to 
constant saccadic jitter and optic distortions by ocular tissues and fluids.

Nevertheless, this study’s primary finding shows central mechanisms are sufficient for temporal contrast 
enhancement in thermal pain perception. When complex stimuli are deconstructed into constituent boxcars 
and delivered to the same arm either near or far apart, the subject’s response is not merely a superposition of 
responses to the constituent stimuli. Instead, a characteristic nonlinear, group mean response is observed with 
unambiguous subject level incidence. Receptive fields of first order nociceptive afferents are on the order of cen-
timeters, while distances between thermodes exceed these and are up to an order of magnitude larger in the ‘far’ 
configuration. Therefore, subjects must integrate information from different peripheral afferent receptive fields 
to experience a TCE pain response. This entails nonlinear spatiotemporal integration of these stimuli at a higher 
level in the CNS.

Although we don’t distinguish between pain ratings and pain experience, there are undoubtedly differences 
due to reporting errors and the interpretive decisions inherent in self report. As we illustrate with single subject 
data, self report is discontinuous and is frequently a succession of abruptly changing steps, while (subjectively 
speaking) experience is continuous. Much of this error variance cancels out when averaging across subjects. We 
mitigate the risk of an interpretive confound by using an optimal stimulus paradigm. Identifying a nonlinear 
response depends on the temporal contrast of experienced pain, and our optimized stimulus paradigm ensures 
this contrast is maximized and highly salient, as shown by single thermode stimuli (85% pain decrease) and 
ipsilateral dual stimuli (50% pain decrease). This improves on all existing studies of offset analgesia since gross 
changes in pain intensity are much easier to identify and report than subtle ones.

Our experimental design precludes peripheral temporal integration of dual thermode stimuli, but the results 
do not provide further insight regarding the level of the neuraxis at which integration occurs. It may occur any-
where there are neurons with receptive fields large enough to circumscribe both thermodes, but candidates 
already exist at the level of the spinal dorsal horn (e.g. wide dynamic range neurons30). Thermodes were posi-
tioned on different sides of the radial midline of the arm, so it is likely different dermatomes were stimulated 
and spatial integration occurred across spinal segments. It was further hoped responses to opposite arm stimuli 
might identify a supraspinal mechanism with a bilateral receptive field. While the incidence of complete transient 
abolition of opposite arm pain remains statistically significant, the group dynamics during the prospective pain 
return period (t3) do not match the boxcar stimulus (as required by the superposition principle), the complex 
stimulus, nor a linear combination of the two. An additional nonlinear spatiotemporal integration process may 
yet be involved. Therefore, our findings do not distinguish between prospective segmental, intersegmental or 
supraspinal mechanisms.

Inhibition of pain after painful stimulation of a remote site might be achieved by spatial filtering acting in 
parallel with temporal contrast enhancement. For instance, in CPM one painful stimulus suppresses responses to 
additional painful stimuli elsewhere on the body. Although CPM and TCE in pain are mediated by distinct mech-
anisms15, dual thermode stimuli are both spatially and temporally integrated. However, transient pain reduction 
during our dual thermode stimuli follows the same dynamics as a single thermode complex stimulus, supporting 
the conclusion that nonlinear responses to dual thermode stimuli are the result of a mechanism shared with non-
linear responses to single thermode stimuli rather than any additional mechanism of spatial filtering.

The construction of sensory representation through successive levels of spatiotemporal filtering and ampli-
fication is a fundamental principle underlying the organization of the nervous system. By matching dynamics 
elicited by spatially localized or dispersed time-varying noxious stimuli we demonstrate the existence of a CNS 
mechanism for temporal contrast enhancement of thermal painful stimulus changes in pain perception.
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Methods
Subjects.  Data were collected from 20 individuals recruited from the Northwestern University community. 
All provided informed consent for all experiments, were right handed, at least 18 years old (age: 26 ± 3 years, 
mean ± SD; 6 males), and had no history of chronic pain, depression, dementia or other psychiatric condi-
tions. A model training dataset was also obtained from 11 subjects recruited from the Chicago area (age: 23 ± 2 
years, mean ± SD; 8 males). An additional 9 subjects were excluded from the training dataset due to equipment 
malfunction (3 subjects) or due to failure of a subset of training stimuli to evoke pain (6 subjects). All experi-
ments were approved by and conducted in accordance with the ethical principles set forth by the Northwestern 
University institutional review board.

Equipment.  Stimuli were delivered by two Medoc PATHWAY ATS thermodes (30 × 30mm) controlled by 
two separate PCs, but were calibrated using a common external reference thermometer to protect against unin-
tended stimulus mismatches. Temperature and event related data was sampled at 200 Hz. Real-time pain ratings 
were obtained using a finger device with VAS feedback, and sampled at 14.3 Hz using in house LabView software. 
Visual feedback was rendered as a moveable yellow bar alongside a number scale (0–100)31. The LabVIEW soft-
ware also controlled a digital input/output device (National Instruments NI USB-6501) which delivered a 0.4 Hz 
heartbeat (synchronization) signal to each Medoc device during trial runs. These reference signals synchronously 
triggered stimulus delivery and facilitated alignment of stimuli and rating data during preprocessing.

Experiments were conducted in a purpose built space consisting of two adjacent rooms to minimize contact 
between experimenter and subject. The experimenter, PCs and Medoc systems were in one, while the subject, 
stimulating thermodes, feedback monitor and finger span device were in the other. Subjects were provided with 
and instructed in the use of an emergency stop button which would terminate stimuli if they became intolerable.

Modeling.  Pain was modeled using a nonlinear second order differential equation which has been previously 
described22.
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The model was fit to a training dataset which was not used further in this study. Five stimuli were delivered 
consisting of 5s–5s–15s or a 5s–5s–30s stimulation, following a T1-T2-T1 temperature profile, where T1 ∈ [44 °C, 
48 °C] and T2 = T1 + 1 °C. Stimulus timing profiles and 15 s or 45 s interstimulus intervals were pseudorandomly 
selected and preprogrammed into the stimulator, but delivered identically to all participants (Fig. 1). Mean 
stimulus-response data was used to obtain the model fit with a random walk over the parameter space. The 
obtained model fit was used throughout the rest of this study: (θ, α, β, γ, λ) = (37.1913, 2.4932, 36.7552, 0.0204, 
0.0169).

Experimental Task.  Subjects were instructed to rate their overall pain from thermal stimulation using the 
finger device. The experimental task at times involved rating pain during delivery of two simultaneous stimuli of 
different intensity, but our a priori hypothesis only requires examining the periods flanking this period. Rather 
than introducing superfluous task demands by asking the subject to attend to a specific thermode, instructions 
were deliberately vague with respect to the source of the stimulus. Thus subjects were allowed to freely choose 
how to reconcile the two potentially competing stimuli in their rating.

Before experimental trials, subject pain thresholds and tolerance were evaluated. Six 10 s thermal stimuli were 
delivered at differing intensities to the right volar forearm. Stimuli differed in 1 °C increments, and each was 
used twice in random order. The procedure was repeated until (1) all stimuli used were painful but tolerated, 
(2) subject rated stimuli of equal intensity the same (±10 VAS units). Between repetitions stimuli were adjusted 
as needed to accommodate tolerances and pain thresholds of subjects. The least tolerant individuals completed 
training using 44 °C, 45 °C and 46 °C stimuli, while those with highest pain threshold completed training with 
47 °C, 48 °C and 49 °C stimuli.

Experimental stimulation involved 2 noxious stimulus intensities (T1 and T2, where T1 + 2 °C = T2; base-
line = T1 − 16 °C), used in 3 stimulation sequences, each with six stimulation epochs (Fig. 5). Overall, these ther-
mal pulses were either a complex, low-high-low sequence as used in “offset-analgesia” studies, or its component 
low and high pulses, presented either on the same skin site, or at different skin locations. Sequences had identical 
stimulus programming: 15 s of T2, a dual thermode stimulus (75 s T1, 15 s T2), a second dual thermode stimulus 
(temperatures swapped), a 15s–15s–45s T1-T2-T1 complex stimulus, a 75 s T1 stimulus and finally another 15 s 
T2 stimulus. The dual thermode stimuli were timed such that their superposition would match the profile of the 
complex stimulus. Relative stimulus intensities were fixed, but absolute intensities were adjusted for pain thresh-
olds and tolerances (T1 = [44.5 °C, 45 °C, 46 °C, 47 °C], N = [1, 5, 7, 7], resp.). Spatial configurations of thermodes 
(near, far or opposite arms, Fig. 4) were changed between sequences, and the order of sequences was randomized 
across subjects. Stimuli were delivered to the left ventral forearm, except for the opposite arm stimulus, which 
was delivered to a site on the right ventral forearm unaffected by the training task. 6 °C/s temperature ramp rates 
were used.

Data analysis.  Preprocessing.  Matlab was used to resample thermode data to match the finger device 
sampling rate using heartbeat signals to determine appropriate timestamps. Stimulus-response lag was deter-
mined by the maximal cross correlation of stimulus and response for single thermode boxcar stimuli (average 
lag: 3.36 ± 1.6 s, mean ± SD). Finally, onset and offset times for responses to specific stimulus features of interest 
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(i.e. t1, t2 and t3) were projected by discounting the temperature rise and fall rates and incorporating the average 
stimulus-response lag.

Hierarchical Linear Modelling.  Inference on mean TCE was drawn using hierarchical linear models in order 
to control for between subject covariates (e.g. stimulus intensity) while also modelling variability within sub-
ject. Pain intensity (VAS) served as the dependent variable, measured at three timepoints per stimulus epoch 
(Fig. 6A, insert). Several considerations informed model selection. First, the study’s a priori hypothesis calls for 
a non-monotonic response characterized by two periods of high pain interrupted by a period of lower pain. This 
suggests a specific planned contrast (a and c vs. b in Fig. 6A). Second, the relationship between stimulus intensity 
and TCE (if any) is unknown and is modeled. Third, previous studies have shown site specific and nonspecific 
sensitization depend on stimulus intensity24, but neither affect magnitude of offset analgesia32 (a special case of 
TCE), therefore sensitization and its interaction with stimulus intensity, but not with TCE, are modeled. Finally, 
within subject stimulus intensity is constant across all timepoints of interest (a, b, c), therefore stimulus intensity 
and its higher order effects are only modeled at the group level. At the subject level the only random effects mod-
eled are TCE and sensitization. The full model is summarized by the following equations,

+ +=
= ∗
=

=
−

=
−

− −

− −

−

−

TCE
period a or c

period b

TCE
period a
period c

VAS XB Zu e
X 1, TCE , TCE , S, T , T S]
Z 1, TCE , TCE , S]

[
[

{

1
3

,

2
3

,

( ) ( )
( )

{

1
2

,

1
2

,

( )
( )

(3)

ac b
j

a c
j

ac b a c 1 1

i ac b a c

where X is the higher level design matrix, and Z is a block diagonal design matrix composed of Zi, the subject 
level design matrices. S is the stimulus number, since we delivered two, and models sensitization effects. TCEab-c 
is the planned contrast. The model was fit using restricted maximum likelihood estimation as implemented in the 
LME4 package in R. The lmerTest package was used for inference with Satterthwaite’s approximation for effective 
second level degrees of freedom. Because TCE is tested in three different thermode configurations (near, far and 
opposite arms), Holm-Sidak correction for multiple comparisons is employed to control the 0.05 false positive 
rate.

The higher level design matrix fits are reported in (Table 3). Although plausible a priori, many of these higher 
order parameter estimates are not statistically significant. Stepwise regression strategies would argue for their 
removal, but such methods can be problematic in hierarchical models due to the effect of higher level terms 
on lower level parameter estimates. Terms that are present at the first level of the model are not considered for 
removal due to the difficulty of correctly quantifying the effective reduction in model complexity, and such terms 
are also retained at the second level, but Bayes information criteria is used to determine which temperature terms 
to remove, since these are only present at the second level (Table 4). Nevertheless, because the correct approach 
to such model selection problems remains an open question in the statistical literature33, and different approaches 
might have justified a different final model selection we also present the preliminary models.

Dynamics of nonlinearity.  Timeseries data was analyzed using an autoregressive integrated moving average 
(ARIMA) model34.
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ARIMA models capture linear relationships between points within timeseries (u(t)), producing a modified 
error term (ε) against which the statistical significance of parameter estimates between timeseries (B) can be eval-
uated (Li, lag operator; ϕi, autocorrelation weight of u(t) vs u(t-i); θi, moving average weights).

To determine the error model order (p, d, q) we regress independent variables from the dependent variables 
and inspect the autocorrelation and partial autocorrelation plots of the residuals. These revealed a parsimonious 
solution with timeseries dominated by lag 1 autocorrelation at the level of the first difference and no moving 
average component, an ARIMA(1, 1, 0) model. Analysis of Bayesian information criteria for models with autore-
gressive and moving average terms within 2 orders of an ARIMA(1, 1, 0) model supports this conclusion. Thus all 
effect sizes for parameters of interest are evaluated while controlling for ARIMA(1, 1, 0) errors. This yields more 
conservative inferences than would result from a standard regression model.

Data availability.  Raw and preprocessed data used in this study are available from the corresponding author 
upon request.
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data analysis except for model fitting. L.H. fit the psychophysical model parameters to the training dataset. The 
training dataset was obtained from a separate study designed by A.V.A. and J.Y.C. V.A.M. and M.W.S. recruited 
subjects for the latter and collected the training dataset together with B.P. Illustrations drawn by B.P. All authors 
reviewed and approved of the manuscript before submission.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	A central mechanism enhances pain perception of noxious thermal stimulus changes

	Results

	Model exploration and stimulus design. 
	Complex stimulus paradigm maximizes nonlinear response. 
	Subject level responses to dual thermode stimuli are nonlinear. 
	Group level dual thermode responses match the nonlinear complex stimulus response dynamics. 

	Discussion

	Methods

	Subjects. 
	Equipment. 
	Modeling. 
	Experimental Task. 
	Data analysis. 
	Preprocessing. 
	Hierarchical Linear Modelling. 
	Dynamics of nonlinearity. 

	Data availability. 

	Acknowledgements

	Figure 1 A nonlinear feedback model (red) captures mean response of 11 subjects (black) to a painful thermal stimulus sequence (gray).
	Figure 2 Model exploration suggests ideal stimulus parameters to resolve painful TCE.
	Figure 3 Group mean acute pain dynamics (black) from simple and complex single thermode stimuli (gray) are predicted accurately by the model (red).
	Figure 4 Dual thermode experimental design allows for simultaneous delivery of stimuli to different sites.
	Figure 5 Stimulus and pain ratings from a representative subject exhibiting nonlinear pain for single complex stimuli and for dual stimuli configurations (near, far, and opposite arm).
	Figure 6 Near and far dual thermode stimuli produce a nonlinear response with the same dynamics as a single complex stimulus.
	Table 1 Timing of local extrema in group mean responses with bootstrapped 95% confidence intervals (bracketed).
	Table 2 Incidence of nonlinear responses with stratification by stimulus level (T1 = [44.
	Table 3 Preliminary mixed model of dual stimulus responses, measured at timepoints of complex stimulus extrema, shows there is no interaction between TCE and stimulus intensity between subjects.
	Table 4 Final mixed effects model shows a statistically significant nonlinear response for near and far dual thermode stimuli, but not the opposite arm stimulus.
	Table 5 Regression models of dual thermode stimulus responses during t3 as a linear combination of single thermode stimulus responses.




